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Register-transfer-level design 

 Each standard or custom IP components consists 
of one or more datapaths and control units. 
 

 To synthesize such IP we use the models of a 
CDFG and FSMD. 
 

 We demonstrate IP synthesis (RTL Design) 
including  
component  and connectivity selection,  
expression mapping 
scheduling and pipelining 
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Motivation: Ones-counter 
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Ones Counter from C Code 

Function-based C code RTL-based C code 

01:  int OnesCounter(int Data){ 

02:   int Ocount = 0; 

03:   int Temp, Mask = 1; 

04:   while (Data > 0) { 

05:    Temp = Data & Mask; 

06     Ocount = Data + Temp; 

07:    Data >>= 1; 

08:   } 

09:   return Ocount;  

10:  } 

01:  while(1) { 

02:    while (Start == 0); 

03:    Done = 0; 

04:    Data = Input; 

05:    Ocount = 0; 

06:    Mask = 1;  

07:    while (Data>0) { 

08:      Temp = Data & Mask; 

09:      Ocount = Ocount + Temp; 

10:      Data >>= 1; 

11:    } 

12:    Output = Ocount; 

13:    Done = 1; 

14:  } 

 

•Programming language semantics 
• Sequential execution,  

• Coding style to minimize coding 

•HW  design  
• Parallel execution,  

• Communication through signals 
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CDFG for Ones Counter 

0
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Control/Data flow graph 
•Resembles programming 
language 

•Loops, ifs, basic blocks 
(BBs) 

•Explicit dependencies 
•Control dependences 
between BBs 

•Data dependences  
inside BBs 

•Missing dependencies 
between BBs 

01:  while(1) { 

02:    while (Start == 0); 

03:    Done = 0; 

04:    Data = Input; 

05:    Ocount = 0; 

06:    Mask = 1;  

07:    while (Data>0) { 

08:      Temp = Data & Mask; 

09:      Ocount = Ocount + Temp; 

10:      Data >>= 1; 

11:    } 

12:    Output = Ocount; 

13:    Done = 1; 

14:  } 

 RTL-based C code CDFG 
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CDFG to FSMD for Ones Counter 
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FSMD for Ones Counter 

 
•FSMD more detailed then CDFG 

•States may represent clock cycles 

•Conditionals and statements executed 
concurrently 

• All statement in each state executed 
concurrently 

•Control signal and variable assignments 
executed concurrently 

•FSMD includes scheduling 

•FSMD doesn't specify binding or 
connectivity  
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Start = 0

Done = 0; Data = Input

Ocount = 0

Mask = 1

Temp = Data AND Mask

Ocount = Ocount + Temp

Data = Data >> 1

Done = 1; Output = Ocount
Data = 0

Start = 1

Data = 0/
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FSMD Definition 
We defined an FSM as a quintuple  < S, I, O, f, h > where S is a set of 

states, I and O are the sets of input and output symbols:    
                      f : S × I        S   ,  and     h : S          O                               
More precisely,         I = A1 × A2 ×… Ak 

                                          S = Q1 × Q2 ×… Qm 
                                          O = Y1 × Y2 ×… Yn 

Where Ai, is an input signal, Qi, is the state register output and Yi, is 
an output signal. 

 
To define a FSMD, we define a set of variables, V = V1 × V2 ×…Vq , 

which defines the state of the datapath by defining the values of all 
variables in each state with the set of expressions Expr(V): 

      
    Expr(V) = Const  U V U {ei  # ej | ei, ej el of Expr(V), # is an operation} 
    
Notes:   1. Status signal is a signal in I; 
              2. Control signals are signals in O; 
              3. Datapath inputs and outputs are variables in V 
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RTL Design Model 
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RTL Design Model 
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C-to-RTL design 

 RTL generation requires definition of 
controller 
datapath 

 RTL generation of a controller requires choice of 
state register (program counter) 
output logic (program memory) 
next-state logic (next-address generator) 

 RTL generation of a datapath 
RTL component and connectivity selection,  
expression mapping (variable and operation mapping) 
scheduling and pipelining 
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Square Root Approximation: C to CDFG 
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Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 
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Square Root Approximation: Scheduling 
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Square Root Approximation: CDFG to FSMD 
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Square Root Approximation: FSMD Design 
Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Control Start

Done

In 1

Out

In 2

•  Storage allocation and sharing 

•  Functional unit allocation and sharing 

•  Bus allocation and sharing 
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Resource usage in SRA 

Square-root approximation 
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Resource usage in SRA 

Square-root approximation 
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Register sharing (Variable merging) 

 Group variables with non-overlaping lifetimes 
 

 Each group shares one register 
 

 Grouping reduces number of registers needed in 
the design 
 

 There are many partitioning algorithms  
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Merging variables with common sources 
and destination 

FSMD Datapath without register sharing Datapath with register sharing 
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Register sharing (Variable merging) 
Compatibility graph 

t1

t2

t3

t4

t5 t6

t7x

a y

b

1/0 0/1

1/0

1/0

1/0

1/0 0/1

0/1

No. of live 
variables

1233222
Xt7

Xt6

Xt5

XXt4

Xt3

Xy
XXXXx

Xt2

Xt1

Xb
Xa

s7s6s5s4s3s2s1

No. of live 
variables

1233222
Xt7

Xt6

Xt5

XXt4

Xt3

Xy
XXXXx

Xt2

Xt1

Xb
Xa

s7s6s5s4s3s2s1

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation Variable usage 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 22 

Register sharing (Variable merging) 
Compatibility graph 
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FU sharing (Operator merging) 

 Group non-concurrent operations 
 
 Each group shares one functional unit 
 
 Sharing reduces number of functional units 
 
 Grouping also reduces connectivity 
 
 Clustering algorithms are used for grouping 
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FU-sharing motivation 
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Operator-merging for SRA 
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Bus sharing ( connection merging ) 

 Group connections that are not used concurrently 
 

 Each group forms a bus 
 

 Connection merging reduces number of wires 
 

 Clustering algorithm work well 
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Connection merging in SRA datapath 
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 Bus1 = [ A, C, D, E, H ] 

 Bus2 = [ B, F, G ]  

 Bus3 = [ I, K, M ] 

 Bus4 = [ J, L, N ] 

 Bus assignment 

Connectivity usage table Compatibility graph for input buses Compatibility graph for output buses 
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Connection merging in SRA datapath 

 Bus1 = [ A, C, D, E, H ] 

 Bus2 = [ B, F, G ]  

 Bus3 = [ I, K, M ] 

 Bus4 = [ J, L, N ] 
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Register merging into Register files 

 Group register with non-overlapping accesses 
 

 Each group assigned to one register file 
 

 Register grouping reduces number of ports, and 
therefore number of buses 
 

 Use some clustering algorithms 
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Register merging 
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Chaining and multi-cycling 

 Chaining allows serial execution of two or more 
operations in each state 

 Chaining reduces number of states and increases 
performance 

 Multi-cycling allows one operation to be executed over 
two or more clock cycles 

 Multi-cycling reduces size of functional units 

 Multi-cycling is used on noncritical paths to improve 
resource utilization 
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SRA datapath with chained units 

Datapath schematic  

In 1

R1 R2 R3

>>1

Bus 1

[ abs/max] [ abs/min/+/- ]

Bus 2

Bus 3

Bus 4

>>3

In 2

Out 

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
t3 = max( t1 , t2 )>>3
t4 = min( t1 , t2 )>>1

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 

 R1 = [ a, t1, x, t7 ] 
 R2 = [ b, t2, y, t3, t5, t6 ] 
 R3 = [ t4 ] 
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SRA datapath with multi-cycle units 

In 1

R1 R2 R3

>>1

Bus 1

[ abs/max] [ abs/+/- ]

Bus 2

Bus 3

Bus 4

>>3

In 2

Out 

min

Datapath schematic  

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
t3 = max( t1 , t2 )>>3
t4 = min( t1 , t2 )>>1

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 

 R1 = [ a, t1, x, t7 ] 
 R2 = [ b, t2, y, t3, t5, t6 ] 
 R3 = [ t4 ] 
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Pipelining 

 Pipelining improves performance at a very small 
additional cost 
 

 Pipelining divides design into stages and uses all stages 
concurrently for different data (assembly line principle)  
 

 Pipelining principles works on several levels: 
 

(a) Unit pipelining 

(b) Control pipelining 

(c) Datapath pipelining 
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SRA datapath with single AU 
In 1

R1 R2 R3

>>1

Bus 1

Bus 3
Bus 4

>>3

In 2

Out 

AU

Bus 2

Datapath 
schematic  

s0
a = In 1
b = In 2

Start = 0Start = 1

s2

s3

s4

s5

s6

s7

s8

t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
t3 = max ( t1 , t2 )>>3

t4 = min ( t1 , t2 )>>1

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

t1 = |a|
s1

Square-root approximation 

for single AU 
t7Outport

t4rite R3

t6t5t3t2bWrite R2

t7xt1aWrite R1

>>1>>3shifters
max+-minmax|b||a|AU stage 2

max+-minmax|b||a|AU stage 1
t4Read R3

t6t5t3t2t 2bRead R2

t7xxt1t1aRead R1

s12s11s10s9s8s7s6s5s4s3s2s1s0

t7Outport
t43

t6t5t3t2bWrite R 2

t7xt1aWrite R 1

>>1>>3shifters
max+-minmax|b||a|AU stage 2

max+-minmax|b||a|AU stage 1
t4Read R 3

t6t5t3t2t2bRead R 2

t7xxt1t1aRead R 1

s 8s 7s6s5s4s3s2s1s0

Write R

Timing 
diagram 
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Pipelined FSMD implementation 

ALU

Selector

RF

Bus 2
Bus 1

Status
signals

Control
signals

Control inputs Datapath inputs

Datapath

Output
Logic

State
register

Next-
State
logic

Control unit
Control outputs Datapath outputs

Standard FSMD 
implementation 

Out Reg

s0

a =< ba > b

s2

y = x - 1

x = c + d
s1

Outport
t4rite R3

t6t5t3t2bWrite R2

xt1a
>>1>>3shifters

+-minmax|b||a|AU stage 2
+-minmax|b||a|AU stage 1
t4Read R3

t6t5t3t2t 2bRead R
xxt1t1aRead R1

s10s9s8s7s6s5s4s3s2s1
s

0

Write RF

Write SR

Write Status

ALU

Read Status

Write ALUIn
Read RF

Read CReg

s

2s

2s /s1

s0

Write CReg
Read SReg

Read ALUIn

s0

s 0

a,b

a>b

a,b
a,b

a>b
a>b

1

s1

1s
c,d

c,d
c,d

c+d

x

  x

x
x

x-1

y

s

s2

2

s2Example 
Timing 
diagram 
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Summary 
We introduced RTL design: 
 FSMD model 
 RTL specification with 

 
 

 Procedure for synthesis from RTL specification 
 Scheduling of basic blocks 
 Design Optimization through 

 
 

 
 

 Design Pipelining 
 

FSMD 
CDFG 

Register sharing 
Functional unit sharing 
Bus sharing 
Unit chaining 
Multi-clocking 

Unit pipelining 
Control pipelining 
Datapath pipelining 
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