
ABSTRACT
System design based on static task graphs does not match well with

modern consumer electronic devices with dynamic stream process-

ing applications. We propose the TTL API for task graph reconfig-

uration services, which can be used to describe the dynamic

behaviour of applications. We demonstrate the efficient implemen-

tation of the TTL API on a heterogeneous multi-processor architec-

ture. It is possible to design dynamic streaming applications with

reusable reconfiguration-aware tasks and we argue that the TTL

API serves as a good starting point for standardization.

Categories and Subject Descriptors
D.2.11 [Software architectures]: Domain-specific architectures;

C.3 [Special-purpose and application-based systems]: Real-time

and embedded systems; D.2.13 [Reusable software]

General Terms
Design, Performance, Standardization

Keywords
System level design, dynamic applications, platform interface

1. INTRODUCTION
Modern consumer electronic (CE) devices execute audio, video,

and communications applications. The devices are typically based

on heterogeneous multi-processor architectures because they pro-

vide the best trade-off between flexibility, performance, and power

consumption. The most performance demanding parts of the appli-

cations perform stream processing, which can be described as a

graph of communicating tasks. If the tasks use a well-defined inter-

face to interact with each other, the tasks can be easily integrated

into a system. The interface decouples the tasks from each other and

from the implementation of services, for example for the inter-task

communication. If a single standard interface is agreed upon, the

tasks can be reused on different multi-processor architectures. Re-

use of tasks is one important way to improve design productivity of

embedded systems.

Interface-based system level design with task graphs has concen-

trated on static applications described with e.g. Kahn Process Net-

works [1] or Synchronous Data Flow [2] models. Modern CE

devices are multi-functional devices, which dynamically change

application behaviour. Therefore static task graph models are no

longer sufficient. New services have to be introduced to be able to

describe the complete stream processing part of the applications.

We call these new services reconfiguration services. There are two

major requirements on the reconfiguration services:

1. They must allow for easy description of applications

2. It must be possible to implement them efficiently on a range of

heterogeneous multi-processor architectures

The reconfiguration services that we consider, are used 1) at

start-up of the system, 2) when the user triggers a change in the ap-

plication, 3) when the input data triggers a change in the applica-

tion, and 4) when the system is shut down. At start-up an initial task

graph is constructed and started. For a TV set that is for example re-

suming the settings from when the TV was last switched off. The

user interface can trigger changes of two principal types:

• Changes inside a task, which we call parameter setting
• Changes in the task graph, which we call topology reconfiguration

The same types of changes can be triggered by the input data. An

example of parameter setting is an audio application, which plays a

sequence of MP3 songs and needs to change the settings of the sam-

ple rate conversion task dependent on the sample rate in the new

song. An example of topology reconfiguration is an MPEG 4 de-

coder, which has to launch a new VOP (video object plane) decoder

task when a new VOP is detected in the encoded data stream. The

focus of this paper is on topology reconfiguration.

We have previously presented the task transaction level (TTL)

interface for inter-task communication and multi-tasking [10]. The

aim of this paper is to present concepts and the TTL application

programmer’s interface (API) for task graph reconfiguration serv-

ices and to show that the TTL API can be efficiently implemented

on a multi-processor architecture. We prove that reusable tasks can

be used for designing dynamic stream processing applications. The

TTL API has been implemented on other multi-processor architec-

tures as well. The portability of the TTL API makes it a good can-

didate for a standard.

The rest of this paper is structured as follows. In Section 2 related

work is presented. In Section 3 we present our conceptual model

and in Section 4 the TTL reconfiguration API is described.

Section 5 presents a case study application and its implementation

with the TTL API. In Section 6 the implementation of the reconfig-

uration services on a multi-processor architecture is explained and

the results of the implementation are presented in Section 7. In

Section 8 we discuss how the TTL concepts, API, and implementa-

tion fulfil the requirements and finally in Section 9 we present our

conclusions.

2. RELATED WORK
In [3] and [4] APIs for task graph reconfiguration are presented

and implementations are briefly discussed. The TTL API is inspired

by that work. In contrast to those publications, we show how the

TTL API can be efficiently implemented on a multi-processor ar-

chitecture and how to construct applications by using the TTL API.

In [5] a formal model for specifying dynamically changing appli-

cations is described, but an API and a link to multi-processor imple-

Implementation of Dynamic Streaming Applications on
Heterogeneous Multi-Processor Architectures

Tomas Henriksson, Jeffrey Kang, and Pieter van der Wolf
Philips Research, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands

tomas.henriksson@philips.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CODES+ISSS’05, Sept. 19-21, 2005, Jersey City, New Jersey, USA.

Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

57

mentation is missing. In [6] the need for analysing dynamically

changing applications is acknowledged, but no API for implement-

ing them is discussed. Also no implementation is presented. In [7]

structurally adaptive systems for signal processing are discussed.

This is similar to our work. A mechanism for restructuring is men-

tioned, but no API is presented. From the paper it is clear that only

a single-processor implementation has been done. In [8] a coordi-

nation language, Manifold, for parallel applications is discussed,

which has an API for dynamic reconfiguration. The implementa-

tion of that language on a multi-processor architecture is however

not discussed. In [9] dynamic reconfiguration of a subsystem with

hardware co-processors is described. The implementation is how-

ever only briefly touched upon. Our work distinguishes from previ-

ous work by the fact that we address a broad range of multi-

processor architectures and that we thereby can standardize an API.

A related issue is how to make sure that the system resources are

not overutilized and that the application fulfils all real-time require-

ments. This is however different from our work in the sense that it

uses non-functional models to reason about the implementation, see

for example [11]. The actual implementation, which we present in

this paper, can be modelled and reasoned about with such methods.

3. CONCEPTUAL MODEL
We view the stream processing part of an application as a graph

of communicating tasks. A task has ports to be able to communicate

with other tasks. The ports of the tasks are connected via channels
and thereby create a task graph. Apart from the tasks, there is also

a configuration manager (CM), which manages the changes in the

task graph topology, and one or more schedulers, which activate the

tasks.

On certain occasions, the task graph topology has to change be-

cause of inputs from the user interface or specific patterns in the in-

put data. It is possible to destroy the complete task graph and

construct a new one from scratch for every change in the task graph

topology. This is however not desirable because some parts of the

task graph might have to continue executing for user perception

reasons while reconfiguring other parts. Therefore we need recon-

figuration services that can modify the task graph while some tasks

are still executing. For that purpose the CM must be able to connect
and disconnect ports from channels.

A task may only execute if all its active ports are connected to

channels. So the CM must be able to start and stop tasks when they

are properly configured. When a task is stopped, its internal state is

lost. Sometimes it is desirable to change the task graph topology

without losing the state of a task. Therefore the CM must also be

able to pause and continue tasks. In order to let the tasks finish the

processing of a semantically meaningful data entity, e.g. a video

frame, the tasks themselves acknowledge a stop or pause command

before they actually stop or pause. These tasks are called reconfig-

uration-aware.

Reconfiguration-aware tasks have additional complexity to han-

dle reconfiguration and negatively impact the reconfiguration la-

tency because tasks do not stop or pause immediately. It is desirable

to be able to have simple tasks and to be able to stop tasks quickly.

For that purpose the CM can force a task to stop. In that case the

task is not involved and there is only interaction between the CM

and the scheduler of the task.

In order to use memory resources efficiently, the CM must be

able to dynamically create and destroy tasks and channels. The dy-

namics of a task can be described by its configuration state transi-

tion diagram, see Figure 1. Before a task even exists it has to be

created. After creation the task is in the INITIAL configuration state.

The CM then moves the task to the STOPPED configuration state by

calling its initialization method, see Section 4. Only when a task is

in the RUNNING configuration state the scheduler may activate it.

When a task is created, it is decided on which processor domain
it will execute. A processor domain may be a number of processors

or one single processor. Every processor domain belongs to one

scheduler, which takes care of activation of the tasks when they are

in the RUNNING configuration state. The task is moved to the RUN-

NING configuration state when it is started.

Heterogeneous multi-processor architectures typically have sev-

eral different memories. Data structures and channel buffers must

reside in memories that can be accessed by the processor(s) on

which related tasks execute. Therefore it must be possible to specify

in which memory an allocation should be done. This is done by the

use of memory domains.

4. API SPECIFICATION
The CM, which uses the reconfiguration services, typically exe-

cutes on a microcontroller. For most microcontrollers, C compilers

are used and therefore we chose to present the TTL reconfiguration

API in C. APIs with the same semantics can however also be de-

fined in other programming languages. The functions in the API are

structured in 4 groups, see Table 1.

Group 1 consists of functions for creation and destruction. Both

tasks and channels can be dynamically created and destroyed. The

task designer has to provide four functions for each task, mainMeth-
od for executing the task behaviour, resetMethod for resetting the

task, initMethod for initializing the task, and endMethod for clean-

ing up the task. The mainMethod and the resetMethod are supplied

to the scheduler in the taskCreate function. The other two functions

are called directly from the CM. The initMethod gets the task, a

memory domain, and possibly other parameters as inputs. It is re-

sponsible for allocating memory for a task specific data structure.

This task specific data structure contains ports and task specific var-

iables. With data structure in this paper we refer to a sequential

memory block of known size, such as a C struct. The endMethod is

called from the CM just before the task is destroyed. It is responsi-

ble for freeing any memory that the initMethod of the task has allo-

cated, including the task specific data structure. The resetMethod is

used by the scheduler to re-initialize the task specific data structure

when a task has been stopped and will later be started again.

In TTL a task can be of three different task types, processes, co-
routines, or actors [10]. The mainMethods of tasks of the three dif-

ferent task types have to be activated in different ways, therefore

the scheduler must know of what type each task is. The channels

can be located in different memories in a multi-processor architec-

Figure 1. Configuration State Transition Diagram

Initial Running

Paused

Start

Stop/forcedStop

P
a
u
se

C
o
n
ti

n
u
e

forcedStop

Create

Destroy

Stopped

Init

End

58

ture. Therefore a memory domain for the location of the channel

buffer is supplied in the ttlChannelCreate function.

Group 2 consists of functions to connect and disconnect ports to

and from channels, examples for interface type CB [10] are shown.

Group 3 consists of functions to start, pause, continue, and stop

tasks. They all take the task as input. The functions in group 4 are

used in the mainMethod of the tasks. The reconfiguration-aware

tasks use the four functions to check for and acknowledge the pause

and stop commands.

5. CASE STUDY
A case study has been performed with an audio application for

MP3 decoding. The application consists of three use cases. At start-

up the system always initializes use case 1.

5.1 Use Cases
In use case 1, an MP3 file is decoded and played back on one set

of stereo speakers. One task reads the MP3 file from flash memory.

A second task decodes the MP3 bitstream into raw audio. If the

MP3 bitstream contains mono audio, it is duplicated so that the out-

put from the MP3 decoding task is always 2 channel audio. A third

task sends the audio samples to the D/A converters. The use case is

shown in Figure 2.

In use case 2, an MP3 file is decoded and played back on two sets

of stereo speakers. The file reader task and the MP3 decoding task

are the same as in use case 1. After the MP3 decoding task, two fork

tasks are added. They simply split a signal into two identical copies.

There are two tasks that send stereo audio samples to the D/A con-

verters. Use case 2 is shown in Figure 3.

In use case 3, two different MP3 files are decoded and played

back on two sets of stereo speakers. The task graph is organized as

two independent copies of use case 1. Use case 3 is shown in

Figure 4.

5.2 Configuration Manager in the Case Study
When there is an input from the user interface to change to a dif-

ferent use case, the configuration manager stops and pauses tasks

and disconnects ports that have different connections in the new use

case. Then tasks and channels that are not part of the new use case,

are destroyed and new tasks and channels are created. After that the

ports are connected to channels according to the new use case and

finally the tasks are started or continued.

The CM in the case study provides a single function, setUseCase,

which is used to switch from one use case to another. The setUse-
Case function is structured as nested switch statements. Dependent

on current and new use case action is taken. The code for changing

from use case 1 to use case 2 is shown in Figure 5.

The transition starts with pausing the tasks t0 and t2 on lines 200-

201. Then the channels c2 and c3 are disconnected from the MP3

decoder t0 on lines 203-204. The ports are fields in the task specific

data structure, which can be retrieved with the ttlTaskGetSpecific
function as used on line 202. After that the construction phase is

started. The output task t3 is created and initialised on lines 205-

207. In the OutputTask_init function a task specific data structure

of type OutputTask is allocated, which contains the input ports p0
and p1. The fork tasks t6 and t7 are created and initialised on lines

208-213. The channels c4-c7 are created on lines 214-217, all in

memory domain md2 and with token size of 4 bytes. The construc-

tion phase ends with connecting the ports to the channels on lines

218-230. The input ports of output task t2 are already connected to

channels c2 and c3 so they do not have to be connected. The same

holds for the ports connected to channel c0 on the file reader task t4
and the MP3 decoder task t0. Finally, the tasks t0 and t2 are contin-

ued and the tasks t3, t6, and t7 are started on lines 231-235.

In the transition from use case 1 to use case 2 all existing tasks

are retained. In other transitions tasks are destroyed and memory for

the task specific data structures are freed. This allows for several

use cases with different tasks with total system memory require-

ments dependent only on the most complex use case.

Table 1. Groups of API functions

Group 1
ttlTask *ttlTaskCreate(ttlTaskType type, ttlProcessorDomain domain,

void (*mainMethod)(ttlTask*), void (*resetMethod)(ttlTask*));
void ttlTaskDestroy(ttlTask *t);
ttlChannel *ttlChannelCreate(Uint token_size,Uint num_tokens,

ttlMemoryDomain domain);
void ttlChannelDestroy(ttlChannel *c);

Group 2
void ttlCbOutPortConnect(ttlCbOutPort *p, ttlTask *t, ttlChannel *c);
void ttlCbInPortConnect(ttlCbInPort *p, ttlTask *t, ttlChannel *c);
void ttlCbOutPortDisconnect(ttlCbOutPort *p, ttlTask *t, ttlChannel *c);
void ttlCbInPortDisconnect(ttlCbInPort *p, ttlTask *t, ttlChannel *c);

Group 3
void ttlTaskStart(ttlTask *t);
void ttlTaskPause(ttlTask *t);
void ttlTaskContinue(ttlTask *t);
void ttlTaskStop(ttlTask *t);
void ttlTaskForcedStop(ttlTask *t);

Group 4
bool ttlTaskCheckPause(ttlTask *t);
bool ttlTaskCheckStop(ttlTask *t);
void ttlTaskAcknowledgePause(ttlTask *t);
void ttlTaskAcknowledgeStop(ttlTask *t);

Figure 2. Use Case 1

File reader
MP3

decoder

Output

to D/A

t4 t0 t2

c0
c3

c2

Figure 3. Use Case 2

File reader
MP3

decoder

Output

to D/A

Output

to D/A

Fork

Fork

t4 t0

t2

t3

t6

t7

c0

c6

c7

c2

c3

c4

c5

Figure 4. Use Case 3

File reader
MP3

decoder

Output

to D/A

t4 t0 t2

c0
c3

c2

File reader
MP3

decoder

Output

to D/A

t5 t1 t3

c0
c3

c2

59

6. IMPLEMENTATION OF SERVICES
The reconfiguration services and the case study application have

been implemented on a chip called CaRaCas. This section describes

the implementation of the API presented in Section 4. The CaRa-

Cas chip contains one ARM microcontroller and four DSPs. All

processors have different memories and different address spaces,

but the ARM can access all memories. An overview of the architec-

ture is shown in Figure 6. The DSPs have three memories each, pro-

gram memory (PM), data memory (XM), and coefficient memory

(YM).

This distributed architecture facilitates power efficient imple-

mentations of advanced audio and communications applications.

The architecture however poses challenges to a programmer be-

cause of the different memories, different address spaces, and spe-

cial inter-processor communication links. Therefore it is a good

architecture to show that the TTL API can be implemented effi-

ciently on heterogeneous multi-processor architectures.

The CM executes in a thread of its own on the ARM and stream-

ing tasks execute on all five processors. All five processors have au-

tonomous non-preemptive schedulers and can execute several

threads. No operating system has been used in the implementation.

The DSPs must execute autonomously to make the architecture

scalable. If a central resource would have to be involved for sched-

uling of all signal processing tasks, that central resource would be

the bottleneck of the system. The reconfiguration services are used

infrequently and the architecture is scalable to a large number of

DSPs although the CM executes on a central resource.

One of the DSPs has two schedulers, one that executes in the in-

terrupt service routine (ISR) and one that executes in normal mode.

A processor domain is assigned per scheduler, so there are totally 6

processor domains, called pdARM, pd0, pd1, pd2, pd3, and pdISR.

The tasks in the pdISR are of task type actor. All other processor do-

mains execute tasks of task type process.

There are five memory domains specified, one for each of the

data memories, md0, md1, md2, md3, and mdARM.

6.1 Creation and Destruction
When a task is created in the processor domains pdARM, pd0,

pd1, pd2, and pd3, a thread is created, but the thread is not enabled

for execution until the task is started. When a task is destroyed, the

thread is likewise destroyed. The CM specifies the processor do-

main in the ttlTaskCreate call, so that the thread is created on the

correct processor. For every task there is a generic task data struc-

ture (see Figure 7), which contains information about the processor

domain for the task. There is also a processor domain specific

scheduling data structure (see Figure 7), which is used by the

schedulers. Finally each task has a task specific data structure,

which is dependent on the functionality of the task. The task specif-

ic data structure contains ports and variables that the task needs for

its execution. The task specific data structure has to be created in

the initMethod of the task.

In the pdISR processor domain, threads are not used. When a task

is created in pdISR, a generic task data structure and a scheduling

data structure for the ISR scheduler are allocated and initialized.

When a task is destroyed, the scheduling data structure and the

generic task data structure are freed. Before a task is destroyed, the

CM has called the endMethod of the task to free also the task spe-

cific data structure and any other memory allocated by the task.

Channels are simpler than tasks. When a channel is created, a

channel data structure (see Figure 7), containing information need-

ed for connecting and disconnecting ports to and from channels, is

allocated in mdARM as it is accessed by the ARM only. Then a

Figure 5. Part of the setUseCase function

2 MP3DecTask *m0;
3 OutputTask *o1;
4 ForkTask *f0, *f1;
... ...
199 case 2:
200 ttlTaskPause(t0);
201 ttlTaskPause(t2);
202 m0 = (MP3DecTask*)ttlTaskGetSpecific(t0);
203 ttlCbOutPortDisconnect(&m0->p1, t0, c2);
204 ttlCbOutPortDisconnect(&m0->p2, t0, c3);
205 t3 = ttlTaskCreate(TASK_TYPE_ACTOR, pdISR,
206 OutputTask_main, OutputTask_reset);
207 OutputTask_init(t3, md2);
208 t6 = ttlTaskCreate(TASK_TYPE_PROCESS, pd2,
209 ForkTask0_main, ForkTask_reset);
210 ForkTask_init(t6, md2);
211 t7 = ttlTaskCreate(TASK_TYPE_PROCESS, pd2,
212 ForkTask1_main, ForkTask_reset);
213 ForkTask_init(t7, md2);
214 c4 = ttlChannelCreate(4, 0x400, md2);
215 c5 = ttlChannelCreate(4, 0x400, md2);
216 c6 = ttlChannelCreate(4, 0x40, md2);
217 c7 = ttlChannelCreate(4, 0x40, md2);
218 f0 = (ForkTask*)ttlTaskGetSpecific(t6);
219 f1 = (ForkTask*)ttlTaskGetSpecific(t7);
220 o1 = (OutputTask*)ttlTaskGetSpecific(t3);
221 ttlCbOutPortConnect(&m0->p1, t0, c6);
222 ttlCbOutPortConnect(&m0->p2, t0, c7);
223 ttlCbInPortConnect(&f0->p0, t6, c6);
224 ttlCbOutPortConnect(&f0->p1, t6, c2);
225 ttlCbOutPortConnect(&f0->p2, t6, c4);
226 ttlCbInPortConnect(&f1->p0, t7, c7);
227 ttlCbOutPortConnect(&f1->p1, t7, c3);
228 ttlCbOutPortConnect(&f1->p2, t7, c5);
229 ttlRnInPortConnect(&o1->p0, t3, c4);
230 ttlRnInPortConnect(&o1->p1, t3, c5);
231 ttlTaskContinue(t0);
232 ttlTaskContinue(t2);
233 ttlTaskStart(t3);
234 ttlTaskStart(t6);
235 ttlTaskStart(t7);
236 break;
... ...

Figure 6. CaRaCas overview

ARM

A
H

B

SRAM

Flash 1

Flash 0

DSP Subsystem

DSP PM

YMXM

DSP PM

YMXM

Audio Peripherals

Peripherals

DSP PM

YMXM

DSP PM

YMXM

60

channel buffer is allocated in the memory domain specified in the

ttlChannelCreate call. When a channel is destroyed the memories

are freed.

6.2 Connect and Disconnect
The channel administration in the CaRaCas chip is based on dual

administration with two pointers [10]. The channel administration

is stored in the port data structures, which are contained in the task

specific data structures. When a connection is made, the port data

structure is initialized with the base address of the channel buffer

and the channel buffer size. The base address is different for differ-

ent processors. The channel data structure (see Figure 7) contains

information of connected ports and as soon as the second port is

connected to a channel, a connection between the two port data

structures is made by setting up remote pointers between them. A

task may not be started before all active ports are connected.

When a port is disconnected from a channel, the channel data

structure is updated and the remote pointers are invalidated in the

port data structures.

6.3 Start, Pause, and Stop
Starting a task on a DSP is done by simply changing the status

field in the scheduling data structure to RUNNING. The schedulers

use round robin scheduling policies and inspect the status field be-

fore they activate a task. On the ARM, there is a queue of tasks

which are in the RUNNING state, so when a task is started it is simply

pushed on that queue.

Stopping and pausing of tasks is implemented with flags in the

scheduling data structures (see Figure 7). The ttlTaskStop and

ttlTaskPause functions in group 3 have blocking semantics, so they

do not return until the tasks have acknowledged the pause or stop.

The check functions that the tasks use to see if they should pause or

stop simply return the corresponding flag from the scheduling data

structure. The acknowledge functions are more complicated. On the

DSPs the ttlTaskAcknowledgeStop function changes the status field

to STOPPED and resets the point of execution.The ttlTaskAcknowl-
edgePause function changes the status field to PAUSED and stores

the point of execution. Then the scheduler immediately schedules

the next task. So the ttlTaskAcknowledgePause function does not

return until the CM has continued the task with a ttlTaskContinue
call. The ttlTaskAcknowledgeStop function never returns. In the

case of stopping, the mainMethod of the task is started from the be-

ginning again when the task is restarted by the CM.

On the ARM, a task is removed from the queue of running tasks

when it acknowledges a pause or stop command. At a stop com-

mand the point of execution is also reset.

The ttlTaskForcedStop function has a different implementation

because it does not interact with the tasks. On the ARM the imple-

mentation is simple, the thread is removed from the ready queue.

On the DSPs it is trickier because the tasks might be executing at

the exact time of the ttlTaskForcedStop call. The ttlTaskForced-
Stop call cannot return until the task has stopped executing. There-

fore the ttlTaskForcedStop function sets a flag in the scheduling

data structure. This flag is checked by the DSP scheduler and ac-

knowledged by changing the status field in the scheduling data

structure to STOPPED. The ttlTaskForcedStop function, executing

on the ARM, polls the status field and does not return until the sta-

tus field has changed. During that polling phase, other threads are

given the opportunity to execute on the ARM.

6.4 Memory Management
Both tasks and channels can reside in any of the 5 data memories

on the chip. The channel buffers must reside in the memory of the

DSP where the consuming task executes because the DSPs can only

read their local memories.

In the ttlTaskCreate and ttlChannelCreate functions, the memory

domains are known and memory is allocated in the appropriate

memory. A special memory allocation function caracasMalloc has

been implemented, which next to the required number of bytes also

gets a memory domain as input. Thereby it can allocate memory in

the correct domain.

An additional requirement is that addresses are recomputed be-

cause potentially all five processors can access a single memory lo-

cation using five different addresses. The ARM is responsible for

translating its memory address map to the ones of the DSPs before

filling in the scheduling data structures and configuring the ports.

That also includes converting byte addresses used by the ARM to

word addresses used by the DSPs.

7. RESULTS
The implementation of the reconfiguration services uses 224

bytes of program memory on the DSPs for the ttlTaskCheckStop,

ttlTaskAcknowledgeStop, ttlTaskCheckPause, and ttlTaskAcknowl-
edgePause functions. The program memory for the reconfiguration

services implementations on the ARM can be seen in Table 2. The

reason that the ttlTaskContinue function needs only one word is that

it has the same implementation as the ttlTaskStart function and just

calls that function. The reason that the ttlCbOutPortConnect func-

tion is more complex than the ttlCbInPortConnect function is that

an output port can be connected to a channel which is located on an-

other DSP and therefore an address remapping must take place.

That address remapping is then calculated in the ttlCbOutPortCon-
nect function.

Since the schedulers are non-preemptive, the response time for

forcing a task to stop on the DSPs is dependent on the tasks them-

selves and on the channel sizes. The schedulers only execute when

a task really blocks because of lack of data or room in a channel.

Therefore a ttlTaskForcedStop call cannot be completed until a task

blocks. On the other hand, a ttlTaskPause or ttlTaskStop call cannot

be completed until a task comes to the part where it checks for and

acknowledges a pause or stop command. This is true for all DSP

schedulers except for the ISR scheduler. The ISR scheduler exe-

cutes every time that there is an interrupt. Therefore the response

time for reconfiguration calls to the tasks in the pdISR processor do-

main are dependent on the interrupt frequency. Any ttlTaskForced-
Stop call will be handled every interrupt period. Also the tasks in

the pdISR processor domain typically have the property that if they

Figure 7. Data structures

Scheduling Adm*

Domain

Type

pauseFlag

destroyFlag

forcedStopFlag

StopFlag

status

specific*

next*

task type params

ttlTask DSPScheduling

specific*

thread*

ARM Scheduling

InPort*

Size

Base

ttlChannel

OutPort*

61

are reconfiguration-aware, they will acknowledge pause and stop

commands on every activation. On the ARM a ttlTaskForcedStop
call has no latency because it is known that the task does not exe-

cute at the same time as the CM. The response times of ttlTaskStop
and ttlTaskPause are dependent on the tasks themselves just as on

the DSPs.

Starting and continuing tasks has short response times because

no acknowledgement is needed from either the tasks or the sched-

ulers. A ttlTaskStart and ttlTaskContinue call uses 10-30 instruc-

tions dependent on which processor domain the task is located in.

Tasks on the ARM use the most instructions because of the more

complete multi-tasking implementation. Tasks on the DSPs use 10

instructions (pd0, pd1, pd2, and pd3) or 11 instructions (pdISR).

The reconfiguration-aware tasks call the ttlTaskCheckPause and

ttlTaskCheckStop functions much more often than the correspond-

ing acknowledge functions simply because reconfigurations do not

happen often. The check functions on the DSPs use 5 instructions.

The connection of ports to channels uses 17-44 instructions on

the ARM, dependent on whether a port was already connected to

the other side of the channel or not and whether the producer and

consumer execute on the same DSP or not. The disconnection of

ports from channels uses 12 instructions on the ARM. The DSPs are

not involved in connection and disconnection of ports to and from

channels

One instruction on the DSPs executes in one clock cycle unless

there is contention for the memory. On the ARM some instructions

need more than one clock cycle to execute.

8. DISCUSSION
The concepts and the API presented in Section 3 and Section 4

can be used for easy description of applications as shown in the

compact and simple CM in the case study. Partial task graph recon-

figurations are possible, which helps to easily describe the dynamic

behaviour of applications. Thereby the TTL API fulfils the first re-

quirement, to allow for easy description of applications.

The TTL API can be efficiently implemented, which is shown by

the less than 2 kB program code (ARM+DSP) in the CaRaCas im-

plementation. The functions that are frequently used in the task ex-

ecution, the check functions, use only 5 instructions. The other

functions, used at reconfiguration points, also have short execution

times. The connection of ports to channels is done without search

operations thanks to the fact that the ports are part of the task spe-

cific data structure.

Processor domains and memory domains allow for implementa-

tion on different architectures. We mention here that our API has

been implemented on other multi-processor architectures as well.

The portability of the TTL API makes it a good candidate for stand-

ardization. A standard API allows for reusable reconfiguration-

aware tasks and thereby improves design productivity.

9. CONCLUSIONS
We conclude that an API for dynamic stream processing applica-

tions can be efficiently implemented on a range of heterogeneous

multi-processor architectures. The API can be standardized. By us-

ing a standard API, reusable reconfiguration-aware tasks can be de-

signed. This allows for increased design productivity of dynamic

streaming applications.

10. REFERENCES
[1] G. Kahn. The semantics of a simple language for parallel pro-

gramming. In Information Processing (J.L. Rosenfeld, Ed.

North-Holland Publishing Co.) 1974.

[2] E. A. Lee, D. G. Messerschmidt. Static scheduling of syn-

chronous data flow graphs for digital signal processors. In

Proceedings of the IEEE, vol. 75, pages 1235-1245, 1987.

[3] A. Nieuwland et al. C-HEAP: A Heterogeneous Multi-proces-

sor Architecture Template and Scalable and Flexible Protocol

for the Design of Embedded Signal Processing Systems. Klu-

wer Journal of Design Automation for Embedded Systems,

vol. 7, no. 3, pp. 233-270, ISSN 0929-5585, October 2002.

[4] K. Goossens. A Protocol and Memory Manager for On-chip

Communication. In ISCAS 2001 Conference Proceedings,

vol. II, pages 225-228. ISCAS, May 2001.

[5] M. Geilen, T. Basten. Reactive Process Networks, In EM-
SOFT’04 Conference Proceedings, pages 137-146. EM-

SOFT, September 2004.

[6] P. Yang et al. Managing Dynamic Concurrent Tasks in Em-

bedded Real-Time Multimedia Systems. In ISSS’02 Confer-
ence Proceedings, pages 112-119. ISSS, October 2002.

[7] J. Sztipanovits, G. Karsai, T. Bapty. Self-Adaptive Software

for Signal Processing. Communications of the ACM, Vol. 41,

No. 5, pages 66-72, May 1998.

[8] G. A. Papadopoulos, F. Arbab. Dynamic Reconfiguration in

Coordination Languages. In HPCN’2000 Conference Pro-
ceedings, pages 197-206, HPCN, May 2000.

[9] M. Rutten, E.-J. Pol, J. Eijndhoven, K. Walters, G. Essink.

Dynamic recofiguration of streaming graphs on a heterogene-

ous multiprocessor architecture. In SPIE Electronic Imaging:
Embedded processors for Multimedia and Communications
II, vol. 5683, pp. 53-63, 2005.

[10] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, G.

Essink. Design and Programming of Embedded Multiproces-

sors: An Interface-Centric Approach. In ISSS+CODES 2004
Conference Proceedings, pages 206-217, ISSS+CODES,

September 2004.

[11] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, B.

Mesman. Task-level timing models for guaranteed perform-

ance in multiprocessor networks-on-chip. In CASES’03 Con-
ference Proceedings, pages 63-72, CASES, October 2003.

Table 2. Program memory usage on ARM

Function Program memory (bytes)

ttlTaskCreate 392

ttlTaskDestroy 156

ttlChannelCreate 208

ttlChannelDestroy 44

ttlCb(Rn)InPortConnect 176

ttlCb(Rn)OutPortConnect 200

ttlCb(Rn)InPortDisconnect 48

ttlCb(Rn)OutPortDisconnect 48

ttlTaskStart 56

ttlTaskPause 140

ttlTaskContinue 4

ttlTaskStop 140

ttlTaskForcedStop 116

Total 1728

62

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

