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Abstract— The information about the run-time behavior of
software applications is crucial for enabling system level optimiza-
tions for embedded systems. This embedded Software Metadata
information is especially important today, because several com-
plex multi-threaded applications are mapped on the memory of
a single embedded system. Each thread is triggered at run-time
by different input events that can not be predicted at design-time.
New methods and tools are needed to automatically profile and
analyze the dynamic data access behavior of simultaneously exe-
cuting threads in order to enable memory data transfer optimiza-
tions. In this paper, we propose such a method and tool which
extract the necessary Software Metadata information to enable
these data transfer optimizations at the system level. We assess
the effectiveness of our approach with the results for five real-life
software applications using seven real-life run-time input traces.

I. INTRODUCTION

In modern consumer embedded systems (e.g., PDAs) it is

common for a number of applications like video-playback,

VoIP and a web browser to run simultaneously. This means that

the operating system has to schedule multiple threads while

data are commonly shared or exchanged between them dur-

ing their execution. The existence of multiple threads makes

analyzing the system memory transfer behavior a complicated

task, because multi-threading eventually means that memory

accesses from different threads interleave in a fine-grained way.

The fact that different threads are active at the same time is es-

pecially relevant for these ones that engage in an asynchronous

consumer/producer behavior. The problem is that it is not use-
ful to analyze the memory access pattern of each thread in-
dependently from the others. The effort to combine Software
Metadata information about the individual behaviors, in order

to “recreate” the behavior of the whole system, ignores the im-

portance of the interaction among the threads, and most im-

portantly, the interleaved thread execution. Therefore, in order

to enable memory transfer optimizations at the system level

(rather than the individual thread level), we propose to pro-

file/analyze the whole system and not each thread individually.

Additionally, the input to the system changes frequently at

run-time (e.g., according to user actions). So, the control and

data behavior of each one of the threads can not be fully de-

termined at design-time without resorting to worst-case evalu-

ations. Therefore, the memory storage requirements of the sys-

tem can not be fully characterized at design-time and dynami-

cally allocated data types become responsible for a significant

portion of the total data transfers. This increasing dynamic be-
havior shows that there is an urgent need for tools that help to
analyze the run-time aspect of the system without an explosion
in the complexity of the analysis. It is also important to have

a standard format to represent all this Software Metadata in-

formation in such a way that tools from different companies or

from the academia can use it and link with each other.

The memory subsystem is a significant contributor to the

overall energy consumption and cycle budget in embedded sys-

tems [6, 8]. In the past years, much effort has been devoted

to optimize the memory hierarchy of such systems. As a re-

sult, it is today common that energy-efficient embedded plat-

forms have scratchpad memories and relay on the Direct Mem-

ory Access [12] (DMA) mechanism to implement the memory

transfers. DMA is especially desirable in embedded systems

because it can be applied not only to I/O data transfers but also

to the explicit management of scratchpad memories (that are

more energy efficient, if correctly controlled by software, than

hardware controlled caches [17, 21]). The optimization prob-

lem that designers usually face is the manual analysis of the

behavior of the system to identify the most relevant data trans-

fers where DMA can be applied. This problem has been ex-

tensively studied for static data types but there are currently no

suitable techniques for this analysis on dynamically allocated

data types. The automatic identification of relevant data trans-

fers allows the designer to insert data transfer primitives in the

right places at an early design stage. Therefore, it is important
to analyze the data transfers for employment of optimization
mechanisms like the ones based on Direct Memory Access [12].

In this paper, we propose a method and a set of tools that

allow an automated identification of the relevant data transfers

of dynamic data types present in the software of an embed-

ded system. This application-specific information is in effect

Metadata, which characterizes the source code of the embed-

ded software applications. This combination of source code

and its extracted Metadata can then be used by embedded sys-

tem designers for multiple types of optimizations on more than

one hardware platform. We apply these Software Metadata ex-

tracting tools to a set of real-life applications from the network

domain in order to show their analysis capabilities. Finally, in

order to demonstrate that the identified Software Metadata are

actually relevant for the targeted embedded platforms, we il-
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lustrate this for DMA-based performance optimizations and we

show simulation results using real-life run-time trace inputs.

In Section II the related work is described. An overview of

the proposed method is presented in Section III and each of the

steps are explained in Sections IV, V and VI. In Section VII,

experimental results are presented to illustrate the applicability

of our analysis. Finally, in Section VIII conclusions are drawn

and future work is discussed.

II. RELATED WORK

Currently, in the domain of hardware platform composition

tools Hardware Metadata are exploited with the use of IP-

XACT, which is the official set of specifications of the SPIRIT

consortium for hardware IP metadata and tool interfaces [1].

Additionally, the concept and exploitation of Software Meta-
data is being explored by several research projects [2,3] which

aim to produce a standard description of the characteristics of

applications running on embedded platforms that can be inter-

changed between tools of different vendors and academia. The

work presented by different groups regarding workload char-

acterization [11], scenario identification [9] and scenario ex-

ploitation [10] is also very relevant in the context of our pro-

posed method to extract Software Metadata information to en-

able memory transfer optimizations. The above works focus on

defining the characteristics of the run-time situations that trig-

ger specific application behavior, which has significant impact

on the resource usage and data access behavior of the applica-

tions under study. We apply related concepts to theirs but we

have instantiated (and extended/customized) them in the con-

text of profiling input-dependent application behavior.

The classical design for a simple DMA device was first in-

troduced in 1955 for the IBM SAGE computer [12] and has

always been the reference design. It typically consists of a

state machine and several registers to hold source and desti-

nation addresses, transfer length and status [5]. In [8,13] DMA

combined with a software prefetch mechanism exploits the a
priori access pattern of multimedia applications. A DMA ar-

chitecture for high data rate implemented on TI TMS320C6211

C6x DSP is proposed in [7]. A method for application specific

DMA controller synthesis is presented in [14].

In [4] DMA engines are used to provide efficient dynamic

layout of data to memories. A run-time scratchpad manage-

ment is proposed in [17] where DMA engines reduce the cost

of copying data on such memories. [20] present several opti-

mizations on scratchpad memory management whereas [15]

focuses in the energy-efficient usage of DMA modules. In this

paper, we not only provide automatically the Software Meta-

data information which is relevant and can be leveraged by

this type of optimizations but, additionally, we enable with the

proposed Metadata information further DMA-based optimiza-

tions on data transfers triggered by run-time events on top of

the aforementioned design-time optimizations.

III. OVERVIEW OF THE PROPOSED SOFTWARE METADATA

EXTRACTION METHODOLOGY

The methodology presented in this paper is divided in several

steps (depicted in Fig. 1). The starting point is the original

source code of the applications (written in C/C++). Once it is

instrumented with our profiling library, the resulting system is

run using the most representative input samples. The result of
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Fig. 1. Overview of the proposed methodology.

these steps is a file containing all the accesses to data elements

performed by the applications during their execution. If the

analyzed applications were multi-threaded, accesses in the log

file intermingle not only for the different data types but also for

all the different threads running concurrently.

The next step is to analyze the log file to extract the informa-

tion about the most relevant data transfers in the application. In

this stage, several techniques are applied to differentiate among

all the concurrent accesses. As a result of all the previous steps,

the proposed tool produces a list with all the major data trans-

fers ordered by data type and thread. Then, the designer can

use this information to apply data transfer primitives to the sen-

sible locations in the source code. Finally, the analysis of the

behavior of the application for several relevant inputs enables

the identification of different input data instances [9].

IV. STEP 1: CREATION OF RAW INFORMATION

The first step of our approach comprises the instrumenta-

tion of the source code using a profiling library. This approach

is based on our previous work in [18], where we use a set of

wrapper classes around the dynamically allocated data types

of the application. One of the strongest features of our pro-

filing library is that it requires very small modification of the

original source code: it is usually just enough to modify the

variable declarations and the prototypes of the functions that

use them. Moreover, as we aim to analyze multi-threaded ap-

plications, our approach is thread-safe and provides facilities to

record the ID of the thread issuing each data access. Once the

application is instrumented, the designer uses a set of relevant

system inputs that can trigger the different behavior patterns

that will arise at run-time during final system utilization. The

applications are then fed with the different input patterns and

for each execution a different log file is obtained.

The applica-
MEMORY ACCESS
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Fig. 2. Raw information contained in the log file for

each data type, thread, access and storage record.

tions are exe-

cuted as it would

be in the non-

instrumented

version al-

though, of

course, it will be

sensibly slower (around two orders of magnitude according to

our experiments) and will produce a big-sized log file (around

tens of gigabytes in our experiments). Nevertheless, big log

files are not an issue because the profiling and analysis phases

can be pipe-lined, if needed, at run-time in such a way that the
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log files are not actually saved to disk. The output of this step

is a log file with all the raw information about the data accesses

from all the threads of the application, and all the calls to

dynamic memory management primitives (i.e., malloc()
and free()). The entries in the log file are strictly ordered

by execution time (excluding the effect of the thread-safety

mechanism). Fig. 2 shows the raw information associated to

each type of entry in the final log file.

V. STEP 2: EXTRACTION OF SOFTWARE METADATA

INFORMATION FROM RAW INFORMATION

The input for the second step is the log file with all the raw

information of data accesses from all the threads of the applica-

tion, and the calls to dynamic memory management primitives.

The main task in this step is to identify the potential block data

transfers among all the individual accesses in the log. It is im-

portant to realize that data transfer primitives have not yet been

introduced on the application at this early design stage. There-

fore, block transfers are not distinguished in the raw informa-

tion, but their existence must be inferred from the properties of

the individual data accesses. For static data types this type of

analysis is well known both in the State-of-Art and in industry

because the size and address of the different structures is al-

ways predefined. But for dynamically allocated data types it is

not possible to know the actual address that correspond to each

of them; it is not even possible to know how many instances of

each one will be created at run-time.

We identify a unique data transfer as a set of strictly consec-
utive data accesses to the same instance of the same data type,
performed by a given thread. With this definition, we use the

following rules to identify the data transfers, briefly depicted

also in Algorithm 1:

Algorithm 1 Data transfers identification

1: function TRANSFERIDENTIFICATION

2: aliveBlocks : List of Blocks
3: recordOfTransfers : List of Transfers
4: for all event ∈ logF ile do
5: if event is allocation then
6: aliveBlocks.Insert(new Block(address, size, dataTypeID))
7: else if event is deallocation then
8: block ← aliveBlocks.FindBlock(address)
9: if IsValid(block.activeTransfer) then

10: recordOfTransfers.Insert(block.activeTransfer)
11: end if
12: aliveBlocks.DeleteBlock(address)
13: delete block
14: else if event is memory access then
15: block ← aliveBlocks.FindBlock(address)
16: transfer ← block.activeTransfer
17: if IsValid(block) and IsValid(transfer) then
18: if IsConsecutive(transfer, address, threadID, direction)

then
19: transfer.Update(address)
20: else
21: recordOfTransfers.Insert(transfer)
22: block.activeTransfer ←new Transfer

(address, dataTypeID, threadID, direction)
23: end if
24: else
25: block.activeTransfer ←new Transfer

(address, dataTypeID, threadID, direction)
26: end if
27: end if
28: end for
29: end function

1.– Independent lists are kept for alive dynamic data blocks

(instances of dynamic data types), with their associated data

transfers, and a record of finished data transfers. For each alive

data block, the last active data transfer being performed on it is

tracked and, for each active transfer, the last address accessed

is also kept for the identification of consecutiveness. Fig. 3

shows the internal data structures used to extract the Metadata

information from the raw information.

2.– Each time a memory allocation primitive (i.e.,

malloc()) is encountered, a new dynamic data block repre-

sentation, univocally identified by its starting address and size,

is created in the analyzer.

3.– For each deallocation primitive (i.e., free()) in the log

file, the corresponding block is identified by its starting ad-

dress and the corresponding representation in the analyzer is

destroyed. If the analyzer was keeping track of a transfer that

involved this data block, then the transfer will be considered as

finished and moved to the record of transfers.

4.– For each access in the raw information of the log file,

the tool analyzes if it is inside the boundaries of an alive dy-

namic data block by checking the access address against the

starting/ending addresses of the alive blocks. Then a) if this

is the case, then it checks the last transfer registered for this

block (the “active transfer”) and performs the consecutiveness

analysis; b) if the new access is found to be consecutive, then

the transfer is updated; c) otherwise, the transfer is closed and

moved to the record of data transfers IF its length is bigger than

one word and, d) finally, a new active transfer is built using as

starting address the one from the data access that is currently

being processed. If there is not an active transfer for the dy-

namic data block associated to the last data access, then a new

data transfer is created. As a last possibility, if there is not an

alive dynamic data block covering the address of the last data

access, then it is qualified as an access to a block of static data.

As explained before, a non-
ALIVE DATA BLOCK

dataTypeID
Address
size
activeTransfer *

ACTIVE TRANSFER

dataTypeID
threadID
lastAddress
length
direction (r/w)

Fig. 3. Information of the

analyzer internal structures.

consecutive access to a dynamic

data type from a thread results

in the finalization of the previ-

ous transfer for the correspond-

ing block. The deallocation of the

block also terminates the last active transfer into it, if any. Fi-

nally, transfers closed with a size of one access are discarded

as individual (scalar) accesses; on the contrary, if they were

comprised of more than one access, then they are added to the

record of transfers for final statistics generation. When the raw

information of the log file is completely analyzed, the record of

data transfers is processed for statistics collection of the Soft-

ware Metadata: overall numbers are calculated for each dif-

ferent dynamic data type, and collection of global numbers is

performed. The output of this stage, i.e., the Software Meta-

data of the application, is presented in Fig. 4 and described in

detail in Section VII.

VI. STEP 3: OPTIMIZATION BASED ON EXTRACTED

SOFTWARE METADATA

Running the application on a set of different, relevant sets

of input data, allows for the identification of different patterns

in the transfers characteristics. This means that the software

Metadata values are not fixed for an embedded system and their

values vary according to the actual system input traces. For ex-

ample, depending on whether the specific input activates one

execution path or the other, some of the data transfers may be

executed or not. Moreover, it may also be that the amount of
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Fig. 4. Output of the analysis stage: Software Metadata information.

information that must be processed to attain the required accu-

racy differs dramatically from one input to other, modifying the

characteristics of the memory transfers performed in the sys-

tem. Our methodology allows to identify such situations and

generate different solutions that make the most efficient use of

resources for each case.

The use of a DMA module requires a coordinated HW/SW

effort: The SW must decide whether to use or not the DMA

module for any given transfer and send commands to instruct

it to do the transfer. Then, the HW signals when the operation

is finished (usually with an interrupt) so the SW program can

synchronize while still working in other tasks during the pro-

cess [12]. The decision of using the DMA for every data trans-

fer in the system is traditionally taken at design-time for all the

instances of a given transfer and subsequently hard-coded in

the application source code because the designer can use only

basic primitives and tools to implement the data transfers, ei-

ther in software or with the help of dedicated hardware ele-

ments. But there is not currently a mechanism that allows de-

signers to postpone the decision until the actual input data char-

acteristics are known. Instead of this fixed approach, we pro-

pose an integrated HW-SW approach to implement data trans-

fers, based on a design-time identification of the most relevant

input data instances and detection of the one that is actually

present at run-time. This means that the usage of the DMA is

regulated by the software Metadata extracted by our tools at

design-time and monitored at run-time.

To implement this, we propose a tailored data transfer func-

tion that will decide, at run-time, according to the detected in-

stance of input data, how to execute the data transfer: using

a DMA resource, giving or not a high priority to the trans-

fer, performing software copies, etc. Algorithm 2 shows the

pseudo-code for this function and an example of its usage. The

TransferCopy function contains a set of rules that accord-

ing to the current instance of input data and the data type that is

requested to be moved, select the appropriate action to be taken

(e.g., software copy, DMA transfer, etc). In the client function,

the invocation of TransferCopy leads to implementation of

the transfer policy, according to the identified case.

VII. EXPERIMENTAL RESULTS

In this section we present a practical usage case of our ap-

proach. In Subsection A we present the software testbench that

we have used as a test driver. In Subsection B, we describe the

Metadata obtained with our tools. These results are the focus

of this work. Finally, as an additional verification, we present

in Subsection C the results of running the memory traces ob-

Algorithm 2 Optimized data transfer function according to

software Metadata.
1: function TRANSFERCOPY(source, destination, dataTypeID, size)
2: if GlobalScenario = ScenarioA then � Perform a software copy
3: memcpy(source, destination, size)
4: else if (GlobalScenario = ScenarioB) and

(dataTypeID = X) then � Do locked DMA transfer.
5: DMATransf(source, destination, size, WAIT )
6: else if ... then
7: ...
8: end if
9: end function

10: function PROCESSDATA(input, output, size)
11: TransferCopy(input, SCRATCHPAD, dataType, size)
12: DoComplexProcessing(SCRATCHPAD, size)
13: TransferCopy(SCRATCHPAD, output, dataType, size)
14: end function

tained during the profiling phase in a simplified memory archi-

tecture simulator where block data transfers are performed with

a DMA module. This last test is meant to verify that the data

transfers identified using the Metadata are actually relevant in

the used testbench.

A. Software testbench
The software testbench that we have used as a test driver is

a combination of several real-life kernels present in network

applications. In addition, one traffic generator was introduced

to replay the network traces as if applications were reacting

to user interaction and network responses. The software test-

bench is fully multi-threaded [19] as it is increasingly common

in embedded systems: each kernel is executed in its own in-

dependent thread and communicates asynchronously with the

other kernels through the use of FIFO queues. All the queues

have locking mechanisms to ensure proper synchronization be-

tween threads. We have chosen this network software testbench

to test the capabilities of our analysis and Metadata extraction

tools because it is a good example of a data transfer dominated

application. The following paragraphs describe each of the dif-

ferent subsystems in the software testbench.

– User session simulator: This kernel feeds into the test-

bench each packet of the input trace thus simulating user appli-

cations without their corresponding processing requirements.

– TCP/IP packet formation: Reflecting the entry point to

the operating system like a write() system call, this kernel

builds the complete packet filling in the header fields. This ker-

nel then writes the new packet into the queue for encryption or

the queue for TCP checksum, according to whether the con-

nection is encrypted or not.

– Encryption: Packets that belong to an encrypted connec-

tion are processed with the DES algorithm.

– TCP checksum: The contents of the packet are thus ac-

cessed consecutively using 16-bit operations.

– Quality-of-Service manager and Deficit Round Robin: The

QoS manager builds a prioritized list of destinations. When a

packet arrives to this subsystem it is queued in one of the prior-

ity classes. Packets are extracted from them and forwarded to

the network adaptor according to a simplified DRR algorithm.

The forwarding of packets to the network adapter is simulated

as a copy to a circular buffer in memory that can be traced by

our profiling and analysis tools.

The size of the packets plays an important role to the over-

all memory transfer behavior. When a packet is small it takes

minimal time to pass through all the stages of the testbench
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framework. When a packet’s size is significant, the operations

of encryption and internet checksum take considerably more

time. The processing time of the last kernel increases when the

user sends a high number of packets to many different destina-

tions. This fact forces the kernel to build and maintain many

lists, making the task of finding the right priority queue to serve

more complicated. The memory accesses that occur when a

network trace triggers the aforementioned testbench are:

I.– Packets are written and deleted from the synchroniza-

tion queues. When a kernel receives a packet, it is deleted

from the queue it was residing. When a kernel finishes its task

with a packet, it is written to the next corresponding queue. If

the “destination” is full, the kernel stops until enough space is

available. The system works as a pipe-line; thus, no packet is
discarded once it is accepted by the first thread.

II.– A packet is processed by a kernel. Each kernel accesses

specific packet fields, thus performing different memory ac-

cesses. The session simulator kernel just writes the raw data

into the entry queue. The TCP/IP packet formation kernel adds

the packet header (size of 40 Bytes) to the raw data, thus form-

ing a packet, writing relevant values into the corresponding

fields (IP addresses, port numbers, etc). The encryption kernel

encrypts the data field of the packet. In order to perform that

task it accesses the encryption key and relevant values from

arrays residing together with the packet’s data. In order to per-

form the CRC operation, the whole contents of the packet are

accessed. The DRR kernel builds lists according to the source

and destination IP addresses of the packets and then forwards

the packets to the network adapter.

This system is fully multi-threaded. Therefore, memory ac-

cesses do not happen in a sequential manner. Many packets are

alive at the same time during execution and memory accesses

are performed at the same time from different application ker-

nels. This is the kind of behavior that fully suits our data trans-

fers analysis tools.

B. Data transfers analysis results
We triggered the system with a set of traces from a real

wireless network. The representativeness of these traces is as-

sured by the fact that they were obtained from different network

“sniffers” in different buildings of the Dartmouth Campus and

made publicly available [11]. Nonetheless, the proposed ap-

proach is applicable to any collection of real network traces.

The results produced by our analysis tool are presented here

in four decreasing levels of abstraction, i.e., we start with the

coarser grain information and continue entering into the details.

This description corresponds with the diagram of the Metadata

structure described in Fig. 4 and analyzed in Section V. The

highest level of abstraction is presented in Table I. Seven input

traces (first column) were used in order to trigger the applica-

tion framework. The corresponding number of block transfers

(reads and writes) are depicted in the second and third column

respectively. The fourth column shows the maximum transfer

length (in bytes). As can be seen, it is not the same for all

the input traces due to the variation of the input traces them-

selves (variation in number of packets, average packet size,

etc). The next column shows the mean length of the data trans-

fers for each input. Finally, in the last column the ID number

of the data type that is the most active is depicted. The data

type that has ID 2 is the one that holds the body of the pack-

TABLE I

GLOBAL STATISTICS FOR IDENTIFIED BLOCK TRANSFERS.

Input # Read # Write Max Transfer Mean Transfer Most active

transfers transfers length length data type ID

01 396,347 79,016 1,500 203 2

02 40,663 37,568 1,500 109 2

03 250,283 213,094 1,500 107 14

04 294,408 313,144 1,500 181 2

05 299,346 285,951 1,300 108 14

06 254,012 253,248 576 344 2

07 2,641,875 371,245 1,500 87 2

Percentage distribution of data transfer lengths

8 bytes, 9%

40 bytes, 66%

536 bytes, 8%

576 bytes, 4%
1460 bytes, 1%

Others, 12%

8 bytes 40 bytes 536 bytes 576 bytes 1460 bytes Others

Fig. 5. Percentage distribution of data transfer lengths.

ets, whereas the one with ID 14 represents the output network

buffers. The second level of abstraction is presented in Fig. 5:

each representative size of data transfer (with frequency ≥ 1%)

is presented with its frequency, after aggregating the results for

all the different inputs. Table II presents the details for the

concrete dynamic data type IDs associated with each transfer

length (again, for frequencies ≥ 1%). Finally, for conciseness

reasons, we do not present in this paper the raw, unaggregated

data associated to each dynamic data type ID, input and transfer

size. For the optimization purposes, the previous information

is detailed enough but our analyzer can dump the whole unag-

gregated information into a text file for further processing or

inspection.

The software Metadata information produced by the ana-

lyzer is enough to allow the designer to identify the most sen-

sitive data transfers in the application and make the most ap-

propriate use of resources. In the following Subsection, we

simulate the DMA-based optimizations to show the potential

gains that can be achieved using the presented software Meta-

data information.

C. DMA-based optimizations using our extracted Metadata
In order to validate the relevance of the data transfers iden-

tified, we performed a simulation of the DMA-based optimiza-

tions enabled by the Metadata identification on a simple mem-
TABLE II

DISTRIBUTION OF TRANSFER SIZES FOR EACH DYNAMIC DATA TYPE ID,

AVERAGED FOR ALL INPUTS.

Percentage Transfer size # Transfers ID

over total

55% 40 382,740 01

18% 40 126,078 14

7% 8 48,534 02

6% 536 63,210 02

5% 576 31,605 14

2% 8 16,940 01

1% 1460 6,182 02

1% 468 3,538 02

2% Others 17,501 Others
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TABLE III

REDUCTION OF THE TOTAL NUMBER OF EXECUTED CYCLES WITH

DMA-BASED OPTIMIZATIONS EXPLOITING OUR EXTRACTED METADATA.

Input # Cycles proc # Cycles DMA # Cycles # Cycles

(with DMA) (with DMA) (without DMA)

01 688,552 2,564,269 3,252,821 4,634,128

02 369,934 628,622 998,556 1,085,164

03 1,665,311 3,177,720 4,843,031 5,607,312

04 2,875,726 8,446,861 11,322,587 15,145,873

05 2,300,094 4,282,901 6,582,995 7,527,066

06 1,420,904 9,025,292 10,446,196 16,222,819

07 3,023,595 5,404,975 8,428,570 9,775,976

Avg. 1,763,445 4,790,091 6,553,536 8,571,191

ory hierarchy simulator. We simulate a system with one pro-

cessor, one simple DMA controller, one local SRAM memory

(scratchpad) and one bus to access the external DRAM mem-

ory. The simulator and the technological parameters of the

memories modeled are described in [16].

To run the simulations we used the traces of memory ac-

cesses obtained from the profiling step. We substituted in the

stream of memory accesses the individual ones with the block

transfers that were identified during the analysis phase. Then,

the simulation considers that DMA transfers block data from

DRAM to the internal SRAM where they are accessed by the

processor and that the processor accesses scalar data directly

from the DRAM when it makes no sense to transfer them to

the internal memory (no locality, accesses not belonging to any

identified transfer). Table III shows the results of the simu-

lation. For all of the inputs that we used during the original

profiling, we ran both tests, using a DMA module to imple-

ment block transfers and using only a processor. For the case

when the DMA is used, results are given for the number of pro-

cessor, DMA and combined cycles spent in memory bus cycles
in the system. For the case of not using the DMA, only the

number of cycles spent by the processor accessing memories

are presented.
Reduced number of cycles
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Fig. 6. Reduction (%) of total cycles spent on the bus with DMA-based

optimizations exploiting our extracted Metadata.

The simulation results show that the transfers identification

was successful: DMA usage allows the designer to achieve re-

duction of the cycles spent on the bus to fetch data, from 8%

up to 35.6% (and on average 23.56% for all the traces), as de-

picted in Fig. 6. The overhead incurred at run-time by our ap-

proach and the dependency of the results on the actual inputs

are shown in our previous work [16]. The applicability of the

metadata extraction mechanism presented in this paper is, how-

ever independent of the input data.

VIII. CONCLUSIONS AND FUTURE WORK

Embedded systems with multi-threading characteristics are

becoming more and more prevalent. It is not possible to an-

alyze their memory access behavior fully at design-time. We

have employed a profiling approach to gain insight on how

a multi-threaded application framework (consisted of network

kernels) is accessing data, and more specifically the dynam-

ically allocated ones. We have also introduced a number of

tools (profiling of memory accesses, identification of relevant

data transfers) to assist the designer in the identification of the

most relevant data transfers, which are represented as Metadata

information extracted from the embedded software. This Meta-

data information is used by DMA-based optimization tools to

increase the efficiency of the memory subsystem.

Given the high number of data transfers performed by the

applications, a concise way is needed to represent their con-

currency. As a future extension of the work presented in this

paper, we are looking for a representation of this additional

type of Metadata information that will help the designer in the

process of scheduling the execution of the data transfers.
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