
Synthesis of Instruction Sets for Pipelined Microprocessors†

Ing-Jer Huang and Alvin M. Despain
Advanced Computer Architecture Laboratory

Department of Electrical Engineering – Systems
University of Southern California

ijhuang@usc.edu, despain@usc.edu

Abstract

We present a systematic approach to synthesize an instruction set
such that the given application software can be efficiently mapped
to a parameterized, pipelined microarchitecture. In addition, the
assembly code is generated to show how the application can be
compiled with the synthesized instruction set. The design of
instruction sets is formulated as a modified scheduling problem. A
binary tuple is proposed to model the semantics of instructions
and integrate the instruction formation process into the schedul-
ing process. A simulated annealing scheme is used to solve for the
schedules. Experiments have shown that the approach is capable
of synthesizing powerful instructions for modern pipelined micro-
processors. The synthesis algorithm ran with reasonable time and
a modest amount of memory for large benchmarks.

1. Introduction

Microprocessors (reprogrammable processors) offer a flexible
and low cost solution for embedded systems with complex algo-
rithms or control intensive applications. The performance of a
microprocessor-based system depends on how efficiently the
application can be mapped to the hardware. One key issue deter-
mining the success of the mapping is the design of the instruction
set, which serves as the interface between the hardware and appli-
cation. How to design an instruction set that closely matches the
characteristics of the hardware and of the application is an impor-
tant design problem.

In this paper we present the problem formulation and the algo-
rithm of a systematic approach [6] which synthesizes application-
specific instruction sets for parameterized, pipelined microarchi-
tectures, from given application benchmarks. The problem is for-
mulated as a modified scheduling problem, with the micro-
operations (MOPs) representing the application benchmark as the
nodes to be scheduled, subject to several design constraints.
Instructions are formed by an instruction formation process that is
integrated into the scheduling process. The compiled code of the
application is generated, using the synthesized instruction set. A
simulated annealing scheme is used to solve for the schedule and
the instruction set. The design issues addressed in this approach
include: instruction utilization, instruction operand encoding,

delay load/store and delay branches.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 presents the models for the micro-archi-
tectures, instruction sets and application benchmarks. Section 4
and Section 5 describe the problem formulation and algorithm,
respectively. Section 6 demonstrates our techniques with some
experiments. Section 7 discusses the current status, limitations,
and future directions.

2. Prior work

Most of the early work on automatic instruction set designs
view the design problem as a design process independent to the
hardware implementation. Instructions were not restricted to
single-cycle instructions since multiple-cycle instructions can be
supported through micro-programming (firmware). Without
knowing the decode/control complexity, the focus was mainly in
directly supporting high level languages or increasing the code
density. The results were CISC-like instructions. These studies
include Haney’s [1], Bose’s [2] and Bennett’s [3] work. These
techniques are not suitable for designing instruction sets for mod-
ern pipelined processors.

Sato et al. [5] propose an integrated design framework for
application specific instruction set processors. This framework
generates profiling information from a given set of application
benchmarks and their expected data. Based on the profiles, the
design system customizes an instruction set from a super set,
decides the hardware architecture (derived from the GCC’s
abstract machine model), and the related software development
tools. This framework is similar to our work in terms of the inputs
and outputs of the design system; however, it is different from
ours in terms of the machine model and the design method. They
assume a sequential (non-pipelined) machine model, whereas we
assume a pipelined machine with data-stationary control model.
On the other hand, they generate instruction sets by selecting sub-
sets from a super set, whereas we synthesize the instruction sets
directly in order to find new and useful instructions for the given
application domain.

Different from previous approaches, Holmer [4] focuses on
generating instruction sets for pipelined micro-architectures with
parameterized data paths. The parameters for a data path include
the number of read/write register ports, memory ports, number of
functional units and the cycle counts for memory operation. Our

†. This work was supported by the ARPA under contract
No. Rutgers 4-26385.

work builds on Holmer’s results and improves the problem for-
mulation and synthesis algorithms, in order to generate applica-
tion-specific instruction sets and compiled codes for
microprocessor-based embedded systems.

Another design problem that is close to the instruction set
design problem is microcode compaction [10][11]. However, it
does not has the concept of ‘instruction set’ and its goal is to
reduce the number of cycles to execute a microprogram. Instruc-
tion set design has more complicated goal: optimize and trade off
the instruction set size, the program size, and the number of
cycles to execute a program.

3. Design models

3.1. Instruction sets

The instruction sets are assumed to be of fixed word length,
which is specified by the designer. An instruction consists of
fields. The fields are a combination of some field types. The field
types and their bit widths are provided by the designer. Table 1
lists the specification of some instruction field types and their bit
widths, taken from the BAM instruction set [13]. Each instruction
has one opcode field, but the use of other fields is constrained
only by the total number of bits needed by the operations in the
instruction.

The operands of instructions can be encoded to become part of
the opcodes. There are two ways to encode operands. First, a spe-
cific value can be permanently assigned to an operand and
becomesimplicit to the opcode. Second, the register specifiers
can beunified. For example, the instructioninc(R) ‘R<-R+1’ is
obtained from the general instructionadd(R1,R2,Immed) ‘R1<-
R2+Immed’. The facts of R1=R2 (unifying register specifiers) and
Immed=1 (fixing an operand to a specific value which becomes
implicit) are encoded into the opcodeinc . Encoding operands
saves instruction fields, and allows more MOPs to be packed into
a single instruction, at the cost of possibly larger instruction set
size, additional connections and hardwired constants in the data
path.

3.2. Microarchitectures

The design style supported here is a parameterized, pipelined
microarchitecture. The pipeline is controlled in a data stationary
fashion [8]. It consists of stages for instruction fetch, instruction
decode, register read, arithmetic/logic operation, memory access,
and register write. The first two stages are identical to all instruc-
tions. The last four stages, theinstruction execution stages, are
dependent on the semantics of the instructions.

Instruction Field Type Number of bits

instruction word 32

opcode 6

register (R) 5

tag (T) 5

displacement (D) 16

immediate (I) 16

relation operator (OP) 2

Table 1: Bit width specification for some instruction field types

The target microarchitecture can be fully described by specify-
ing the supported MOPs and a set of parameters. The supported
MOPs describe the functionality supported in the microarchitec-
ture, and the connectivity among modules in the data path. For
example, the first two columns of Table 2 list some of the MOPs
supported in the VLSI-BAM microprocessor [14] and their corre-
sponding MOP type IDs.

The set of parameters describes resource allocation and timing
of functional modules. The parameters include the number of reg-
ister-file read/write ports, number of memory ports, number of
functional units, the sizes of the register file and memory, and the
delay cycles of memory access, functional units and control flow
change.

Each MOP supported by the data path is assigned costs for the
instruction format and hardware resources. The costs of the
instruction format are the instruction fields required to operate the
MOPs, including register index, function selectors, and immedi-
ate data. The hardware costs are the resources required to support
the MOP. The hardware resources include read/write ports of the
register file, memory ports, and functional units. The third and
fourth columns in Table 2 lists the costs for the corresponding
MOPs.

3.3. Application benchmarks

Each application benchmark is represented as a group of
weighted basic blocks. The weight indicates how many times the
associated basic block is executed in the benchmark. Basic blocks
are mapped to data/control flow graphs of MOPs that are sup-
ported by the target microarchitecture. Figure 1 shows an exam-
ple of a basic block, which consists of six MOPs. The bold labels
before the MOPs are their IDs. The solid arrows are data-related
dependencies. The dashed arrows are control dependencies.

4. Instruction set design as a modified sched-
uling problem

The instruction set design problem can be formulated as a
modified scheduling problem. The inputs of the problem are:
application benchmarks represented in MOPs, constraints of the

*. Refer to the notation in Table 1.
†. Notation: ‘R’=read port of register-file, ‘W’=write port of register-

file, ‘M’=memory port, ‘F’=functional unit. The number specifies
how many of the resources are required.

Type
ID

MOP
Instruction Format

Cost*
Hardware

Cost†

rr R1 <- R2 R1, R2 1 R, 1 W

rra R1 <- R1 + R2 R1, R2 2 R, 1 W, 1 F

rrai R1 <- Immed + R2 R1, R2, I 1 R, 1 W, 1 F

ri R1 <- Immed R1, I 1 W

rm R1 <- mem(R2) R1, R2 1 R, 1 W, 1 M

rmd R1 <- mem(R2 + Immed) R1, R2, I 1 R, 1 W, 1 M, 1 F

mr mem(R1) <- R2 R1, R2 2 R, 1 M

mi mem(R1) <- Immed R1, I 1 R, 1 M

mrd mem(R1 + Disp) <- R2 R1, R2, D 2 R, 1 M, 1 F

mrad mem(R1 + Disp) <- R2 + Immed R1, R2, D, I 2 R, 1 M, 2 F

jd pc <- pc + Disp I 1 F

Table 2: MOP specification

*. Refer to the foot note of Table 2 for the meaning of the notations.

Schedule Instruction Semantics Instruction Fields Costs

Time
step

MOP
IDs

RTLs
MOP

type IDs
Encoded

fields
Inst.
name

Format Field values
Hardware

cost*
Inst. word

width

1 mo1 m(R1+D1)<-R2+D2 mrad inst1 R1, R2, D1, D2 r2, r2, 0, 0 2R, 1M, 2F 48

2 mo2 R1<-R2+I rrai I=0 inst2 R1, R2 r0, r2 1R, 1W, 1F 16

3 mo3 m(R1+D1)<-R2+D2 mrad D1=D2, R1=R2 inst3 R1, D1 r2, 1 1R, 1M, 1F 27

4 mo4 R1<-R2+I rrai inst4 R1, R2, I r1, r2, 1 1R, 1W, 1F 32

5 mo5 R1<-R2+I rrai inst4 R1, R2, I r2, r2, 2 1R, 1W, 1F 32

6 mo6 pc<-pc+D jd inst5 D 1024 1F 22

7 nop nop inst6 6

Table 3: Schedule I for the MOPs in Figure 1 and the resulted instructions

Schedule Instruction Semantics Instruction Fields Costs

Time
step

MOP
IDs

RTLs
MOP

type IDs
Encoded

fields
Inst.
name

Format Field values Hardware cost
Inst. word

width

1 mo1, mo2 m(R1+D1)<-R2+D2;

R3<-R4+I

mrad, rrai R1=R2=R4;

D1=D2=I

inst7 R1, R3, D1 r2, r0, 0 1R, 1W, 1M, 1F
32

2 mo3, mo4 m(R1+D1)<-R2+D2;

R3<-R4+I

mrad, rrai R1=R2=R4;

D1=D2=I

inst7 R1, R3, D1 r2, r1, 1 1R, 1W, 1M, 1F
32

3 mo6 pc<-pc+D jd inst5 D 1024 1F 22

4 mo5 R1<-R2+I rrai inst4 R1, R2, I r2, r2, 2 1R, 1W, 1F 32

Table 4: Schedule II for the MOPs in Figure 1 and the resulted instructions

instruction word width and instruction field widths, constraints of
hardware resources, the number of delay cycles for branch/jump
and memory MOPs, and the objective function. The MOPs of the
benchmarks are scheduled into time steps, subject to various con-
straints to be discussed later. While scheduling MOPs into time
steps, instructions are formed at the same time. Finally, the out-
puts of this problem formulation is a synthesized instruction set
and compiled benchmarks.

Two schedules of the MOPs in Figure 1 are shown in Table 3
and Table 4, respectively. In the first column of the table are time
steps, and in the second column are the IDs of the MOPs sched-
uled into the corresponding time step. In this example we
assumed a one-cycle delay for the jumpMO6 MOP and zero-cycle
delay for memory operations. The schedule in Table 3 is a serial-
ized one, with seven cycles. There is one MOP in each time step.
Note that there is anop at the seventh cycle sinceMO6 is sched-
uled as the last MOP. The schedule in Table 4 is a more compact
one, with four cycles. Note that the delay slot ofMO6 is filled with
MO5 such that there is no need for anop .

In the following subsections, we present several aspects of the
scheduling problem.

4.1. Instruction formation: the binary tuple and
its relation with scheduling process

Figure 1. Data/control flow graph of MOPs of a basic block

MO1:m(r2+0)<-r2+0 MO2:r0<-r2+0 MO3:m(r2+1)<-r2+1 MO4:r1<-r2+1

MO5:r2<-r2+2

MO6:PC<-PC+1024

The semantics of an instruction can be represented by a binary
tuple <MOPTypeIDs, IMPFields>, whereMOPTypeIDs is a list
of type IDs (as shown in the first column of Table 2) of MOPs
contained in the instruction, andIMPFields is a list of fields that
are encoded into the opcode.

For example, the binary tuple for the instruction
add(R1,R2,Immed) is <[rrai],[]> . The instruction contains
one MOP ‘R1<-R2+Immed’ with the type IDrrai , which is rep-
resented by the list in the first argument of the tuple. Since no
fields are encoded, the second argument of the tuple is an empty
list. On the other hand, the binary tuple for the instruction
inc(R) , an encoded version of the instruction
add(R1,R2,Immed) as discussed in Section 3.1, is<[rrai],

[R1=R2,Immed=1]> . The list in the second argument of the tuple
specifies how the fields are encoded: The elementR1=R2 unifies
the register specifiers R1 and R2 to the same register, and the ele-
mentImmed=1 fixes the immediate value permanently to the con-
stant of one.

Instructions are generated from time steps in the schedule.
Each time step corresponds to one instruction. The type IDs of the
MOPs scheduled to the same time step are assigned to the first
argument of the binary tuple for the instruction at the time step.
The operand encoding specification, which is generated by an
encoding process integrated into the scheduling process
(described in Section 5), is assigned to the second argument of the
binary tuple.

In Table 3 and Table 4, the columns under the header ‘Instruc-
tion Semantics’ and ‘Instruction Fields’ describe the semantics
and field information of the instructions formed for the two
schedules, respectively. The columns ‘MOP type IDs’ and
‘Encoded fields’ specify the binary tuples for the instructions. The
RTLs for the corresponding MOP types are listed under the
‘RTLs’ column. The ‘Inst Name’ column assigns names to the
generated instructions. The column ‘Format’ describes the

instruction format, i.e., the required instruction fields. The column
‘Field values’ lists the instantiated field values for the correspond-
ing time step. Note that, in order to demonstrate the variation in
instruction formation, the instruction set in Table 3 is chosen from
a non-optimal one.

For example, in Table 3, the MOPs scheduled into time step 4
and 5 have the same binary tuple, and thus are mapped to the
same instructioninst4(R1,R2,I) , with their field values
instantiated to(r1,r2,1) and (r2,r2,2) , respectively. Note
that we use capitalized letters, e.g.R1, to denote the instruction
fields, and non-capitalized letters, e.g.r2 , to denote the instanti-
ated values of the fields. On the other hand, the MOP in time step
2, is mapped to a different instructioninst2(R1,R2) , although it
contains the same type of MOPrrai as in time steps 4 and 5. Its
field for the immediate dataI is permanently assigned to the con-
stant ‘zero’ and made implicit in the opcode, which is indicated
by the specificationI=0 . This implicit field makesinst2 behave
as a ‘move’ instruction, instead of ‘add’.

The compiled code can be obtained easily from the instruction
names and instantiated field values. For example, the compiled
code for the scheduled basic block in Table 4 is represented as the
sequence: inst7(r2 ,r0 ,0) , inst7(r2 ,r1 ,1) , inst5(1024) ,
inst4(r2 ,r2 ,2) .

The instruction set is formed by unioning instructions gener-
ated from all time steps. For example, the instruction set derived
from the schedule in Table 3 contains six instructions
(inst1~inst6), and the instruction set for the schedule in
Table 4 contains three instructions (inst4,inst5,inst7).

4.2. Performance and costs

The weighted sum of the lengths (number of time steps) of the
scheduled basic blocks is the execution cycles of the benchmarks.
The length of the basic block includesnop slots which are
inserted by the design process to preserve the constraints due to
multi-cycle operations. The design process will try to eliminate
thenop slots by reordering other independent operations into the
nop slots.

Each instruction has two costs associated with it. One is the
total number of bits required to represent the instruction. The
number is a summation of field widths of opcode and all explicit
fields that are required to operate the MOPs contained in the
instruction. The implicit fields do not consume instruction bits.
For example, in Table 3, the instructioninst4 requires 32 bits,
using the bit width specification in Table 1; whereasinst2

requires 16 bits only because its immediate data field is made
implicit, saving 16 bits. The maximal bit widths of the instruction
sets in Table 3 and Table 4 are 48 and 32 bits, respectively.

Another cost is hardware. It is the collection of the resources
required by all MOPs contained in the instruction, minus the
shared resources. The sharing of the resources can be related to
field encoding. When two or more register reads of different
MOPs are unified, i.e., reading from the same register, one read
port of the register file is sufficient, instead of two or more. On the
other hand, if more than one destination register receive results of
the same arithmetic/logic expression, one functional unit is
enough since the computation result can be shared. For example,
inst7 needs only one read port instead of three sinceR1, R2, and
R4 are unified. It also needs only one functional unit, instead of

three, since the three destinations (memory data register, memory
address register, register file) all receive the same value:R1+D1.

The global hardware resources are obtained by choosing the
maximal number for each resource type from all instructions. For
example, the global hardware resources used for the schedule I
and II in Table 3 and Table 4 are <2R, 1W, 1M, 2F> and <1R, 1W,
1M, 1F>, respectively.

The example in Table 4 shows that compact and powerful
instructions can be synthesized by packing more MOPs into a sin-
gle instruction, and making fields implicit and register ports uni-
fied to satisfy the cost constraints. This is particularly useful in an
application specific environment where instruction sets can be
customized to produce compact and efficient codes for the
intended applications.

4.3. Constraints

The MOPs are scheduled into time steps, subject to several
constraints. First, the data/control dependencies and the timing
constraints (for multi-cycle MOPs) have to be satisfied. Second,
the instruction word width and the hardware resources consumed
by the instructions have to be no larger than what are specified by
the designer. Third, the size of the instruction set has to be no
more than what the opcode field can afford.

4.4. Objective function

A richer instruction set may result in more compact and effi-
cient compiled code, at the cost of complex decoding circuitry
and design verification efforts. Therefore, an objective function is
necessary to control the tradeoff of the cycle countC and instruc-
tion set sizeS, whereC represents the performance metrics, how
many cycles the benchmarks execute on the target machine, andS
represents the cost metrics.

An interesting objective function suitable for our purpose is
given by Holmer in [4]:

Objective = 100⋅ln(C) + S (EQ 1)

Other types of objective functions can be used with the design
system as well.

5. Simulated annealing algorithm

We use a simulated annealing scheme to solve the modified
scheduling problem. An initial design state consisting of a sched-
ule and its derived instruction set (generated by a pre-processor)
is given to the design system, and then a simulated annealing pro-
cess is invoked to modify the design state in order to optimize the
objective function, until the design state achieves an equilibrium
state.

The basic structure of our algorithm is similar to the simulated
annealing algorithm for scheduling/allocation problem by Deva-
das and Newton [9]. Due to space limitation, we present only the
move operators. For further information, please refer to [7].

The move operators change the design state. They provide
methods of manipulating the MOPs and time steps. Currently the
move operators implemented can be characterized into two
groups. The first group manipulates the instruction format of a
selected time step. There are five move operators in this group.

*. The number of control dependencies is counted as the total number of branch/jump micro-operations.
†. The hardware constraints are 3R, 1W, 2M, 1F for 32-bit instructions; 6R, 3W, 2M, 3F for 48-bit instructions; 8R, 4W, 32M, 4F for 64-bit instructions

Benchmark
of MOPs, data

dep., control dep.*
Instruction

word width†

Design results Performance of the algorithm

Cycle (C)
Instruction set

size (S)
Instruction set

space
Time (minutes) Memory (megabytes)

con1
183,
136,
24

32 135 29 1275 56 2.1

48 93 38 3733 59 2.7

64 89 35 3277 48 2.7

nreverse
245,
395,
11

32 169 17 540 69 2.1

48 157 23 772 57 2.0

64 154 22 688 48 2.0

query
391,
185,
68

32 305 24 478 95 2.0

48 215 32 1742 103 2.3

64 204 39 1445 89 2.3

circuit
1725,
1077,
274

32 1406 40 1710 1358 3.4

Table 5: Results (Objective function = 100⋅ln(C)+S)

• Generalization: If the current instruction format of the
selected time step contains encoded operands, make these
operands general and become explicit in the instruction fields.
The effects of this operator are increased instruction word
width and hardware resources.

• Unification: Unify two register accesses in the MOPs; i.e.,
they always access the same register. For example, the speci-
fication ofR1=R2 in our previous example of the increment
instructioninc(R) is a result of the ‘unification’ operator.
The effects of this operator are the decreases in the instruction
word width and/or register read/write ports.

• Split: Cancel the effect of the ‘unification’ operator. Two reg-
ister accesses that are previously unified to the same register
are made independent. The effects of this operator are the
increases in the instruction word width and/or register read/
write ports.

• Implicit value: Bind a register specifier to a specific register,
or an immediate data field to a specific value. The specific
values are the instantiated values in the MOPs of the selected
time step. For example, the specification ofImmed=1 in the
instructioninc(R) is a result of this operator. The effect of
this operator is the decrease in the instruction word width.

• Explicit value: Cancel the effect of the ‘implicit value’ opera-
tor. Instruction fields that are previously bound to specific
values are made explicit; i.e., their values are assigned by the
compiler and are specified in the regular instruction fields.
The effect of this operator is the increase in the instruction
word width.
The second group of move operators involves the movement

of the MOPs. There are four move operators in this group, which
are all subject to the data/control dependencies and delay con-
straints when moving MOPs. The target MOPs and time steps can
be selected randomly or with the guidance of heuristics.
• Interchange: Interchange the locations of two MOPs from dif-

ferent time steps.
• Displacement: Displace a MOP to another time step.
• Insertion: Insert an empty time step after or before the

selected time step.
• Deletion: Delete the selected time step if it is an empty one.

These move operators have effects on performance (cycle

count), hardware resources and instruction formation.
To improve the execution of the algorithm, there is a set of

heuristics which selects proper move operators, based upon the
current temperature and design status [7].

We have implemented the algorithm and its supporting tools
into our design system ASIA (Automatic Synthesis of Instruc-
tion-set Architectures). It consists of about 5000 lines of Prolog
code. In the following section we examine how the tools perform.

6. Experiments

In this section, experiments are presented to show the versatil-
ity of our tools by synthesizing instruction sets for some applica-
tion benchmarks with various design constraints. Four
benchmarks were selected from the Prolog Benchmark suite [12].
The benchmarkscon1 and nreverse are programs for list
manipulation. The benchmarkquery is a program for database
query. The benchmarkcircuit maps boolean equations into
logic gates. The second column in Table 5 lists the characteristics
of the benchmarks, including the numbers of MOPs, data-related
dependencies, and control dependencies in the benchmarks. The
number of MOPs represents the size of the benchmark; the num-
ber of data-related dependencies is related to the degree of paral-
lelism available within the benchmark; the number of control
dependencies indicates the degree of the impact of the branch/
jump delays on the benchmark.

We assumed that every basic block executes once. We used the
MOP specification as in Table 2. The delays are one cycle for
branch/jump MOPs and zero for memory operation. The instruc-
tion field bit widths are given in Table 1. The experiment was
conducted on a HP750 workstation with 256M memory.

For each benchmark, we synthesized its 32-bit, 48-bit, and 64-
bit instruction sets1, respectively. We were interested in how the
instruction sets vary with bit widths. Table 5 lists the results, syn-
thesized under the objective function with P=1 in (EQ 1). For all
three benchmarks, as we had expected, the cycle decreases when
the instruction word width increases. However, we observed a
smaller gain innreverse . This can be explained by its larger

1. The 48-bit and 64-bit versions of the benchmarkcircuit
are not yet ready to be included in this manuscript.

*. The resource constraints given to ASIA is the same as in the VLSI-BAM processor: 3R, 1W, 2M, 1F.
†. BAM refers to the instruction set that was manually designed for the VLSI-BAM processor.
‡. ASIA refers to the instruction set synthesized by the tools (ASIA) reported in this paper.

*. Notations: 1). The RTLs in an instruction are executed simultaneously; 2).tf: a one bit latch which holds the truth value of a logic
computation; 3). The operator ‘^’ appends a tag to a value before the value is sent to a destination.

†. These three instructions can be found in the BAM instruction set.

Benchmark Instruction set Hardware resources* Cycle (C)
Instruction set

size (S)
Objective value

(smaller is better)

con1
BAM† 3R, 1W, 2M, 1F 150 22 523

ASIA‡ 3R, 1W, 2M, 1F 135 29 520

nreverse
BAM 3R, 1W, 2M, 1F 178 16 534

ASIA 2R, 1W,1M, 1F 169 17 530

query
BAM 3R, 1W, 2M, 1F 368 22 613

ASIA 3R, 1W, 2M, 1F 305 24 596

circuit
BAM 3R, 1W, 2M, 1F 1453 24 752

ASIA 3R, 1W, 2M, 1F 1406 40 764

Table 6: Performance comparison with a manually designed instruction set

Instruction
word width

RTLs* Meaning

32

m(R1) ← R2; R1 ← R1+D push†

if (tf=1){ m(R1) ← R2; R1 ← R1+D} conditional push†

if (tag(R1=T1) { pc ← pc + D1 };

if (tag(R1=T2) { pc ← pc + D2 }
switch on tag†

48

tf ← R1 OP. R2; pc ← I compute condition and jump

m(R2) ← R3;

if (tf=1){ m(R1) ← R2; R1 ← R1+D}
store and conditional push (with a shared register)

m(R1) ← R2; R3 ← R4+I store and add

64

m(R3) ← R4;

if (tf=1){ m(R1) ← R2; R1 ← R1+D}
store and conditional push

m(R1) ← R2; R3 ← R4+ I store and add

R1 ← T ^ I; R2 ← R3 + I tag data and add

Table 7: Some synthesized instructions

ratio of the number of data dependencies to the number of MOPs.
Most of the MOPs depend on each other such that there is less
parallelism available when packing MOPs into instructions.

In general, the size of the instruction set also increases when
the instruction word width increases. This is due to the fact that
wider words can accommodate more MOPs, resulting in richer
and more powerful instructions. However, the 48-bit instruction
sets are ‘embarrassing’ designs forcon1 and nreverse . Their
instruction set sizes are larger, but their performance is worse than
their 64-bit alternatives in compiling the benchmarks. The 48 bits
are not wide enough for these benchmarks to accommodate the
most frequent MOP patterns, for which 64 bits are sufficient.
Therefore, the design process has to specialize the general forms
of some powerful instructions into several distinct instructions by
making fields implicit or unifying register ports, in order to satisfy
the bit width constraint.

In the ‘Instruction set space’ column we examined the number
of instruction candidates explored by the design process. The
numbers, much larger than the final instruction sets, show that the
design process was able to explore a rich design space for the best
candidates while keeping the size of the design space manage-
able.

In the two right most columns we also list the run time and
memory usage of our algorithm, which show that our tools were
able to synthesize instructions for application benchmarks within
reasonable time and consume a modest amount of memory

In Table 6 we compared the synthesized 32-bit instruction sets
with the BAM instruction set [13], which was designed for effi-
cient execution of Prolog programs. The programs were compiled
with the Aquarius Prolog Compiler, with the post-phase optimiza-
tion phase turned off2. The experiments show that the synthesized
instruction sets produced more compact codes for all four bench-
marks, with 10%, 5%, 17%, and 3% reduction in the code size,
respectively. This was achieved at the cost of a small number of
additional instructions (7, 1, and 2 forcon1 , nreverse , and
query , respectively), except incircuit where 16 additional
instructions are required. We then used Holmer’s objective func-
tion (EQ 1) to evaluate the global performance/cost tradeoffs for
both instruction sets and found that in most cases (con1 ,
nreverse , andquery) the synthesized ones yield better results,
as indicated in the ‘Objective value’ column (smaller values are
better). It is possible to improve the result ofcircuit by adjust-
ing the initial temperature and the cooling schedule in our future
experiment. We also compared the hardware resources used by
both instruction sets. They both use the same amount of
resources, except in thenreverse case our synthesized instruc-
tion set uses one less register read port and one less memory port
than BAM does. This experiment shows that ASIA is capable of

2. The post-phase optimization of the Aquarius Prolog Com-
piler alters the classic definition of the basic block. Due to the
time limit, we were not able to modify our tools to accommo-
date such change.

competing with manually designed instruction sets, based on the
collection of the benchmarks. Further studies will be needed to
investigate its competence in more general cases.

Table 7 shows some interesting instructions synthesized for
the benchmarkquery . They are selected from the 32-bit, 48-bit,
and 64-bit instruction sets, respectively. For ease of illustration,
we do not list the binary tuples for these instructions; instead, we
describe the RTLs of these instructions directly. In the RTLs, the
register sharing is indicated by using the same register index.
Note that the 32-bit version of the instructions can be found in the
BAM instruction set as well. This fact provides the BAM design-
ers with more confidence about their instruction set, since some of
the instructions that they considered ‘powerful’ retain their exist-
ence when the instruction set is designed by other independent
designers (in this case, the ASIA design automation system). This
observation suggests that ASIA, in addition to its original purpose
(an automatic design tool), can be used as a verification tool for
designers to verify their manually designed instruction sets as
well.

7. Conclusions

We have presented a design automation system ASIA (Auto-
matic Synthesis of Instruction-set Architectures) that synthesizes
computer instruction sets from application benchmarks. The
design problem is formulated as a modified scheduling problem.
The benchmarks are represented as data/control flow graphs of
MOPs. The MOPs are scheduled into time steps subject to con-
straints of dependencies, hardware resources, and instruction
word width. Instructions are formed during the scheduling phase.
A binary tuple is used to describe the semantics and formats of
instructions. The binary tuple is the key idea which links the
instruction formation to the scheduling process. In addition to the
synthesized instruction sets, ASIA also generates the compiled
codes for the given benchmarks. An objective function of the
cycle count and instruction set size is used to guide the design
process, in order to balance the performance/cost tradeoff. A sim-
ulated annealing algorithm is used to solve for the schedules. We
have discussed the move operators suitable for our problem.

We have demonstrated the versatility of ASIA by conducting
experiments on some application benchmarks with various design
constraints. The tools used reasonable amount of CPU time and a
modest amount of memory. It has been shown that our tools are
capable of synthesizing powerful instruction sets. Many of them
can be found in today’s processors. Compared with manually
designed instruction sets, the synthesized instruction sets produce
more compact code and may require less hardware. The tools
were able to explore a rich design space, and handle important
design options such as the instruction word width, and perfor-
mance/cost tradeoff. We were able to explain the variation of the
performance of the instruction sets on different benchmarks,
based on the characteristics of the benchmarks. The experiments
also show that ASIA, in addition to its original purpose in auto-
mating the design process, can be used by the designers to verify
their manually designed instruction sets as well.

The current limitations include: First, the designers are
required to specify the number of hardware resources, which may
takes several iterations to find the best allocation. Second, in our

problem formulation, the concept of the basic block is used to
partition benchmarks into small pieces. However, there are other
ways of partitioning benchmarks such as traces, and random seg-
ments [4]. What is the best way is unknown at this moment.
Third, even though we have demonstrated that our algorithm is
able to synthesize instruction sets from thousands of MOPs
within 22 hours, real world application benchmarks, such as sys-
tem, CAD and simulation software, are usually much larger. How
to manage problems of such sizes is an important issue. Further
researches need to investigate these issues.

Acknowledgment- The authors would like to thank Bruce
Holmer, Ching-Long Su and the anonymous reviewers for their
comments and suggestions in improving this work.

Reference

[1] F. M. Haney, “ISDS-A program that designs computer in-
struction sets,”Fall Joint Computer Conference, 1969

[2] Pradip Bose and Edward S. Davidson, “Design of Instruc-
tion Set Architectures for Support of High-Level Languag-
es,” Proc. of the 11th Annual International Symposium on
Computer Architecture,1984

[3] J. P. Bennett,A Methodology for Automated Design of Com-
puter Instruction Sets, Ph.D. thesis, University of Cam-
bridge, Computer Laboratory, 1988.

[4] Bruce Holmer,Automatic Design of Computer Instruction
Sets, Ph.D. thesis, Computer Science Department, Universi-
ty of California, Berkeley, 1993

[5] Jun Sato, et al., “An Integrated Design Environment for Ap-
plication Specific Integrated Processor,”Proc. of ICCD,
1991

[6] Ing-Jer Huang, Bruce Holmer and Alvin Despain, “ASIA:
Automatic Synthesis of Instruction-set Architectures,”Proc.
of SASIMI Workshop, Nara, Japan, Oct. 1993

[7] Ing-Jer Huang and Alvin Despain, “Synthesis of Application
Specific Instruction Sets,” submitted toTrans. on CAD, 1994

[8] Peter M. Kogge,The Architecture of Pipelined Computers,
McGraw-Hill Book Company, 1981

[9] Srinivas Devadas and Richard Newton, “Algorithms for
Hardware Allocation in Data Path Synthesis,”IEEE Trans.
on Computer-Aided Design, Vol. 8, No. 7, July 1989

[10] Gert Goossens, et al., “An Efficient Microcode Compiler for
Application Specific DSP Processors,”IEEE Trans. on Com-
puter-Aided Design,Vol. 9, No. 9, September 1990

[11] Shi-Zheng Lin, Cheng-Tsung Hwang and Yu-Chin Hsu, “Ef-
ficient Microcode Arrangement and Controller Synthesis for
Application Specific Integrated Circuits,”Proc. of ICCAD,
1991

[12] R. Haygood,A Prolog Benchmark Suite for Aquarius, Tech-
nical Report, UCB/CSD 89/509, University of California,
Berkeley, 1989

[13] Bill Bush, et al.,The Berkeley Abstract Machine Instruction
Manual, Internal Technical Report, Advanced Computer Ar-
chitecture Laboratory, University of Southern California,
1990

[14] Bruce Holmer, et al., “Fast Prolog with an Extended General
Purpose Architecture,”Proc. of 27th International Sympo-
sium on Computer Architecture, 1990

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

