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ABSTRACT 
Memory bandwidth issues present a formidable bottleneck to 
accelerating embedded applications, particularly data bandwidth 
for multiple-issue VLIW processors. Providing an efficient ASIP 
data cache solution requires that the cache design be tailored to 
the target application. Multiple caches or caches with multiple 
ports allow simultaneous parallel access to data, alleviating the 
bandwidth problem if data is placed effectively. We present a 
solution that greatly simplifies the creation of targeted caches and 
automates the process of explicitly allocating individual memory 
access to caches and banks. The effectiveness of our solution is 
demonstrated with experimental results.  

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles – Cache memories; 
C.1.1 [Processor Architectures]: Single Data Stream 
Architectures – VLIW Architectures 

General Terms 
Algorithms, Design, Performance, Theory 

Keywords 
Cache, cache optimization, embedded applications, ASIP. 

1. INTRODUCTION 
Embedded systems often employ application-specific instruction 
processors (ASIPs) that have been tailored to the domain in which 
they will be employed. In the interests of maximizing performance 
and minimizing energy consumption it is desirable to exploit 
instruction level parallelism inherent in the code. Employing a 
VLIW processor provides an ideal mechanism for extracting this 
parallelism. However, a significant number of instructions in 
many applications are loads or stores, in our experiments typically 
around 30% of all instructions, therefore data memory bandwidth 
issues are often a significant bottleneck to successfully exploiting 
instruction-level parallelism. Thus it is necessary to instantiate 
and effectively utilize data cache units that allow multiple 
concurrent accesses to maximize data bandwidth. 

Access patterns for the instruction cache tend to be much more 
structured and predictable than those for the data cache leaving 
more scope for performance improvement in successful data cache 
configuration and data allocation. The key to achieving an optimal 
solution is maximally exploiting both temporal and spatial locality 
in memory accesses, which are application dependent. Factors 
such as cache size, bank configuration and number of ports 
present a highly configurable architecture. Multiple ports allow 
simultaneous access to a single cache, different banks hold 
different data sets within the cache, and multiple caches can have 
different properties each suited to different data access patterns 
within the application. Effectively utilizing cache architectures, 
both in terms of selecting the hardware configuration and 
optimizing data allocation to exploit maximum benefit from the 
chosen configuration, is a challenging and time consuming task. 

We present an automated solution by way of a software tool for 
guiding the creation of a suitable hardware configuration and 
allocating data to optimally utilize the selected configuration. This 
is achieved by automatically generating and analyzing the memory 
trace of an application, taking advantage of the memory access 
information available at design and compile time to produce a 
more efficient allocation than would be possible by performing 
dynamic allocation using run-time logic. We provide a library of 
cache blocks to allow a wide range of architectures to be created 
tailored to the target application. Our tool guides the user towards 
an ideal hardware solution by performing allocation and analysis 
on a selection of candidate architectures, producing comparative 
results for each candidate architecture. 

This document is presented as follows. First we examine a 
selection of related work in Section 2. In Section 3 we list the 
hardware blocks created to build our caches, and detail the 
software allocation algorithm used to optimize data allocation to 
the cache. In Section 4 we undertake experiments to show the 
cache performance benefits of our solution. Finally we present our 
conclusions and suggest future work that could be undertaken to 
further our research in Section 5. 

2. RELATED WORKS 
A great deal of research on the topics of cache configuration and 
mapping has been undertaken in the past with many of the 
methods being proposed targeted at application-specific 
architectures. Givargis [3] recognized that better cache 
performance can be obtained by considering the target application 
during the design phase of an ASIP. Similarly, Panda et al. [8] 
 

1 Paul Morgan is also based at the Institute for System Level 
Integration, Livingston, UK. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA. 
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00. 
 

39



demonstrated a method of optimizing memory hierarchy, 
including data cache, for application-specific designs. 

Single cache optimizations such as varying line size, set 
associativity or replacement algorithm have been covered for 
several goals, such as energy [14][15] or hit rate [7]. For 
application-specific architectures it is often beneficial to have one 
or more additional caches with a different configuration to the 
first, depending on the nature of the application being executed. A 
well-researched technique is that of the scratchpad memory [4][8], 
a small area of storage in which elements can be placed without 
disrupting the main cache. Gordon-Ross et al. [4] extend the 
analysis to a two-level cache hierarchy, proposing a simultaneous 
exploration technique for both cache levels that trades off power 
requirements and performance. 

Sudarsanam and Malik [12] addressed the issue of memory bank 
assignment to optimize for simultaneous access in ASIPs with a 
tool called SPAM. This work tackles a similar problem to what 
we face but is targeted at single cache ASIPs with two identical 
banks whereas our tool targets highly configurable architectures 
that can have multiple caches of different types each with different 
sized banks. 

Grun et al. have produced excellent work on memory architecture 
exploration in [5] culminating in a tool called APEX. This work 
considers the entire memory of an embedded system, rather than 
focusing on the data cache and does not provide for the parallel 
data access requirements of multiple-issue VLIW processors. 

What we propose is to provide a library of customizable cache 
blocks that can be tailored at design time to a suitable 
configuration for the target application. Allocation of code to 
caches and banks is automated by a tool we have designed using a 
software algorithm that attempts to find an optimized solution for 
the selected hardware caching architecture taking into 
consideration the parallel access requirements of a multiple-issue 
VLIW processor. This approach allows multiple possible 
candidates for the hardware configuration to be quickly examined 
for suitability, overcoming the problem of attempting to 
simultaneously optimize both hardware configuration and 
software mapping, a problem which could not be solved in 
reasonable time with our level of configurability. 

To the best of our knowledge no previous work has explored an 
automated software mapping for highly configurable hardware 
cache architectures as proposed here. 

3. CACHE ALLOCATION 
To facilitate the creation of an application-specific data cache, we 
provide a library of highly configurable cache blocks to allow our 
cache to be optimized for a wide range of applications. There are 
currently four cache styles in our library; three window caches 
and one direct-mapped static cache. A cache unit may contain a 
number of independent banks, each of which may hold a different 
data set. Using multiple banks allows different data areas to be 
held, addressed independently and accessed simultaneously 
depending on available ports. 

Window caches hold a contiguous region of memory in each 
bank, and automatically attempt to keep the correct addresses in 
the cache by pre-fetching data from main memory in the 
background when accesses are ascending or descending and are 

nearing the edge of the cached region. The three window caches 
are distinguished by their port configuration, one with a single 
read/write port, the second with an additional read only port and 
the third with two read/write ports. Additional ports increase the 
complexity of the cache so the trade-off between area and 
performance must be considered. Window caches require no tag 
overhead due to the cached memory region being contiguous, 
significantly reducing the area footprint, and the pre-fetch 
mechanism greatly improves performance on favorable access 
patterns. 

Static caches provide a more conventional direct-mapped cache, 
with the addition of software placement of data into banks. Such 
caches are simpler than window caches, with no pre-fetch 
mechanism, and anything between 8 and 64 lines each of 64 
words to provide a more suitable cache for accesses of a sparsely 
spread pattern, with sizes of 2k, 4k, 8k or 16k bytes. All static 
caches are single-ported, utilizing around 40-45% less area than a 
dual-ported window cache depending on configuration options. 

Each of the four cache units has further parameterized 
configuration options to ensure maximum flexibility to adapt to 
any application. The size of each window cache is configurable in 
powers of two from 512 to 64k words, with 1, 2, 3 or 4 banks. In 
addition to design-time choices, the number of banks and bank 
size ratios can be dynamically configured by the host at runtime. 

All our cache blocks are directly mapped taking advantage of the 
lower latency, smaller area requirements and reduced power 
consumption offered compared with set- or fully-associative 
caches, as tag comparisons are not required with direct-mapped 
caches. We rely upon an effective software allocation and the pre-
fetching abilities of our window caches to minimize cache misses 
that would otherwise be inherent in a direct-mapped cache. 

The aforementioned cache blocks provide an enormous range of 
configuration options. There are 32 possible valid combinations 
of each window cache, and 4 static cache options, meaning a dual-
cache design offers 1296 configurations. It would be an 
intractable task to attempt to fully automate the selection of an 
optimal cache configuration that meets all the required criteria for 
any custom application. Therefore the user selects a number of 
candidates for the cache configuration from the provided 
hardware blocks based upon area and performance requirements, 
and the type of application being accelerated. 
The target application is run with a representative data set, and a 
memory access trace is automatically generated. The trace is then 
analyzed to determine ranges of memory that show independence 
in either the spatial or temporal ranges. Instructions are 
partitioned into groups whose access patterns interfere both 
spatially and temporally. Each group is allocated to a cache bank 
according to the algorithm described below. Hardware cache 
coherency logic ensures that the memory hierarchy will always be 
valid for any access pattern regardless of the memory 
configuration, relieving the allocation algorithm of this concern 
and providing resilience to any future changes in the executed 
code. Additional logic ensures that any location in the memory 
hierarchy can be accessed from any port, although an interference 
stall penalty is incurred if the data is cached in a location other 
than the identified bank allowing time for the hardware to 
transparently fetch the data from the correct bank. The software 
analysis optimizes the allocation of memory regions to the 
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available cache configurations providing post-allocation 
performance statistics on each candidate to guide the selection 
process towards an optimal solution. 

3.1 Allocation Algorithm 
The aim of the allocation algorithm is to assign grouped memory 
access instructions to appropriately sized banks to minimize cache 
misses, and minimize interference between groups by assigning 
concurrently active ranges into different banks where possible. In 
cases where both a window cache and static cache are available, 
the algorithm attempts to select the most appropriate cache type 
for each group. A flow diagram overview is illustrated in figure 1 
opposite. The tool examines the original program and lists all 
load/store instructions, then records from the memory access trace 
the range of addresses accessed by each instruction. 
An interference graph is built with nodes representing load and 
store instructions, with instructions accessing overlapping address 
ranges with respect to cache line boundaries being merged into a 
single node. An interference edge is added between nodes that 
access data in the same activation range (a temporal run-time 
value calculated by the algorithm dependent upon the varying 
access density at the trace point of current analysis), identifying 
those nodes as being simultaneously “live”, which is analogous to 
a register allocation interference graph [2]. 
Critical analysis is then performed to identify memory accesses 
that may require to be issued in parallel by the VLIW processor. 
These accesses are identified by performing a scheduling step on a 
fully optimized version of the most executed portions of code, 
forming critical access groups (CAGs) from accesses issued on the 
same cycle. This information is added to the interference graph 
such that if instructions in a CAG are located on the same node 
then that node’s criticality is set to a value representing the 
number of simultaneous accesses that must be issued from the 
node. That node can then be allocated if possible to a bank with 
the required parallel access capability. If instructions in the CAG 
span multiple nodes then the criticality value is applied to the 
edge linking those nodes, indicating that those nodes should be 
allocated to banks with sufficient ports to satisfy the criticality 
constraints of both nodes simultaneously. 
Nodes are sorted into priority order depending upon their memory 
access frequency to be assigned to available cache banks, starting 
with the most important node. Each bank’s attributes, such as its 
type (window or static), the bank size, and the number of ports the 
bank is accessible through, are known to the allocation algorithm 
and are used to influence the selection of a bank for each node. 
Choosing whether a node should use a window cache is a crucial 
step in the algorithm, as significant performance benefits are 
possible for access patterns amenable to window caching but 
performance can be degraded for unsuitable access patterns. 
Analyzing the entire memory trace and recording the frequency of 
all sequential accesses would be extremely slow and memory 
hungry, therefore selection of the cache type for each node is 
based upon the access proportion of that node. This is calculated 
as the number of accesses represented by that node divided by the 
address range accessed by the node. Nodes with access proportion 
above a threshold based upon available window and static banks 
are likely to perform sequential accesses so are earmarked for 
window caching. Nodes below the threshold will be allocated to 
static banks. We have found this approach to work well for most 

applications although a more robust and comprehensive algorithm 
for cache type selection is under development. 

 

 
 
Once the type of cache has been selected, the next step is 
choosing the bank that will be assigned to each node. The 

Figure 1. Allocation algorithm flow chart 
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criticality value determined previously, including analysis of 
neighboring nodes connected by critical edges, indicates the 
optimal number of ports for a node. The banks with the closest 
number of ports are selected for further consideration and all 
others are disregarded for that node. The remaining steps are 
dependent upon whether the node under consideration is targeted 
towards a window or a static cache. For window caches a 
preferred size is calculated based upon the total available size of 
window cache banks multiplied by the proportion of the overall 
access count generated by that node. The bank with size most 
closely matching the preferred size is selected. 
Allocating static cache banks to nodes is more complex, requiring 
the generation of a metric for each bank to aid selection. All non-
critical edges connected to nodes designated for static cache 
allocation are removed. This allows banks to be assigned to nodes 
that were connected by non-critical edges and is permitted 
because the metric generated for each bank contains information 
about where that bank has been previously allocated. Whenever a 
static bank is allocated a record of the lines used by the allocation 
is stored along with the tag(s) used for each line. Thus when the 
metric for a subsequent allocation is generated it consists of: the 
proportion of lines that negatively interfere with a previous 
allocation (two address lines map to the same cache lines with 
different tags); the proportion of lines that positively interfere 
with a previous allocation (similar to negative interference but 
with the same tags); and the proportion of the address range 
accessed by the node that does not completely fit into the cache. 
The bank with the best metric is selected for allocation. If two 
banks have identical metrics then the smaller bank is selected. If 
they are the same size a deterministic choice is made. 
As nodes are assigned to banks in priority order less important 
nodes may be assigned to banks that do not necessarily fit their 
access pattern. The assumption is that a memory configuration can 
be found that allocates the most important accesses to suitable 
banks and any remaining accesses will have less influence on the 
overall performance of the memory. If there are no suitable banks 
available for a particular node, that node is assigned to the default 
bank which is designated the first time it is required. The default 
bank is chosen as the static cache bank with the least allocated 
accesses; if no static cache is available, the least accessed window 
cache bank is chosen instead. Once selected the default bank is 
then fixed for the rest of the allocation. 

4. EXPERIMENTAL RESULTS 
To evaluate our architecture and coupled allocation algorithm, we 
verify the performance of the system running real-world 
applications using instruction-set simulators (ISS). For our 
architecture we use a custom simulator that is part of our tool, and 
results are shown from an ARM920T using the ARMulator 
simulator. The ARM was chosen as it has 16Kb data cache 
arranged into a 64-way set associative configuration and mapped 
using a content addressable memory (CAM) [11] giving it a high 
level of adaptability for different applications. The ARM results 
are provided simply as a reference rather than a direct comparison, 
as our architectures are targeted towards specific applications in 
each case whereas the ARM is general-purpose. In addition, as we 
are targeting a multiple-issue VLIW processor that completes 
each experiment in fewer cycles, our target system places much 
higher demands on the data cache than the ARM processor. 

By configuring ARMulator to produce verbose statistics during 
simulation, we can monitor cache activity such as hits, misses and 
fetches, for both instruction and data caches. We use our tool with 
a selection of potential cache configuration candidates which the 
tool cycles through performing allocation and producing results 
relating to the cycle count and cache hits and misses. Our tool is 
compatible with the ARM instruction set and can therefore utilize 
the same compiled code as that used on ARMulator. 

To keep the design exploration simple and within the bounds of a 
realistic cache area for the selected applications, we limit the 
choices to one window cache or one static cache, or one of each, 
with a maximum size of 16Kb in total. Window caches are 
considered with varying bank numbers of 1, 2, 3 or 4, and have 
one read/write port and one read port. Static caches have a single 
read/write port. Even with this relatively small selection of that 
possible from the available hardware blocks, there are still a 
significant number of combinations to explore. The use of our 
tool greatly speeds this process, helping guide the user towards an 
optimal solution. Run-times for these examples are in the range of 
2-10 minutes on a 2.8 GHz Pentium 4 PC with 1 Gb RAM. 

To ensure that the results reflect the true cost of the miss penalties 
for each architecture, we have included an estimated number of 
stall cycles which indicates the number of bus cycles that the 
AMBA AHB bus consumes fetching or writing back cache lines. 
These estimates are based on factors such as initial transfer 
latency, burst transfer rate, cache line size, and bus contention. 
Our caches have been designed such that they do not increase the 
latency of accesses, maintaining overall system performance. 
Details of the AMBA AHB specification can be found in [1]. 

We ran several applications considered to be relevant to real-
world embedded systems, which are also amenable to speedup on 
a VLIW ASIP and are therefore applicable to our target system. 
These are applications that we have previously targeted to some of 
our ASIP designs as part of other projects but in future we plan to 
extend our tests to relevant applications from the MediaBench 
suite. To ensure that results reflect only the monitored function, 
the caches are flushed and cleaned before entering the function so 
that the cache will have a cold start. This is achieved by inserting 
dedicated cache control assembly instructions immediately prior 
to entering the function. All caches were configured to use a 
write-back policy meaning that only a miss on a read or write 
requires a cache line to be synchronized with main memory 
causing a stall. One exception is an interference miss where the 
desired data is cached, but a read/write attempt is made on a bank 
or port other than where the data resides. The logic will 
automatically reference the correct location, but a shorter stall 
may be necessary in this case and this is taken into account in our 
“stall cycles” figures in the results. 

We present the results of our experiments for each application. As 
expected some of our potential candidates did not produce 
competitive results, so due to space restrictions and the large 
number of candidates these were pruned and will not be 
considered further. Results for the three best candidates in terms 
of area, performance and energy, are shown for each application. 
The selected candidates were synthesized for a TSMC 0.18µm 
process using Artisan memories to obtain the area requirements of 
each architecture including logic area. We then performed worst-
case dynamic power analysis with high switching activity rates at 
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200MHz using Synopsys Power Compiler for logic cells and 
CACTI [10] for SRAM cells. Real-world power is likely to be 
lower as these figures are intended only for rough comparison 
between our architectures. The power figure for multi-ported 
architectures is shown per-port, as this provides a more realistic 
representation of the energy contribution over the entire 
application. This is because the instantaneous power of a dual-
port cache performing two simultaneous accesses will be higher 
than that of a single-port cache, but the single-port cache will 
require two accesses on separate cycles to achieve the same result. 
More accurate integrated energy modeling within the tool based 
upon cache activity is a planned future development. 
Worst-case dynamic power figures for a cache equivalent to that 
in the ARM were estimated using a combination of CACTI and 
the information in [16] regarding CAM-tag lookup caches. Area 
information for the ARM cache is not publicly available so we 
estimate the cache area based upon its configuration and available 
data on the arm architecture. The result appears to be high, but it 
agrees with the value calculated by extrapolating the difference in 
areas quoted by ARM for the ARM9 with different cache sizes. 
For comparison, the area of a 16K 4-way set associative cache 
with one bank and a 32 byte line size is 2.28mm2. 
For reference the logic overhead of our first cache architecture 
(Custom1 in section 4.1 below) is under 8%, relatively low even 
allowing for our pre-fetch logic due to lack of tag lookup 
overhead. Actual logic overhead will vary depending upon cache 
configuration and memory technology used. 

4.1 Color Interpolation 
The first application is a color interpolation function with 
approximately 300 lines of C. It performs integer colorization of 
Bayer-encoded images commonly produced by digital image 
sensors. It inputs an 8-bit intensity encoded bitmap image and 
outputs the full 24-bit image using interpolation. A detailed 
overview is available at [6]. This function relies heavily upon 
array manipulations therefore placing significant demands on the 
memory subsystem that must be satisfied to achieve good 
performance. The input image is CIF resolution (352x288) with 
file size 100Kb. The architectures selected for the color 
interpolation application are as follows: 

• Custom1 – 4k Static cache; 8k Window cache, 1 bank 
• Custom2 – 8k Static cache; 8k Window cache, 1 bank 
• Custom3 – 16k Window cache, 1 8k bank + 2 4k banks 

Results for this application are shown in Table 1. 

Table 1. Results for color interpolation (access count 2822608) 

Cache Misses Hit Rate Stall Cycles Area Power 

ARM 319830 88.67% 4797450 3.69mm2 206mW 

Custom1 29527 98.95% 236216 1.46mm2 104mW 

Custom2 14898 99.47% 119184 1.74mm2 107mW 

Custom3 123 99.99% 3321 1.95mm2 129mW 
 

Using our tool, we find the optimal configuration for this 
application is a single 16K window cache with one 8k bank and 
two 4k banks, resulting in a hit rate greater than 99.99%. This is 
largely due to the effectiveness of the pre-fetching mechanism 

fitting well with the bank configuration and access pattern. The 
allocation algorithm ensures that interferences between 
simultaneous accesses to different memory locations are 
minimized by allocating those locations to separate banks. 

4.2 Run-Length Encoding 
The second application is a run-length encoding function, a basic 
lossless compression algorithm that is simple to implement 
(approx. 200 lines of C) and has low computational and storage 
requirements. For this experiment, we compress an arbitrary data 
stream stored in a text file with a size of 50Kb. The architectures 
selected for the RLE application are as follows: 

• Custom1 – 2k Static; 4k Window cache, 1 2k + 2 1k banks 
• Custom2 – 4k Static cache; 4k Window cache, 2 2k banks 
• Custom3 – 4k Static cache; 8k Window cache, 2 4k banks 

Results for this application are shown in Table 2. 

Table 2. Results for RLE function (access count 930914) 

Cache Misses Hit Rate Stall Cycles Area Power 

ARM 109538 88.23% 1643070 3.69mm2 206mW 

Custom1 26 99.99% 702 0.93mm2 90mW 

Custom2 20 99.99% 540 1.14mm2 97mW 

Custom3 16 99.99% 432 1.47mm2 104mW 
 

Our architecture with a combination of one window cache and 
one static cache performs very well with only 6K total cache size. 
Further small improvements are possible with optimal 
performance realized at 12K total cache size. The access patterns 
of this application suit both a static and multi-bank window cache 
being implemented. Our tool performs allocation to the available 
caches and banks, and allows the user to decide the 
area/performance tradeoff between the possible solutions. 

4.3 FIR Filter 
Finally, we implement an integer FIR filter with 6 taps and supply 
a 20Kb input data stream. Signal processing places a high demand 
on the memory subsystem, therefore good cache performance is 
reflected in good overall performance for these applications. 
Architectures chosen for the FIR Filter application are as follows: 

• Custom1 – 2k Window cache, 1 bank 
• Custom2 – 2k Static cache; 2k Window cache, 1 bank 
• Custom3 – 2k Window cache, 2 1k banks 

Results for this application are shown in Table 3. 

Table 3. Results for FIR Filter (access count 458718) 

Cache Misses Hit Rate Stall Cycles Area Power 

ARM 67580 85.27% 1013700 3.69mm2 206mW 

Custom1 65536 85.71% 1769472 0.39mm2 49mW 

Custom2 263 99.94% 2104 0.64mm2 83mW 

Custom3 10 99.99% 270 0.40mm2 49mW 
 
The FIR filter test clearly shows the benefit of utilizing the 
flexibility of our architecture and the effectiveness of our 
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allocation mechanism. The 2K single-bank window cache results 
in a considerable number of miss cycles, but adding a 2K static 
cache shows a vast improvement. Going back to a single 2K 
cache, but with two banks produces the optimal result while 
maintaining a low area requirement. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a software tool for guiding the 
creation of a cache configuration for application-specific VLIW 
architectures and automating data placement into that cache. Our 
experimental results show that this approach provides significant 
improvements over what would be possible using a conventional 
cache with placement performed at run-time, while at the same 
time keeping area and energy requirements low. Using window 
caches allows tag overhead to be eliminated and coherency issues 
are greatly reduced, but maintaining performance requires careful 
selection of the architecture and effective placement of data. The 
problem of effectively utilizing tailored cache architectures is 
solved by our automated solution that analyzes the code and 
performs allocation with the aim of optimizing cache efficiency. 

Our allocation algorithm is being continually evolved. Particular 
effort is being focused at identifying more accurately the 
suitability of allocating ranges to window cache banks. We have 
not yet integrated energy optimization into our algorithm; 
currently our approach aims to lower system energy by reducing 
cache misses thus minimizing costly bus accesses [13]. A more 
detailed energy analysis and optimization is a prime interest in our 
ongoing research since the cache subsystem can account for up to 
50% of the energy consumption in typical embedded processors 
such as the ARM920T [9]. As part of the continuing development 
of our tool, we are currently integrating data cache energy analysis 
as part of the automated flow, and plan to provide optimizations 
that may be traded off against performance and/or area criteria at 
the user’s prerogative. Additionally, although we have focused on 
the data cache for performance optimization, the wide instruction 
cache in a VLIW processor provides great scope for energy 
savings; therefore we are in the process of exploring energy 
optimizations for the instruction cache with a view to integrating 
this functionality into the tool.  

6. ACKNOWLEDGMENTS 
We would like to thank the anonymous reviewers who provided 
constructive comments. Paul Morgan’s contribution to this work 
is partially funded by EPSRC. 

7. REFERENCES 
[1] ARM Limited. AMBA Specification Rev. 2.0, 1999, pp 3-1 

– 3-58. 
[2] Chaitin, G. Register Allocation and Spilling via Graph 

Coloring. Proceedings of the 1982 Symposium on Compiler 
Construction, June 1982, pp. 98-105. 

[3] Givargis, T. Improved Indexing for Cache Miss Reduction in 
Embedded Systems. Proceedings of Design Automation 
Conference, 2003, pp. 875 – 880. 

[4] Gordon-Ross, A., Vahid, F., Dutt, N. Automatic Tuning of 
Two-Level Caches to Embedded Applications. Proceedings 
of Design, Automation and Test in Europe Conference, 
Volume 1, February 2004, pp. 208 – 213. 

[5] Grun, P., Dutt, N., Nicolau, A. Access Pattern-Based 
Memory and Connectivity Architecture Exploration. ACM 
Transactions on Embedded Computing Systems, Vol. 2, No. 
1, February 2003, pp 33–73.  

[6] Kimmel, R. Demosaicing: Image Reconstruction from Color 
CCD Samples, IEEE Transactions on Image 
Processing, Volume 8, Issue 9, September 1999, pp 1221 – 
1228. 

[7] Megiddo, N., Modha, D.S. Outperforming LRU with an 
Adaptive Replacement Cache Algorithm. Computer, Volume 
37, Issue 4, April 2004, pp. 58 – 65. 

[8] Panda, P.R., Dutt, N.D., Nicolau, A., Catthoor, F., 
Vandecappelle, A., Brockmeyer, E., Kulkarni, C., De Greef, 
E. Data Memory Organization and Optimizations in 
Application-Specific Systems, IEEE Design & Test of 
Computers, Volume 18, Issue 3, May-June 2001 , pp. 56 – 
68. 

[9] Segars, S. Low Power Design Techniques for 
Microprocessors, International Solid State Conference, 
February 2001, pp 34 – 35. 

[10] Shivakumar, P., Jouppi, N. CACTI 3.0: An Integrated Cache 
Timing, Power and Area Model. Compaq Western Research 
Laboratory report, August 2001. 

[11] Sloss, A., Symes, D., Wright, C. ARM System Developer's 
Guide - Designing and Optimizing System Software, Morgan 
Kaufmann publishers, 2004, pp 403 – 457. 

[12] Sudarsanam, A., Malik, S. Simultaneous Reference 
Allocation in Code Generation for Dual Data Memory Bank 
ASIPs. ACM Transactions on Design Automation of 
Electronic Systems, April 2000, pp 242–264. 

[13] Verma, M., Wehmeyer, L., Marwedel P. Efficient Scratchpad 
Allocation Algorithms for Energy Constrained Embedded 
Systems. Workshop on Power-Aware Computer Systems, 
December 2003. 

[14] Zhang, C., Vahid, F., Najjar, W. A Highly Configurable 
Cache Architecture for Embedded Systems. Proceedings of 
the 30th Annual International Symposium on Computer 
Architecture, June 2003, pp 136 – 146. 

[15] Zhang, C., Vahid, F., Najjar, W. Energy Benefits of a 
Configurable Line Size Cache for Embedded Systems. 
Proceedings of the IEEE Computer Society Annual 
Symposium on VLSI, February 2003, pp. 87 – 91. 

[16] Zhang, M., Asanovic, K. Highly-Associative Caches for 
Low-Power Processors. Kool Chips Workshop, 33rd 
International Symposium on Microarchitecture, December 
2000.

 

44


	Main Page
	CODES+ISSS'05
	Front Matter
	Table of Contents
	Author Index




