
Automated Data Cache Placement for Embedded VLIW ASIPs

Paul Morgan1, Richard Taylor, Japheth Hossell, George Bruce, Barry O’Rourke
CriticalBlue Ltd

17 Waterloo Place, Edinburgh, UK
+44 131 524 0080

{paulm, richardt, jexh, georgeb, barryo} @criticalblue.com

ABSTRACT
Memory bandwidth issues present a formidable bottleneck to
accelerating embedded applications, particularly data bandwidth
for multiple-issue VLIW processors. Providing an efficient ASIP
data cache solution requires that the cache design be tailored to
the target application. Multiple caches or caches with multiple
ports allow simultaneous parallel access to data, alleviating the
bandwidth problem if data is placed effectively. We present a
solution that greatly simplifies the creation of targeted caches and
automates the process of explicitly allocating individual memory
access to caches and banks. The effectiveness of our solution is
demonstrated with experimental results.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – Cache memories;
C.1.1 [Processor Architectures]: Single Data Stream
Architectures – VLIW Architectures

General Terms
Algorithms, Design, Performance, Theory

Keywords
Cache, cache optimization, embedded applications, ASIP.

1. INTRODUCTION
Embedded systems often employ application-specific instruction
processors (ASIPs) that have been tailored to the domain in which
they will be employed. In the interests of maximizing performance
and minimizing energy consumption it is desirable to exploit
instruction level parallelism inherent in the code. Employing a
VLIW processor provides an ideal mechanism for extracting this
parallelism. However, a significant number of instructions in
many applications are loads or stores, in our experiments typically
around 30% of all instructions, therefore data memory bandwidth
issues are often a significant bottleneck to successfully exploiting
instruction-level parallelism. Thus it is necessary to instantiate
and effectively utilize data cache units that allow multiple
concurrent accesses to maximize data bandwidth.

Access patterns for the instruction cache tend to be much more
structured and predictable than those for the data cache leaving
more scope for performance improvement in successful data cache
configuration and data allocation. The key to achieving an optimal
solution is maximally exploiting both temporal and spatial locality
in memory accesses, which are application dependent. Factors
such as cache size, bank configuration and number of ports
present a highly configurable architecture. Multiple ports allow
simultaneous access to a single cache, different banks hold
different data sets within the cache, and multiple caches can have
different properties each suited to different data access patterns
within the application. Effectively utilizing cache architectures,
both in terms of selecting the hardware configuration and
optimizing data allocation to exploit maximum benefit from the
chosen configuration, is a challenging and time consuming task.

We present an automated solution by way of a software tool for
guiding the creation of a suitable hardware configuration and
allocating data to optimally utilize the selected configuration. This
is achieved by automatically generating and analyzing the memory
trace of an application, taking advantage of the memory access
information available at design and compile time to produce a
more efficient allocation than would be possible by performing
dynamic allocation using run-time logic. We provide a library of
cache blocks to allow a wide range of architectures to be created
tailored to the target application. Our tool guides the user towards
an ideal hardware solution by performing allocation and analysis
on a selection of candidate architectures, producing comparative
results for each candidate architecture.

This document is presented as follows. First we examine a
selection of related work in Section 2. In Section 3 we list the
hardware blocks created to build our caches, and detail the
software allocation algorithm used to optimize data allocation to
the cache. In Section 4 we undertake experiments to show the
cache performance benefits of our solution. Finally we present our
conclusions and suggest future work that could be undertaken to
further our research in Section 5.

2. RELATED WORKS
A great deal of research on the topics of cache configuration and
mapping has been undertaken in the past with many of the
methods being proposed targeted at application-specific
architectures. Givargis [3] recognized that better cache
performance can be obtained by considering the target application
during the design phase of an ASIP. Similarly, Panda et al. [8]

1 Paul Morgan is also based at the Institute for System Level
Integration, Livingston, UK.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

39

demonstrated a method of optimizing memory hierarchy,
including data cache, for application-specific designs.

Single cache optimizations such as varying line size, set
associativity or replacement algorithm have been covered for
several goals, such as energy [14][15] or hit rate [7]. For
application-specific architectures it is often beneficial to have one
or more additional caches with a different configuration to the
first, depending on the nature of the application being executed. A
well-researched technique is that of the scratchpad memory [4][8],
a small area of storage in which elements can be placed without
disrupting the main cache. Gordon-Ross et al. [4] extend the
analysis to a two-level cache hierarchy, proposing a simultaneous
exploration technique for both cache levels that trades off power
requirements and performance.

Sudarsanam and Malik [12] addressed the issue of memory bank
assignment to optimize for simultaneous access in ASIPs with a
tool called SPAM. This work tackles a similar problem to what
we face but is targeted at single cache ASIPs with two identical
banks whereas our tool targets highly configurable architectures
that can have multiple caches of different types each with different
sized banks.

Grun et al. have produced excellent work on memory architecture
exploration in [5] culminating in a tool called APEX. This work
considers the entire memory of an embedded system, rather than
focusing on the data cache and does not provide for the parallel
data access requirements of multiple-issue VLIW processors.

What we propose is to provide a library of customizable cache
blocks that can be tailored at design time to a suitable
configuration for the target application. Allocation of code to
caches and banks is automated by a tool we have designed using a
software algorithm that attempts to find an optimized solution for
the selected hardware caching architecture taking into
consideration the parallel access requirements of a multiple-issue
VLIW processor. This approach allows multiple possible
candidates for the hardware configuration to be quickly examined
for suitability, overcoming the problem of attempting to
simultaneously optimize both hardware configuration and
software mapping, a problem which could not be solved in
reasonable time with our level of configurability.

To the best of our knowledge no previous work has explored an
automated software mapping for highly configurable hardware
cache architectures as proposed here.

3. CACHE ALLOCATION
To facilitate the creation of an application-specific data cache, we
provide a library of highly configurable cache blocks to allow our
cache to be optimized for a wide range of applications. There are
currently four cache styles in our library; three window caches
and one direct-mapped static cache. A cache unit may contain a
number of independent banks, each of which may hold a different
data set. Using multiple banks allows different data areas to be
held, addressed independently and accessed simultaneously
depending on available ports.

Window caches hold a contiguous region of memory in each
bank, and automatically attempt to keep the correct addresses in
the cache by pre-fetching data from main memory in the
background when accesses are ascending or descending and are

nearing the edge of the cached region. The three window caches
are distinguished by their port configuration, one with a single
read/write port, the second with an additional read only port and
the third with two read/write ports. Additional ports increase the
complexity of the cache so the trade-off between area and
performance must be considered. Window caches require no tag
overhead due to the cached memory region being contiguous,
significantly reducing the area footprint, and the pre-fetch
mechanism greatly improves performance on favorable access
patterns.

Static caches provide a more conventional direct-mapped cache,
with the addition of software placement of data into banks. Such
caches are simpler than window caches, with no pre-fetch
mechanism, and anything between 8 and 64 lines each of 64
words to provide a more suitable cache for accesses of a sparsely
spread pattern, with sizes of 2k, 4k, 8k or 16k bytes. All static
caches are single-ported, utilizing around 40-45% less area than a
dual-ported window cache depending on configuration options.

Each of the four cache units has further parameterized
configuration options to ensure maximum flexibility to adapt to
any application. The size of each window cache is configurable in
powers of two from 512 to 64k words, with 1, 2, 3 or 4 banks. In
addition to design-time choices, the number of banks and bank
size ratios can be dynamically configured by the host at runtime.

All our cache blocks are directly mapped taking advantage of the
lower latency, smaller area requirements and reduced power
consumption offered compared with set- or fully-associative
caches, as tag comparisons are not required with direct-mapped
caches. We rely upon an effective software allocation and the pre-
fetching abilities of our window caches to minimize cache misses
that would otherwise be inherent in a direct-mapped cache.

The aforementioned cache blocks provide an enormous range of
configuration options. There are 32 possible valid combinations
of each window cache, and 4 static cache options, meaning a dual-
cache design offers 1296 configurations. It would be an
intractable task to attempt to fully automate the selection of an
optimal cache configuration that meets all the required criteria for
any custom application. Therefore the user selects a number of
candidates for the cache configuration from the provided
hardware blocks based upon area and performance requirements,
and the type of application being accelerated.
The target application is run with a representative data set, and a
memory access trace is automatically generated. The trace is then
analyzed to determine ranges of memory that show independence
in either the spatial or temporal ranges. Instructions are
partitioned into groups whose access patterns interfere both
spatially and temporally. Each group is allocated to a cache bank
according to the algorithm described below. Hardware cache
coherency logic ensures that the memory hierarchy will always be
valid for any access pattern regardless of the memory
configuration, relieving the allocation algorithm of this concern
and providing resilience to any future changes in the executed
code. Additional logic ensures that any location in the memory
hierarchy can be accessed from any port, although an interference
stall penalty is incurred if the data is cached in a location other
than the identified bank allowing time for the hardware to
transparently fetch the data from the correct bank. The software
analysis optimizes the allocation of memory regions to the

40

available cache configurations providing post-allocation
performance statistics on each candidate to guide the selection
process towards an optimal solution.

3.1 Allocation Algorithm
The aim of the allocation algorithm is to assign grouped memory
access instructions to appropriately sized banks to minimize cache
misses, and minimize interference between groups by assigning
concurrently active ranges into different banks where possible. In
cases where both a window cache and static cache are available,
the algorithm attempts to select the most appropriate cache type
for each group. A flow diagram overview is illustrated in figure 1
opposite. The tool examines the original program and lists all
load/store instructions, then records from the memory access trace
the range of addresses accessed by each instruction.
An interference graph is built with nodes representing load and
store instructions, with instructions accessing overlapping address
ranges with respect to cache line boundaries being merged into a
single node. An interference edge is added between nodes that
access data in the same activation range (a temporal run-time
value calculated by the algorithm dependent upon the varying
access density at the trace point of current analysis), identifying
those nodes as being simultaneously “live”, which is analogous to
a register allocation interference graph [2].
Critical analysis is then performed to identify memory accesses
that may require to be issued in parallel by the VLIW processor.
These accesses are identified by performing a scheduling step on a
fully optimized version of the most executed portions of code,
forming critical access groups (CAGs) from accesses issued on the
same cycle. This information is added to the interference graph
such that if instructions in a CAG are located on the same node
then that node’s criticality is set to a value representing the
number of simultaneous accesses that must be issued from the
node. That node can then be allocated if possible to a bank with
the required parallel access capability. If instructions in the CAG
span multiple nodes then the criticality value is applied to the
edge linking those nodes, indicating that those nodes should be
allocated to banks with sufficient ports to satisfy the criticality
constraints of both nodes simultaneously.
Nodes are sorted into priority order depending upon their memory
access frequency to be assigned to available cache banks, starting
with the most important node. Each bank’s attributes, such as its
type (window or static), the bank size, and the number of ports the
bank is accessible through, are known to the allocation algorithm
and are used to influence the selection of a bank for each node.
Choosing whether a node should use a window cache is a crucial
step in the algorithm, as significant performance benefits are
possible for access patterns amenable to window caching but
performance can be degraded for unsuitable access patterns.
Analyzing the entire memory trace and recording the frequency of
all sequential accesses would be extremely slow and memory
hungry, therefore selection of the cache type for each node is
based upon the access proportion of that node. This is calculated
as the number of accesses represented by that node divided by the
address range accessed by the node. Nodes with access proportion
above a threshold based upon available window and static banks
are likely to perform sequential accesses so are earmarked for
window caching. Nodes below the threshold will be allocated to
static banks. We have found this approach to work well for most

applications although a more robust and comprehensive algorithm
for cache type selection is under development.

Once the type of cache has been selected, the next step is
choosing the bank that will be assigned to each node. The

Figure 1. Allocation algorithm flow chart

Select node for allocation

Analyze memory trace. Create list of load/store
operations

Create interference graph with nodes
representing load/store instructions

Merge nodes that overlap in address space

Add interference edges connecting
simultaneously live nodes

Annotate critical accesses by identifying
potential parallel access requirements

Chose bank type based
on node access details

Consider only banks with closest match for
criticality requirements

 Static Window

Node bank allocation complete

Create metric for each
bank based upon

previous alloc. info

Select bank with
closest matching

metric

Select bank with
closest matching

permitted size

41

criticality value determined previously, including analysis of
neighboring nodes connected by critical edges, indicates the
optimal number of ports for a node. The banks with the closest
number of ports are selected for further consideration and all
others are disregarded for that node. The remaining steps are
dependent upon whether the node under consideration is targeted
towards a window or a static cache. For window caches a
preferred size is calculated based upon the total available size of
window cache banks multiplied by the proportion of the overall
access count generated by that node. The bank with size most
closely matching the preferred size is selected.
Allocating static cache banks to nodes is more complex, requiring
the generation of a metric for each bank to aid selection. All non-
critical edges connected to nodes designated for static cache
allocation are removed. This allows banks to be assigned to nodes
that were connected by non-critical edges and is permitted
because the metric generated for each bank contains information
about where that bank has been previously allocated. Whenever a
static bank is allocated a record of the lines used by the allocation
is stored along with the tag(s) used for each line. Thus when the
metric for a subsequent allocation is generated it consists of: the
proportion of lines that negatively interfere with a previous
allocation (two address lines map to the same cache lines with
different tags); the proportion of lines that positively interfere
with a previous allocation (similar to negative interference but
with the same tags); and the proportion of the address range
accessed by the node that does not completely fit into the cache.
The bank with the best metric is selected for allocation. If two
banks have identical metrics then the smaller bank is selected. If
they are the same size a deterministic choice is made.
As nodes are assigned to banks in priority order less important
nodes may be assigned to banks that do not necessarily fit their
access pattern. The assumption is that a memory configuration can
be found that allocates the most important accesses to suitable
banks and any remaining accesses will have less influence on the
overall performance of the memory. If there are no suitable banks
available for a particular node, that node is assigned to the default
bank which is designated the first time it is required. The default
bank is chosen as the static cache bank with the least allocated
accesses; if no static cache is available, the least accessed window
cache bank is chosen instead. Once selected the default bank is
then fixed for the rest of the allocation.

4. EXPERIMENTAL RESULTS
To evaluate our architecture and coupled allocation algorithm, we
verify the performance of the system running real-world
applications using instruction-set simulators (ISS). For our
architecture we use a custom simulator that is part of our tool, and
results are shown from an ARM920T using the ARMulator
simulator. The ARM was chosen as it has 16Kb data cache
arranged into a 64-way set associative configuration and mapped
using a content addressable memory (CAM) [11] giving it a high
level of adaptability for different applications. The ARM results
are provided simply as a reference rather than a direct comparison,
as our architectures are targeted towards specific applications in
each case whereas the ARM is general-purpose. In addition, as we
are targeting a multiple-issue VLIW processor that completes
each experiment in fewer cycles, our target system places much
higher demands on the data cache than the ARM processor.

By configuring ARMulator to produce verbose statistics during
simulation, we can monitor cache activity such as hits, misses and
fetches, for both instruction and data caches. We use our tool with
a selection of potential cache configuration candidates which the
tool cycles through performing allocation and producing results
relating to the cycle count and cache hits and misses. Our tool is
compatible with the ARM instruction set and can therefore utilize
the same compiled code as that used on ARMulator.

To keep the design exploration simple and within the bounds of a
realistic cache area for the selected applications, we limit the
choices to one window cache or one static cache, or one of each,
with a maximum size of 16Kb in total. Window caches are
considered with varying bank numbers of 1, 2, 3 or 4, and have
one read/write port and one read port. Static caches have a single
read/write port. Even with this relatively small selection of that
possible from the available hardware blocks, there are still a
significant number of combinations to explore. The use of our
tool greatly speeds this process, helping guide the user towards an
optimal solution. Run-times for these examples are in the range of
2-10 minutes on a 2.8 GHz Pentium 4 PC with 1 Gb RAM.

To ensure that the results reflect the true cost of the miss penalties
for each architecture, we have included an estimated number of
stall cycles which indicates the number of bus cycles that the
AMBA AHB bus consumes fetching or writing back cache lines.
These estimates are based on factors such as initial transfer
latency, burst transfer rate, cache line size, and bus contention.
Our caches have been designed such that they do not increase the
latency of accesses, maintaining overall system performance.
Details of the AMBA AHB specification can be found in [1].

We ran several applications considered to be relevant to real-
world embedded systems, which are also amenable to speedup on
a VLIW ASIP and are therefore applicable to our target system.
These are applications that we have previously targeted to some of
our ASIP designs as part of other projects but in future we plan to
extend our tests to relevant applications from the MediaBench
suite. To ensure that results reflect only the monitored function,
the caches are flushed and cleaned before entering the function so
that the cache will have a cold start. This is achieved by inserting
dedicated cache control assembly instructions immediately prior
to entering the function. All caches were configured to use a
write-back policy meaning that only a miss on a read or write
requires a cache line to be synchronized with main memory
causing a stall. One exception is an interference miss where the
desired data is cached, but a read/write attempt is made on a bank
or port other than where the data resides. The logic will
automatically reference the correct location, but a shorter stall
may be necessary in this case and this is taken into account in our
“stall cycles” figures in the results.

We present the results of our experiments for each application. As
expected some of our potential candidates did not produce
competitive results, so due to space restrictions and the large
number of candidates these were pruned and will not be
considered further. Results for the three best candidates in terms
of area, performance and energy, are shown for each application.
The selected candidates were synthesized for a TSMC 0.18µm
process using Artisan memories to obtain the area requirements of
each architecture including logic area. We then performed worst-
case dynamic power analysis with high switching activity rates at

42

200MHz using Synopsys Power Compiler for logic cells and
CACTI [10] for SRAM cells. Real-world power is likely to be
lower as these figures are intended only for rough comparison
between our architectures. The power figure for multi-ported
architectures is shown per-port, as this provides a more realistic
representation of the energy contribution over the entire
application. This is because the instantaneous power of a dual-
port cache performing two simultaneous accesses will be higher
than that of a single-port cache, but the single-port cache will
require two accesses on separate cycles to achieve the same result.
More accurate integrated energy modeling within the tool based
upon cache activity is a planned future development.
Worst-case dynamic power figures for a cache equivalent to that
in the ARM were estimated using a combination of CACTI and
the information in [16] regarding CAM-tag lookup caches. Area
information for the ARM cache is not publicly available so we
estimate the cache area based upon its configuration and available
data on the arm architecture. The result appears to be high, but it
agrees with the value calculated by extrapolating the difference in
areas quoted by ARM for the ARM9 with different cache sizes.
For comparison, the area of a 16K 4-way set associative cache
with one bank and a 32 byte line size is 2.28mm2.
For reference the logic overhead of our first cache architecture
(Custom1 in section 4.1 below) is under 8%, relatively low even
allowing for our pre-fetch logic due to lack of tag lookup
overhead. Actual logic overhead will vary depending upon cache
configuration and memory technology used.

4.1 Color Interpolation
The first application is a color interpolation function with
approximately 300 lines of C. It performs integer colorization of
Bayer-encoded images commonly produced by digital image
sensors. It inputs an 8-bit intensity encoded bitmap image and
outputs the full 24-bit image using interpolation. A detailed
overview is available at [6]. This function relies heavily upon
array manipulations therefore placing significant demands on the
memory subsystem that must be satisfied to achieve good
performance. The input image is CIF resolution (352x288) with
file size 100Kb. The architectures selected for the color
interpolation application are as follows:

• Custom1 – 4k Static cache; 8k Window cache, 1 bank
• Custom2 – 8k Static cache; 8k Window cache, 1 bank
• Custom3 – 16k Window cache, 1 8k bank + 2 4k banks

Results for this application are shown in Table 1.

Table 1. Results for color interpolation (access count 2822608)

Cache Misses Hit Rate Stall Cycles Area Power

ARM 319830 88.67% 4797450 3.69mm2 206mW

Custom1 29527 98.95% 236216 1.46mm2 104mW

Custom2 14898 99.47% 119184 1.74mm2 107mW

Custom3 123 99.99% 3321 1.95mm2 129mW

Using our tool, we find the optimal configuration for this
application is a single 16K window cache with one 8k bank and
two 4k banks, resulting in a hit rate greater than 99.99%. This is
largely due to the effectiveness of the pre-fetching mechanism

fitting well with the bank configuration and access pattern. The
allocation algorithm ensures that interferences between
simultaneous accesses to different memory locations are
minimized by allocating those locations to separate banks.

4.2 Run-Length Encoding
The second application is a run-length encoding function, a basic
lossless compression algorithm that is simple to implement
(approx. 200 lines of C) and has low computational and storage
requirements. For this experiment, we compress an arbitrary data
stream stored in a text file with a size of 50Kb. The architectures
selected for the RLE application are as follows:

• Custom1 – 2k Static; 4k Window cache, 1 2k + 2 1k banks
• Custom2 – 4k Static cache; 4k Window cache, 2 2k banks
• Custom3 – 4k Static cache; 8k Window cache, 2 4k banks

Results for this application are shown in Table 2.

Table 2. Results for RLE function (access count 930914)

Cache Misses Hit Rate Stall Cycles Area Power

ARM 109538 88.23% 1643070 3.69mm2 206mW

Custom1 26 99.99% 702 0.93mm2 90mW

Custom2 20 99.99% 540 1.14mm2 97mW

Custom3 16 99.99% 432 1.47mm2 104mW

Our architecture with a combination of one window cache and
one static cache performs very well with only 6K total cache size.
Further small improvements are possible with optimal
performance realized at 12K total cache size. The access patterns
of this application suit both a static and multi-bank window cache
being implemented. Our tool performs allocation to the available
caches and banks, and allows the user to decide the
area/performance tradeoff between the possible solutions.

4.3 FIR Filter
Finally, we implement an integer FIR filter with 6 taps and supply
a 20Kb input data stream. Signal processing places a high demand
on the memory subsystem, therefore good cache performance is
reflected in good overall performance for these applications.
Architectures chosen for the FIR Filter application are as follows:

• Custom1 – 2k Window cache, 1 bank
• Custom2 – 2k Static cache; 2k Window cache, 1 bank
• Custom3 – 2k Window cache, 2 1k banks

Results for this application are shown in Table 3.

Table 3. Results for FIR Filter (access count 458718)

Cache Misses Hit Rate Stall Cycles Area Power

ARM 67580 85.27% 1013700 3.69mm2 206mW

Custom1 65536 85.71% 1769472 0.39mm2 49mW

Custom2 263 99.94% 2104 0.64mm2 83mW

Custom3 10 99.99% 270 0.40mm2 49mW

The FIR filter test clearly shows the benefit of utilizing the
flexibility of our architecture and the effectiveness of our

43

allocation mechanism. The 2K single-bank window cache results
in a considerable number of miss cycles, but adding a 2K static
cache shows a vast improvement. Going back to a single 2K
cache, but with two banks produces the optimal result while
maintaining a low area requirement.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a software tool for guiding the
creation of a cache configuration for application-specific VLIW
architectures and automating data placement into that cache. Our
experimental results show that this approach provides significant
improvements over what would be possible using a conventional
cache with placement performed at run-time, while at the same
time keeping area and energy requirements low. Using window
caches allows tag overhead to be eliminated and coherency issues
are greatly reduced, but maintaining performance requires careful
selection of the architecture and effective placement of data. The
problem of effectively utilizing tailored cache architectures is
solved by our automated solution that analyzes the code and
performs allocation with the aim of optimizing cache efficiency.

Our allocation algorithm is being continually evolved. Particular
effort is being focused at identifying more accurately the
suitability of allocating ranges to window cache banks. We have
not yet integrated energy optimization into our algorithm;
currently our approach aims to lower system energy by reducing
cache misses thus minimizing costly bus accesses [13]. A more
detailed energy analysis and optimization is a prime interest in our
ongoing research since the cache subsystem can account for up to
50% of the energy consumption in typical embedded processors
such as the ARM920T [9]. As part of the continuing development
of our tool, we are currently integrating data cache energy analysis
as part of the automated flow, and plan to provide optimizations
that may be traded off against performance and/or area criteria at
the user’s prerogative. Additionally, although we have focused on
the data cache for performance optimization, the wide instruction
cache in a VLIW processor provides great scope for energy
savings; therefore we are in the process of exploring energy
optimizations for the instruction cache with a view to integrating
this functionality into the tool.

6. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers who provided
constructive comments. Paul Morgan’s contribution to this work
is partially funded by EPSRC.

7. REFERENCES
[1] ARM Limited. AMBA Specification Rev. 2.0, 1999, pp 3-1

– 3-58.
[2] Chaitin, G. Register Allocation and Spilling via Graph

Coloring. Proceedings of the 1982 Symposium on Compiler
Construction, June 1982, pp. 98-105.

[3] Givargis, T. Improved Indexing for Cache Miss Reduction in
Embedded Systems. Proceedings of Design Automation
Conference, 2003, pp. 875 – 880.

[4] Gordon-Ross, A., Vahid, F., Dutt, N. Automatic Tuning of
Two-Level Caches to Embedded Applications. Proceedings
of Design, Automation and Test in Europe Conference,
Volume 1, February 2004, pp. 208 – 213.

[5] Grun, P., Dutt, N., Nicolau, A. Access Pattern-Based
Memory and Connectivity Architecture Exploration. ACM
Transactions on Embedded Computing Systems, Vol. 2, No.
1, February 2003, pp 33–73.

[6] Kimmel, R. Demosaicing: Image Reconstruction from Color
CCD Samples, IEEE Transactions on Image
Processing, Volume 8, Issue 9, September 1999, pp 1221 –
1228.

[7] Megiddo, N., Modha, D.S. Outperforming LRU with an
Adaptive Replacement Cache Algorithm. Computer, Volume
37, Issue 4, April 2004, pp. 58 – 65.

[8] Panda, P.R., Dutt, N.D., Nicolau, A., Catthoor, F.,
Vandecappelle, A., Brockmeyer, E., Kulkarni, C., De Greef,
E. Data Memory Organization and Optimizations in
Application-Specific Systems, IEEE Design & Test of
Computers, Volume 18, Issue 3, May-June 2001 , pp. 56 –
68.

[9] Segars, S. Low Power Design Techniques for
Microprocessors, International Solid State Conference,
February 2001, pp 34 – 35.

[10] Shivakumar, P., Jouppi, N. CACTI 3.0: An Integrated Cache
Timing, Power and Area Model. Compaq Western Research
Laboratory report, August 2001.

[11] Sloss, A., Symes, D., Wright, C. ARM System Developer's
Guide - Designing and Optimizing System Software, Morgan
Kaufmann publishers, 2004, pp 403 – 457.

[12] Sudarsanam, A., Malik, S. Simultaneous Reference
Allocation in Code Generation for Dual Data Memory Bank
ASIPs. ACM Transactions on Design Automation of
Electronic Systems, April 2000, pp 242–264.

[13] Verma, M., Wehmeyer, L., Marwedel P. Efficient Scratchpad
Allocation Algorithms for Energy Constrained Embedded
Systems. Workshop on Power-Aware Computer Systems,
December 2003.

[14] Zhang, C., Vahid, F., Najjar, W. A Highly Configurable
Cache Architecture for Embedded Systems. Proceedings of
the 30th Annual International Symposium on Computer
Architecture, June 2003, pp 136 – 146.

[15] Zhang, C., Vahid, F., Najjar, W. Energy Benefits of a
Configurable Line Size Cache for Embedded Systems.
Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, February 2003, pp. 87 – 91.

[16] Zhang, M., Asanovic, K. Highly-Associative Caches for
Low-Power Processors. Kool Chips Workshop, 33rd
International Symposium on Microarchitecture, December
2000.

44

	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index

