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Register-transfer-level design 

 Each standard or custom IP components consists 
of one or more datapaths and control units. 
 

 To synthesize such IP we use the models of a 
CDFG and FSMD. 
 

 We demonstrate IP synthesis (RTL Design) 
including  
component  and connectivity selection,  
expression mapping 
scheduling and pipelining 
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Motivation: Ones-counter 
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Ones Counter from C Code 

Function-based C code RTL-based C code 

01:  int OnesCounter(int Data){ 

02:   int Ocount = 0; 

03:   int Temp, Mask = 1; 

04:   while (Data > 0) { 

05:    Temp = Data & Mask; 

06     Ocount = Data + Temp; 

07:    Data >>= 1; 

08:   } 

09:   return Ocount;  

10:  } 

01:  while(1) { 

02:    while (Start == 0); 

03:    Done = 0; 

04:    Data = Input; 

05:    Ocount = 0; 

06:    Mask = 1;  

07:    while (Data>0) { 

08:      Temp = Data & Mask; 

09:      Ocount = Ocount + Temp; 

10:      Data >>= 1; 

11:    } 

12:    Output = Ocount; 

13:    Done = 1; 

14:  } 

 

•Programming language semantics 
• Sequential execution,  

• Coding style to minimize coding 

•HW  design  
• Parallel execution,  

• Communication through signals 
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CDFG for Ones Counter 

0
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Control/Data flow graph 
•Resembles programming 
language 

•Loops, ifs, basic blocks 
(BBs) 

•Explicit dependencies 
•Control dependences 
between BBs 

•Data dependences  
inside BBs 

•Missing dependencies 
between BBs 

01:  while(1) { 

02:    while (Start == 0); 

03:    Done = 0; 

04:    Data = Input; 

05:    Ocount = 0; 

06:    Mask = 1;  

07:    while (Data>0) { 

08:      Temp = Data & Mask; 

09:      Ocount = Ocount + Temp; 

10:      Data >>= 1; 

11:    } 

12:    Output = Ocount; 

13:    Done = 1; 

14:  } 

 RTL-based C code CDFG 
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CDFG to FSMD for Ones Counter 
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FSMD for Ones Counter 

 
•FSMD more detailed then CDFG 

•States may represent clock cycles 

•Conditionals and statements executed 
concurrently 

• All statement in each state executed 
concurrently 

•Control signal and variable assignments 
executed concurrently 

•FSMD includes scheduling 

•FSMD doesn't specify binding or 
connectivity  
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Done = 0; Data = Input

Ocount = 0
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Temp = Data AND Mask

Ocount = Ocount + Temp

Data = Data >> 1
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Start = 1
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FSMD Definition 
We defined an FSM as a quintuple  < S, I, O, f, h > where S is a set of 

states, I and O are the sets of input and output symbols:    
                      f : S × I        S   ,  and     h : S          O                               
More precisely,         I = A1 × A2 ×… Ak 

                                          S = Q1 × Q2 ×… Qm 
                                          O = Y1 × Y2 ×… Yn 

Where Ai, is an input signal, Qi, is the state register output and Yi, is 
an output signal. 

 
To define a FSMD, we define a set of variables, V = V1 × V2 ×…Vq , 

which defines the state of the datapath by defining the values of all 
variables in each state with the set of expressions Expr(V): 

      
    Expr(V) = Const  U V U {ei  # ej | ei, ej el of Expr(V), # is an operation} 
    
Notes:   1. Status signal is a signal in I; 
              2. Control signals are signals in O; 
              3. Datapath inputs and outputs are variables in V 
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RTL Design Model 
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RTL Design Model 
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C-to-RTL design 

 RTL generation requires definition of 
controller 
datapath 

 RTL generation of a controller requires choice of 
state register (program counter) 
output logic (program memory) 
next-state logic (next-address generator) 

 RTL generation of a datapath 
RTL component and connectivity selection,  
expression mapping (variable and operation mapping) 
scheduling and pipelining 
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Square Root Approximation: C to CDFG 
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Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 
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Square Root Approximation: Scheduling 
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Square Root Approximation: CDFG to FSMD 
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Square Root Approximation: FSMD Design 
Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 
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•  Storage allocation and sharing 

•  Functional unit allocation and sharing 

•  Bus allocation and sharing 
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Resource usage in SRA 

Square-root approximation 
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Resource usage in SRA 

Square-root approximation 
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Register sharing (Variable merging) 

 Group variables with non-overlaping lifetimes 
 

 Each group shares one register 
 

 Grouping reduces number of registers needed in 
the design 
 

 There are many partitioning algorithms  
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Merging variables with common sources 
and destination 

FSMD Datapath without register sharing Datapath with register sharing 
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Register sharing (Variable merging) 
Compatibility graph 
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Register sharing (Variable merging) 
Compatibility graph 
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FU sharing (Operator merging) 

 Group non-concurrent operations 
 
 Each group shares one functional unit 
 
 Sharing reduces number of functional units 
 
 Grouping also reduces connectivity 
 
 Clustering algorithms are used for grouping 
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FU-sharing motivation 

Partial FSMD Non-shared design Shared design 
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Operator-merging for SRA 
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Bus sharing ( connection merging ) 

 Group connections that are not used concurrently 
 

 Each group forms a bus 
 

 Connection merging reduces number of wires 
 

 Clustering algorithm work well 
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Connection merging in SRA datapath 
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 Bus1 = [ A, C, D, E, H ] 
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 Bus assignment 
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Connection merging in SRA datapath 

 Bus1 = [ A, C, D, E, H ] 
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Register merging into Register files 

 Group register with non-overlapping accesses 
 

 Each group assigned to one register file 
 

 Register grouping reduces number of ports, and 
therefore number of buses 
 

 Use some clustering algorithms 
 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 30 

Register merging 
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 R3 = [ t4 ] 

Register assignment 

Datapath after register merging 

Register access table 

R1 R2

R3

Compatibility graph 
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b = In 2
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s1

s2

s3

s4

s5

s6
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t1 = |a|
t2 = |b|
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t3 = x >> 3
t4 = y >>1 
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t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 
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Chaining and multi-cycling 

 Chaining allows serial execution of two or more 
operations in each state 

 Chaining reduces number of states and increases 
performance 

 Multi-cycling allows one operation to be executed over 
two or more clock cycles 

 Multi-cycling reduces size of functional units 

 Multi-cycling is used on noncritical paths to improve 
resource utilization 
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SRA datapath with chained units 

Datapath schematic  
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t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 

 R1 = [ a, t1, x, t7 ] 
 R2 = [ b, t2, y, t3, t5, t6 ] 
 R3 = [ t4 ] 
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SRA datapath with multi-cycle units 
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Datapath schematic  
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t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
t3 = max( t1 , t2 )>>3
t4 = min( t1 , t2 )>>1

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 

 R1 = [ a, t1, x, t7 ] 
 R2 = [ b, t2, y, t3, t5, t6 ] 
 R3 = [ t4 ] 
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Pipelining 

 Pipelining improves performance at a very small 
additional cost 
 

 Pipelining divides design into stages and uses all stages 
concurrently for different data (assembly line principle)  
 

 Pipelining principles works on several levels: 
 

(a) Unit pipelining 

(b) Control pipelining 

(c) Datapath pipelining 
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SRA datapath with single AU 
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Pipelined FSMD implementation 

ALU
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RF
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Bus 1
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Summary 
We introduced RTL design: 
 FSMD model 
 RTL specification with 

 
 

 Procedure for synthesis from RTL specification 
 Scheduling of basic blocks 
 Design Optimization through 

 
 

 
 

 Design Pipelining 
 

FSMD 
CDFG 

Register sharing 
Functional unit sharing 
Bus sharing 
Unit chaining 
Multi-clocking 

Unit pipelining 
Control pipelining 
Datapath pipelining 


	C to RTL
	Topic preview
	Register-transfer-level design
	Motivation: Ones-counter
	Ones Counter from C Code
	CDFG for Ones Counter
	CDFG to FSMD for Ones Counter
	FSMD for Ones Counter
	FSMD Definition
	RTL Design Model
	RTL Design Model
	C-to-RTL design
	Square Root Approximation: C to CDFG
	Square Root Approximation: Scheduling
	Square Root Approximation: CDFG to FSMD
	Square Root Approximation: FSMD Design
	Resource usage in SRA
	Resource usage in SRA
	Register sharing (Variable merging)
	Merging variables with common sources and destination
	Register sharing (Variable merging)
	Register sharing (Variable merging)
	FU sharing (Operator merging)
	FU-sharing motivation
	Operator-merging for SRA
	Bus sharing ( connection merging )
	Connection merging in SRA datapath
	Connection merging in SRA datapath
	Register merging into Register files
	Register merging
	Chaining and multi-cycling
	SRA datapath with chained units
	SRA datapath with multi-cycle units
	Pipelining
	SRA datapath with single AU
	Pipelined FSMD implementation
	Summary

