
Efficient Behavior-driven Runtime Dynamic Voltage
Scaling Policies

Fen Xie
Department of Electrical

Engineering
Princeton University

Princeton, NJ

fxie@princeton.edu

Margaret Martonosi
Department of Electrical

Engineering
Princeton University

Princeton, NJ

mrm@princeton.edu

Sharad Malik
Department of Electrical

Engineering
Princeton University

Princeton, NJ

sharad@princeton.edu

ABSTRACT
Power consumption has long been a limiting factor in microproces-
sor design. In seeking energy efficiency solutions, dynamic volt-
age/frequency scaling (DVFS), a technique to vary voltage/frequency
on the fly, has emerged as a powerful and practical power/energy
reduction technique that exploits computation slack due to relaxed
deadlines and memory accesses. DVFS has been implemented in
some modern processors such as Intel XScale and Transmeta Cru-
soe. Hence the bulk of research efforts have been devoted to devel-
oping policies to detect slack and pick appropriate V/f assignments
such that the energy is minimized while meeting performance re-
quirements. Since slack is a product of memory accesses and re-
laxed deadlines, the number of instances and the duration of avail-
able slack are highly dependent on the runtime program behavior.
Runtime DVFS policies must take into consideration program char-
acteristics in order to achieve significant energy savings. In this
paper, we characterize program behavior and classify programs in
terms of the memory access behavior. We propose a runtime DVFS
policy that takes into consideration the characteristics of program
behavior for each category. Then we examine the efficiency of the
proposed DVFS policies by comparing with previously derived up-
per bounds of energy savings. Results show that the proposed run-
time DVFS policies approach the upper bounds of energy savings
in most cases.
Categories and Subject Descriptors: D.4.7 [Operating System]:
Organization and Design–Real-time Systems and Embedded Sys-
tems

General Terms: Design, Experimentation
Keywords: Runtime Dynamic Voltage Scaling, Low Power

1. INTRODUCTION
High system power/energy consumption has long been a limiting

factor in our ability to develop designs not only for battery-operated
mobile systems but also for server and desktop systems due to ex-
orbitant cooling, packaging and power costs.

In CMOS systems, dynamic power dissipation varies linearly
with frequency and quadratically with supply voltage as shown by
the equation Power ∝ αCLV 2

DDf , where α is the switching ac-
tivity factor, CL is the load capacitance, VDDis the supply voltage
and f is the clock frequency. Considering that most applications do
not need to continuously maintain peak performance, dynamic volt-
age/frequency scaling (DVFS) trades off performance for energy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

savings by scaling down the voltage/frequency when peak perfor-
mance is not required. As an efficient energy reduction technique,
DVFS has been implemented in several contemporary micropro-
cessors such as Intel XScale [11], AMD mobile K6 Plus [1] and
Transmeta Crusoe [21].

Various policies have been proposed to use DVFS to reduce en-
ergy consumption. These policies can be classified as compile-
time policies [24, 10] and runtime policies [14, 13, 17, 22, 18,
23, 6] based on when the decisions to switch voltage/frequency are
made. Runtime DVFS policies have drawn more research attention
because of the ability to reduce energy assumption in response to
variations in workload.

Any runtime DVFS policy consists of two important elements:
Scaling points: Scaling points are positions where voltage/frequency

scaling can occur. They are signaled by a set of events such
as timer interrupts, cache misses, task arrivals and comple-
tions. The piece of code enclosed by two scaling points
is referred to as a scaling unit. All dynamic instructions
within a scaling unit are assigned to run at the same volt-
age/frequency.

Scaling criteria: Scaling criteria determine the voltage/frequency
level for the next scaling unit at a scaling point. It is usu-
ally composed of an off-line analysis and an online algo-
rithm. The off-line analysis gathers information about the
programs that will be used by the online algorithm to make
quick DVFS decisions.

The goal of a runtime DVS policy is to exploit slack in the workload
with an allocated time slot such that the energy consumption is min-
imized while completing within the allocated time slot. Depending
on the types of the scaling points, DVFS policies can be classi-
fied as interval-based policies (timer interrupts) [14, 22, 18, 6],
microarchitecture-based policies (cache misses and performance
counters) [8, 16] and task-based policies (task arrivals and comple-
tions) [15, 13, 26, 19, 17, 2]. For interval-based DVS policies [22,
18], the workload of the next interval is assumed to remain the
same as the previous interval and the v/f for the next interval is cal-
culated based on the previous interval’s workload information. For
task-based policies, worst-case execution times of tasks are used
to get the v/f setting for the next task. In [16], the supply volt-
age/frequency of the processor scales down on cache misses. In [6,
23], algorithms use performance counters (performance monitoring
unit) to decide the new voltage/frequency.

In this paper, we will investigate the sources of slack. Slack is
product of memory accesses and relaxed deadlines. While slack
due to relaxed deadlines has been fully exploited, the slack due to
memory accesses has drawn lots of research attention [10, 6, 23].
Hsu and kremer [10] proposed an algorithm to identify memory-
bound regions and assign V/f settings at compile time. Choi [6] et
al. used the ratio of off-chip access to on-chip computation times to
direct DVFS. Weiser et al. [23] suggested to use memory requests
per cycle and instructions per cycle to determine the appropriate
V/f levels.

105

comp

mem
busy busy

Idlestall

overlap

10080 200 300 400

1GHz

slack slack

(a) Breakdown of execution time without DVFS. Slack is
generated due to memory access and relaxed deadline

comp

mem
busy busy

stall

overlap

180 200 40080

1GHz 200MHz 500MHz

(b) Breakdown of execution time using DVFS. The dura-
tion of slack due to memory access is reduced while slack
due to relaxed deadline is eliminated.

Figure 1: The breakdown of execution time before and after using
DVFS.

We classify programs into memory-bound programs, computation-
dominant programs and compound programs based on the charac-
teristics of slack. We discuss the appropriate V/f assignments for
each category. Then we propose a behavior-aware DVFS policy to
approximate the maximum energy savings.

The rest of paper is organized as follows: Section 2 describes
the sources of slack and how energy consumption can be reduced
by using DVFS. Section 3 categorizes the programs based on the
characteristics of slack and discuss the corresponding appropriate
V/f assignments. Section 4 proposes a DVFS policy to approxi-
mate the upper bounds of energy savings. Section 5 presents the
experimental results. Section 6 summarizes the contributions of
our work.

2. MOTIVATION
When executing a program, the status of the CPU falls into one

of the three categories: busy, stall and idle. Normally the CPU
is busy executing instructions. However, due to the gap between
CPU and off-chip device speeds, the CPU might stall waiting for
off-chip services such as fetching data from memory. Note that
memory in this paper refers to the off-chip memory. If the perfor-
mance requirement, expressed as the deadline, is more relaxed than
the actual execution time of the program and there is no runnable
program available at the completion time, the CPU enters idle sta-
tus. Figure 1(a) illustrates an execution trace on an out-of-order
processor with a memory latency of 120ns. The CPU is busy dur-
ing the first 80ns. At 80ns, a memory access is requested. The CPU
spends another 20ns processing the independent operations that can
overlap with the memory operation and then stalls waiting for the
completion of the memory operation. At 200ns, the memory oper-
ation completes and the CPU continues with normal computation
operations. The program finishes at 300ns. Because the next task
arrives at 400ns, the CPU idles for 100ns. Correspondingly, the ex-
ecution time can be broken down to CPU busy, memory stall and
idle time. CPU busy time is further broken into only CPU busy and
overlap time where the CPU is busy while the memory requests are
being served.

We refer to the period of time when CPU stalls or idles as slack.
Two instances of slack are produced in this example. One instance
of slack is due to memory access and the other slack is due to the
relaxed deadline. The existence of slack indicates that peak per-
formance is actually not needed. DVFS is able to reduce energy
consumption in this case by slowing down the CPU clock speed
during the slack periods. For example, in Figure 1(a), we can slow
down the clock speed to 200MHz at 80ns. Then the overlapped
operations take longer to complete. Since the memory access still
takes 120ns to complete, the stall time is reduced. Energy sav-

ings here are two-fold. The overlapped operations are executed at a
lower frequency (200MHz in the example) and thus consume less
energy than the no-DVFS case. Also, the energy consumption dur-
ing stall time is reduced because of the shortened time and low volt-
age/frequency. After 200ns, we set the frequency to 500MHz. The
program finishes at 400ns and thus the idle time is completely elim-
inated. Again, energy savings are twofold. Energy consumption
during idle time is eliminated because the idle time is eliminated.
At the same time, instructions are executed at 500MHz instead of
1GHz. The energy consumption of those computations is thus re-
duced. The execution trace using DVFS is shown in Figure 1(b).
The program finishes sharply at the deadline 400ns, which means
this set of V/f assignments also satisfy the performance require-
ment.

In the above example, we see the ability of DVFS to achieve
energy savings. However, the amount of energy savings depends
on the runtime DVFS policy’s ability to identify slack and to as-
sign appropriate V/f such that energy is reduced while meeting the
deadlines.

Considering that slack due to relaxed deadlines is a single pe-
riod of time and has been fully exploited by task-based policies, we
will focus on the slack due to memory accesses. The number of
slack instances and the duration of the slack period due to memory
accesses are highly dependent on the program behavior, or specifi-
cally memory usage. We will start by categorizing program behav-
ior based on memory resource usage. Then we will examine the
optimal or near-optimal V/f assignments for each category based
on the characteristics of slack.

3. V/F ASSIGNMENTS BASED ON
CHARACTERISTICS OF SLACK

Consider a run of a program using a given data input. The ex-
ecution trace of instructions is sliced into many scaling units by
scaling points. A scaling unit can be either computation-dominant
or memory-bound depending on the memory resource usage. If
the majority of operations performed within the scaling unit are
computation operations, the scaling unit is computation-dominant.
If most of the execution time of the scaling unit is spent waiting
for memory operations, the scaling unit is memory-bound. The
percentage of computation-dominant scaling units and memory-
bounds scaling units as well as the the way those two different
classes of scaling units mix will affect the V/f assignments. We will
discuss three different compositions: mainly computation-dominant
scaling units; mainly memory-bounds scaling units; and a mix of
computation-dominant scaling units and memory-bound scaling units.
Programs with these compositions are referred to as computation-
dominant programs, memory-bound programs and compound pro-
grams, respectively.

With the complete knowledge of the program, we can find the
V/f assignments that minimize the energy consumption or give near-
optimal energy consumption. We proposed an exact algorithm to
provide the lower bounds of energy consumption in our previous
work [25]. Considering a sequence of scaling units labelled from
1 to M running on a DVFS-enabled microprocessor with N dis-
crete voltage/frequency levels, we profile the execution trace on a
per frequency base for each scaling unit. The algorithm takes the
profiles and searches the solution space in a breadth-first order until
an optimal solution (x1,x2,...,xM) has been found and confirmed.
Basically, it branches over V/f levels to generate all feasible partial
V/f assignments along with the input sequence. First, it enumerates
all possible V/f levels for the first scaling unit and generates par-
tial solution set (x1) after considering the first scaling unit. Then
for each (x1), it enumerates all possible V/f levels for the second
scaling unit and generates all partial solutions (x1,x2) after consid-
ering the second scaling unit. This process repeats until complete
solutions have been generated (x1,x2,...,xM) after considering the
last scaling unit. Branching from a certain partial solution will be
stopped if the deadline cannot be met using that partial solution or
there is another partial solution that uses less time and consumes

106

comp

mem
busy busy

stall

overlap

stall

(a) Program where memory operations alternate with
computation operations.

comp

mem
busy busy

stall

overlap

(b) Program where memory operations are clustered.

Figure 2: Programs with the same number of memory accesses but
different memory access patterns.

less energy. Since scaling units can be made very fine, this method
determines the upper bound on energy savings over any possible
DVFS policy that can be applied for this program trace.

Next, we will discuss the optimal or near-optimal V/f assign-
ments for three different categories of programs observed using this
bound analysis.

3.1 V/f assignments for Computation-dominant
Programs

Computation-dominant programs have the following character-
istics:

1. The amount of slack produced by memory accesses is negli-
gible.

2. The execution time can be represented by Ntotal/f , which
scales linearly with CPU speed.

Because there is no significant amount of slack generated during
memory accesses, slack due to relaxed deadlines is the only slack to
be considered. Furthermore, because the execution time of all op-
erations scales linearly with CPU speed, the number of execution
cycles remains constant as the supply voltage/frequency changes.
In this case, there exist optimal V/f assignments as shown in Ishi-
hara’s work [12]. In general, at most two voltages are needed to
minimize the energy consumption. For example, if the deadline
sits between the total execution time running the program at f1 and
total execution time running the program at f2, then only f1 and
f2 are needed and at most one switching is needed to minimize the
energy regardless of the total available voltage levels. To achieve
the minimum energy, the program will run the first n1 cycles using
f1 and the remaining cycles using f2 if the switching overheads do
not offset the energy savings using DVFS. n1 is determined by:

n1/f1 + (Ntotal − n1)/f2 + St(f1, f2) = deadline

where Ntotal is the number of total execution cycles and St is the
switching time cost from f1 to f2.

3.2 V/f Assignments for Memory-bound
Programs

Memory-bound programs consist mostly of memory-bound scal-
ing units that spend significant amount of time waiting for the com-
pletion of memory operations. Due to the widening gap between
CPU speed and memory speed, significant slack is available. The
execution time can be expressed as Ncpu/f + tslack where Ncpu

is the number of CPU busy execution cycles that scale with CPU
speed and tslack is the time spent on memory stall cycles that does
not scale with CPU speed.

However, since most scaling units are memory-bound, slack in-
stances are scattered across all scaling units, which means all scal-
ing units are equally likely to be scaled down. Therefore, sim-
ple V/f assignments similar to computation-dominant programs are
reasonably efficient. At most two frequencies that sandwich the
deadline will be used. The program will run first i1 CPU busy

0 1 2 3 4 5 6 7 8 9 10
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Frequency(100MHz)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
C

yc
le

s

swim linear fit
swim data
mgrid linear fit
mgrid data
mcf linear fit
mcf data
gap linear fit
gap data
art linear fit
art data
ammp linear fit
ammp data

Figure 3: The number of execution cycles for benchmarks from
SPEC2000 at different frequencies. The number is normalized to
the number of execution cycles at 200MHz.

cycles at f1. Then it switches to f2 and runs the remaining instruc-
tions at f2 if the energy savings using f2 will not be offset by the
switching overheads. The value of i1 is determined by equation

i1/f1 + (Ncpu − i1)/f2 = (deadline − Tmem)

There are some differences between the V/f assignments here
and the V/f assignments for computation-dominant case. We use
the number of CPU busy cycles instead of the number of total exe-
cution cycles in the equation. The number of total execution cycles
generally increases with frequency because memory speed does not
scale with CPU speed.

This simplified V/f assignments might not be optimal but it gives
near-optimal results.

3.3 V/f assignments for Compound Programs
V/f assignments for programs with mixed computation-dominant

scaling units and memory-bound scaling units are complex. Ideally
slowing down the CPU speed during those memory-bound scaling
units will reduce energy consumption with little impact on perfor-
mance. However, there are time and energy overheads associated
with switching. For example, the switching time cost for Intel XS-
cale processors is around 10µs, which amounts to 10000 cycles
at 1GHz. Considering the switching costs, switching cannot occur
too frequently or the switching costs may offset the energy savings
from DVFS.

The composition of computation-dominant scaling units and memory-
bound scaling units has a great impact on V/f assignments. Figure
2 shows four scaling units with two different compositions. The
first example’s memory-bound scaling units alternate with computation-
dominant scaling units while the second example’s memory-bound
scaling units are clustered. Though the two examples have the same
number of each kind of scaling units, for example (b), DVFS will
be more beneficial. This determines the scaling priority in the V/f
assignments.
High Priority: clustered memory-bound scaling units
Medium Priority: mixed memory-bound scaling units and computation-

dominant scaling units
Low Priority: clustered computation-dominant scaling units.

3.4 Summary
The V/f assignments depend on the characteristics of program

behavior. For computation-dominant programs where the vast ma-
jority are computation-dominant scaling units and memory-bound
programs that consist of a majority of memory-dominant scaling
units, two frequencies that sandwich the deadline are needed in the
V/f assignment. Program runs the first scaling units at one fre-
quency, then switches to the other frequency and runs the remaining
of the program at that frequency. For other programs with consider-
able number of memory-dominant scaling units and computation-
dominant scaling units, we favor scaling down clustered memory-
dominant scaling units.

107

scale up V/f

from
CPU-dominant to
memory-bound?

No

Yes

scale down V/f

Yes
from

memory-bound to
CPU-dominant?

scaling point
(instruction counter interrupt)

Yes

meet deadline
running at the best

single V/f?

No

meet
deadline at a lower

single V/f?

Yes

Yes

Figure 4: The flowchart of the proposed runtime DVFS policy.

4. PROPOSED RUNTIME DVFS POLICY
A runtime DVFS policy is composed of scaling points and scal-

ing criteria. We will assume the scaling points are fixed and focus
on the scaling criteria in this section.

Based on the previous discussion, the DVFS policy should be
able to identify computation-dominant and memory-bound scal-
ing units at runtime. Many modern microprocessors provide per-
formance counters that can be used to generate the information
needed by DVFS [6, 23]. Therefore, we assume information such
as the memory stall ratio for a scaling unit is available by mon-
itoring the number of memory accesses occurring within a scal-
ing unit. Memory-bound scaling units and computation-dominant
scaling units can be identified in terms of the memory stall ratio.
Note that IPC (instruction per cycle) or CPI (cycle per instruc-
tion) cannot be used to distinguish memory-bound scaling units
and computation-dominant units due to the existence of long la-
tency instructions.

The DVFS policy also requires certain statistical information
to calculate the program’s execution time. The number of total
execution cycles, which is assumed to be constant, is commonly
used. While this assumption is valid for computation-dominant
programs, it does not work for programs with a number of mem-
ory accesses. Figure 3 shows the number of execution cycles at
different frequencies for six programs from SPEC2000 [20]. The
numbers are normalized to the total execution cycles at 200MHz.
Benchmark mgrid has intensive memory accesses and thus the num-
ber of execution cycles increases dramatically as the frequency in-
creases. Benchmark gap has mediocre memory accesses, so the
slope is not sharp. Other benchmarks are computation-dominant
and the number of execution cycles does not vary much. We notice
that the linear fitting curve fits the data very well. Instead of using
one number of execution cycles, we will use the linear function to
calculate the execution cycles at different frequencies accurately.

The efficiency of the DVFS policy lies in its ability to decide
when to switch. A runtime DVFS policy only has the knowledge of
the past. The switching decisions are made based on the prediction
of the future. For simplicity, we assume the behavior of the next
scaling unit is the combination of passed j scaling units where the
current scaling unit has more weight. The simple case is to assume
the next scaling unit is the same as the current scaling unit.

With information ready, the simplified scaling criteria is defined
as shown in Figure 4. Before running the program, the operating
system will use the available information to compute the best single
frequency. The best single frequency is the lowest frequency at
which the program will meet the deadline. At each scaling point,

1GHz 800MHz 600MHz 400MHz 200MHz

deadline1 deadline2 deadline3 deadline5 deadline6deadline4

Figure 5: The positions of deadlines with respect to the execution
times using single frequency.

Parameter Value
RUU size 64 instructions
LSQ size 32 instructions
Fetch Queue size 8 instructions
Fetch width 8 instructions/cycle
Decode width 8 instructions/cycle
Issue width 8 instructions/cycle
Commit width 8 instructions/cycle
Functional Units 4 Integer ALUs

1 integer multiply/divide
1 FP add, 1 FP multiply
1 FP divide/sqrt

Branch Predictor Combined, bimodal 2K table
2-level 1K table, 8bit history
1K chooser

BTB 512-entry, 4 way
L1 data-cache 64K, 4-way(LRU)

32B blocks, 1 cycle latency
L1 instruction-cache 32K, 4-way(LRU)

32B blocks, 1 cycle latency
L2 Unified, 512K, 4-way(LRU)

64B blocks, 8-cycle latency
TLBs 32-entry, 4096-byte page

Table 1: Configuration parameters for CPU simulation.

the policy will check if the deadline will be met by running the
remaining program at the best single frequency. If the deadline
cannot be met, then the V/f is scaled up. Next, the policy will check
if the deadline will be met by running the remaining program at the
frequency that is the immediate lower neighbor of the best single
frequency. If the deadline can still be satisfied, the V/f level will
switch to the lower V/f level. Otherwise, the operating system will
read performance counters to predict the program behavior of the
next scaling unit. If the next scaling unit is predicted to be memory-
bound while the previous scaling units are computation dominant,
the V/f will be scaled down. For each V/f switch, the associated
time and energy overheads will be counted.

To summarize, this runtime DVFS policy switches V/f when pro-
gram behavior changes and when deadline cannot be met.

5. EXPERIMENTAL RESULTS
5.1 Experiment settings

We use SimpleScalar [5] with Wattch [3] to simulate an out-of-
order DVFS-enabled processor as shown in Table 1. The proces-
sor supports five voltage levels: 0.7V/200MHz, 0.99V/400MHz,
1.3V/600MHz, 1.65V/800MHz and 2.05V/1GHz. The switching
costs are calculated using the following equations taken from [4]
that are considered to be an accurate modeling of these switching
costs.:

SE = (1 − u) ∗ c ∗ |v2

i − v2

j | (1)

ST =
2 ∗ c

IMAX

|vi − vj |

where c is the capacitance of the voltage regulator, u is the en-
ergy efficiency of the power regulator. IMAX is the maximum
allowed current. In the experiments, we use c = 10µf , u =
90% and IMAX = 1A, which will yield 12µs switching time and
1.2µJ switching energy cost for a transition from 600Mhz/1.3V
to 200Mhz/0.7V. Values are picked to approximate XScale’s [11]
switching costs.

Benchmarks are chosen from SPEC2000 [20]. These bench-
marks represent a wide range of memory behavior from computation-
dominant to memory-bound and are classified into three groups as

108

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
swim

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
mgrid

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
 e

ne
rg

y

mcf

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
gap

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
art

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ammp

Optimal
Single−f
Behavior

Figure 6: The normalized energy consumption of benchmarks from SPEC2000 using DVFS for six different deadlines. Energy consumption
is normalized to energy using the highest frequency (1GHz). The bar represents the normalized energy using our proposed DVFS. The dotted
line represents the normalized optimal energy consumption. The dashed line represents the normalized energy consumption using the best
single frequency.

Class Benchmarks
Computation-dominant mcf, swim, art

compound gap
Memory-bound ammp, mgrid

Table 2: Characteristics of benchmarks from SPEC2000.

shown in Table 2. For benchmark mcf, swim and art, the percent-
age of execution time spent in memory stalls is less than 4% at
1GHz. The percentage of execution time is 11% for benchmark
gap, 23% for ammp and 40% for mcf at 1GHz. For all SPEC2000
benchmarks, we run the first two billion instructions only.

For every benchmark, we consider six different deadlines from
tight to loose. The positions of deadlines with respect to the execu-
tion times using single frequency are shown in Figure 5. Deadline1
is the average of the execution times using 1GHz and 800GHz.
Deadline2 is the average of the execution times using 800MHz and
600MHz. Deadline 4 to 6 sit evenly between the execution times
using 400MHz and 200MHz.
5.2 Energy Results

In the experiment, scaling points occur every 106 dynamic in-
structions. This granularity is picked based on our previous work [25]
which shows that there is no need to use granularity smaller than
106 instructions.

Figure 6 shows the energy consumption using the proposed DVFS
policy for all benchmarks. Energy consumption is normalized to
the energy consumption using the highest frequency (without DVFS).
The bar shows the normalized energy using our proposed DVFS.
The dotted line shows the normalized optimal energy consumption
obtained from our bound analysis algorithm [25]. The dashed line
shows the minimum energy that can be achieved if only one fre-
quency is allowed for one program. The proposed DVFS policy
is effective at reducing energy. First, it outperforms the single-
frequency DVFS policy by up to 18%, which demonstrates the
necessity of intra-program DVFS. Second, it comes close to the
optimal energy consumption in most cases. For benchmarks mcf
and mgrid, the proposed DVFS consumes more energy. However,
the difference is less than 4%. At deadline1, benchmark swim con-
sumes a little less energy using the proposed behavior-driven DVFS
policy than the optimal energy consumption at the price of exceed-
ing deadline. From mcf to mgrid, the trend of energy consumption
is decreasing, which is consistent with our intuition that the energy
can be reduced further by exploiting energy waste due to slack pro-
duced in memory accesses. One exception is that the energy con-
sumption of benchmark gap is slightly lower than the benchmark
ammp that has higher percentage of memory stall time. This is be-

cause the memory-bound scaling units are clustered in benchmark
gap while in benchmark ammp, the majority of scaling units are
memory-bound with equal memory stall percentage.

Figure 7 shows the execution time using the behavior-driven DVFS
policy. The execution time is normalized to the deadline. For
most benchmarks, the execution time is very close to the required
deadline. In some cases, the execution time exceeds the deadline
slightly. However, the percentage is less than 2%. This is be-
cause the proposed DVFS policy is based on the prediction of future
memory behavior to determine the V/f for the next scaling unit.

6. CONCLUSION
In this paper, we focus on the energy waste due to slack gener-

ated at memory accesses and proposed a behavior-driven runtime
DVFS policy to reduce energy. The policy, though simple, has
demonstrated the ability to reduce energy consumption for memory-
bound programs, computation-dominant programs and compound
programs. The efficiency is shown by comparing the results with
the minimum energy consumption obtained from our bound anal-
ysis algorithm. There are two observations from our results. First,
slack due to memory accesses should be taken into to further re-
duce energy. This is very important for many database programs
where almost two-thirds of execution time is spent in off-chip ac-
cesses [9, 7]. Second, a runtime behavior-aware DVFS policy is
able to reduce the energy efficiently. Thus DVFS policies proposed
in [6, 23] will achieve similar energy savings.

7. REFERENCES
[1] Advanced Micro Devices Corporation. AMD-K6 processor

mobile tech docs, 2002. http://www.amd.com.
[2] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M.

Al-Hashimi. Overhead-conscious voltage selection for
dynamic and leakage energy reduction of time-constrained
systems. In DATE ’04: Proceedings of the conference on
Design, automation and test in Europe, page 10518,
Washington, DC, USA, 2004. IEEE Computer Society.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture, June 2000.

[4] T. Burd and R. Brodersen. Design issues for dynamic voltage
scaling. In Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED-00), June 2000.

109

1 2 3 4 5 6

swim

1 2 3 4 5 6

mgrid

1 2 3 4 5 6
0.99

0.995

1

1.005

1.01

1.015

1.02
N

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e

mcf

1 2 3 4 5 6

gap

1 2 3 4 5 6

art

1 2 3 4 5 6

ammp

Figure 7: Normalized execution time using the proposed DVFS policy for six different deadlines from loose to tight. Execution time is
normalized to the corresponding deadline.

[5] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the SimpleScalar tool set. Tech. Report
TR-1308, Univ. of Wisconsin-Madison Computer Sciences
Dept., July 1996.

[6] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic
voltage and frequency scaling for precise energy and
performance tradeoff based on the ratio of off-chip access to
on-chip computation times. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
pages 18–28, Jan 2005.

[7] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture
optimizations for exploiting memory-level parallelism. In
Proceedings of the 31st annual international symposium on
Computer architecture (ISCA04), page 76. IEEE Computer
Society, 2004.

[8] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation
in workloads with externally specified rates to reduce power
consumption. In Workshop on Complexity-Effective Design,
June 2000.

[9] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eric,
H. Nueckel, and J. Shen. Scaling and characterizing database
workloads: Bridging the gap between research and practice.
In Proceedings of the 36th International Symposium on
Microarchitecture, page 76, Washington, DC, USA,
December 2003. IEEE Computer Society.

[10] C. Hsu and U. Kremer. The design, implementation, and
evaluation of a compiler algorithm for CPU energy
reduction. In Proceedings of ACM SIGPLAN Conference on
Programming Languages, Design, and Implementation
(PLDI’03), June 2003.

[11] Intel Corp. Intel XScale (tm) Core Developer’s Manual,
2003. http://developer.intel.com/design/intelxscale/.

[12] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In International
Symposium on Low Power Electronics and Design
(ISLPED-98), pages 197–202, August 1998.

[13] R. Jejurikar and R. Gupta. Energy aware task scheduling
with task synchronization for embedded real time systems. In
Proceedings of the international conference on Compilers,
architecture, and synthesis for embedded systems, pages
164–169, 2002.

[14] J. Lorch and A. Smith. Improving dynamic voltage
algorithms with PACE. In Proceedings of the International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 2001), June 2001.

[15] J. Luo and N. K. Jha. Power-profile driven variable voltage
scaling for heterogeneous distributed real-time embedded
systems. In Int. Conf. VLSI design, Jan. 2003.

[16] D. Marculescu. On the use of microarchitecture-driven
dynamic voltage scaling. In Workshop on
Complexity-Effective Design, June 2000.

[17] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proceedings
of the 18th ACM Symp. on Operating Systems Principles,
2001.

[18] A. Sinha and A. Chandrakasan. Dynamic voltage scheduling
using adpative filtering of workload traces. In Proceedings of
the 14th International Conference on VLSI Design, Jan 2001.

[19] V. Swaminathan, C. Schweizer, K. Chakrabarty, and A. Patel.
Experiences in implementing an energy-driven task
scheduler in rt-linux. In Proceedings of the Eighth IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS’02)., page 229, 2002.

[20] The Standard Performance Evaluation Corporation. WWW
Site. http://www.specbench.org, 2000.

[21] Transmeta Corporation. Crusoe processor documentation,
2002. http://www.transmeta.com.

[22] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In the 1st Symposuim on
Operating Systems Design and Implementation (OSDI-94),
pages 13–23, 1994.

[23] A. Weissel and F. Bellosa. Process cruise control:
event-driven clock scaling for dynamic power management.
In CASES ’02: Proceedings of the 2002 international
conference on Compilers, architecture, and synthesis for
embedded systems, pages 238–246, 2002.

[24] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic
voltage scaling settings: Opportunities and limits. In
Proceedings of ACM SIGPLAN Conference on Programming
Languages, Design, and Implementation (PLDI’03), June
2003.

[25] F. Xie, M. Martonosi, and S. Malik. Bounds on power
savings using runtime dynamic voltage/frequency scaling:
An exact algorithm and a linear-time heuristic
approximation. In International Symposium on Low Power
Electronics and Design (IS LPED-05), August 2005.

[26] Y. Zhang, X. Hu, and D. Chen. Energy minimization of
real-time tasks on variable voltage processors with transition
energy overhead. In Proceedings of the ASP-DAC 2003
Design Automation Conference, pages 65–70, 2003.

110

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

