
Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 

Principles Of 
Digital Design 

C to RTL 

Control/Data flow graphs  
Finite-state-machine with data 
IP design 
Component selection 
Connection selection 
Operator and variable mapping 
Scheduling and pipelining 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 2 

Topic preview 

Logic gates and  
flip-flops 

3 Boolean 
algebra 

3 

Finite-state 
machine 

6 

2 

8 

4 

5 

6 

7 

8 

9 

Logic design 
techniques 

Binary system                                                                              
and data   

representation 

Generalized 
finite-state 
machines 

Combinational  
components 

Sequential design 
techniques 

Storage 
components 

Register-transfer 
design 

Processor 
components 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 3 

Register-transfer-level design 

 Each standard or custom IP components consists 
of one or more datapaths and control units. 
 

 To synthesize such IP we use the models of a 
CDFG and FSMD. 
 

 We demonstrate IP synthesis (RTL Design) 
including  
component  and connectivity selection,  
expression mapping 
scheduling and pipelining 
 

 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 4 

Motivation: Ones-counter 
Control 

unit

Control 
signals

Start

Done

Data=0

Input

Output

Ocount
Temp
Mask
Data

s5

s4

s3

s0

s1

s2

s6

s7

Data = Input 

Data = Data >> 1  

Mask = 1 

Temp = Data AND Mask 

Ocount = Ocount + Temp 

Ocount = 0 

Done=1; Output =Ocount 

Start = 1 

Data = 0 

Data = 0 

Start = 0 

/ 

Done=1;  

ALU
M

Selector 
01

Shifter 
S0

S1

S0

S1

IRIL

BA

S

S2

WA
WE

RAA
REA

RAB
REB

8 X m 
register 

file

“0” “0”

3

3

3

20-bit control words 

Problem: 

Generate controller & control words for given FSMD & Datapath 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 5 

Ones Counter from C Code 

Function-based C code RTL-based C code 

01:  int OnesCounter(int Data){ 

02:   int Ocount = 0; 

03:   int Temp, Mask = 1; 

04:   while (Data > 0) { 

05:    Temp = Data & Mask; 

06     Ocount = Data + Temp; 

07:    Data >>= 1; 

08:   } 

09:   return Ocount;  

10:  } 

01:  while(1) { 

02:    while (Start == 0); 

03:    Done = 0; 

04:    Data = Input; 

05:    Ocount = 0; 

06:    Mask = 1;  

07:    while (Data>0) { 

08:      Temp = Data & Mask; 

09:      Ocount = Ocount + Temp; 

10:      Data >>= 1; 

11:    } 

12:    Output = Ocount; 

13:    Done = 1; 

14:  } 

 

•Programming language semantics 
• Sequential execution,  

• Coding style to minimize coding 

•HW  design  
• Parallel execution,  

• Communication through signals 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 6 

CDFG for Ones Counter 

0

1

>0

0

DoneOutput

Input

0

Done

0

Ocount

1

MaskData

&

>>1 +

DoneData

DoneOcountData

Start

Data

1

Mask Ocount

Control/Data flow graph 
•Resembles programming 
language 

•Loops, ifs, basic blocks 
(BBs) 

•Explicit dependencies 
•Control dependences 
between BBs 

•Data dependences  
inside BBs 

•Missing dependencies 
between BBs 

01:  while(1) { 

02:    while (Start == 0); 

03:    Done = 0; 

04:    Data = Input; 

05:    Ocount = 0; 

06:    Mask = 1;  

07:    while (Data>0) { 

08:      Temp = Data & Mask; 

09:      Ocount = Ocount + Temp; 

10:      Data >>= 1; 

11:    } 

12:    Output = Ocount; 

13:    Done = 1; 

14:  } 

 RTL-based C code CDFG 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 7 

CDFG to FSMD for Ones Counter 

S5

S0

S2

S7

Start = 0

Data = Input
Ocount = 0;

Temp = Data AND Mask;
Ocount = Ocount + Temp;
Data = Data >> 1

Done = 1;

Data = 0

Start = 1

Data = 0/

Done = 0; 
Mask = 1;

Output = Ocount;

0

1

>0

0

DoneOutput

Input

0

Done

0

Ocount

1

MaskData

&

>>1 +

DoneData

DoneOcountData

Start

Data

1

Mask Ocount

S5

S4

S3

S0

S1

S2

S6

S7

Start = 0

Done = 0; Data = Input

Ocount = 0

Mask = 1

Temp = Data AND Mask

Ocount = Ocount + Temp

Data = Data >> 1

Done = 1; Output = Ocount
Data = 0

Start = 1

Data = 0/

CDFG Super-state FSMD Cycle-accurate FSMD 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 8 

FSMD for Ones Counter 

 
•FSMD more detailed then CDFG 

•States may represent clock cycles 

•Conditionals and statements executed 
concurrently 

• All statement in each state executed 
concurrently 

•Control signal and variable assignments 
executed concurrently 

•FSMD includes scheduling 

•FSMD doesn't specify binding or 
connectivity  

S5

S4

S3

S0

S1

S2

S6

S7

Start = 0

Done = 0; Data = Input

Ocount = 0

Mask = 1

Temp = Data AND Mask

Ocount = Ocount + Temp

Data = Data >> 1

Done = 1; Output = Ocount
Data = 0

Start = 1

Data = 0/



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 9 

FSMD Definition 
We defined an FSM as a quintuple  < S, I, O, f, h > where S is a set of 

states, I and O are the sets of input and output symbols:    
                      f : S × I        S   ,  and     h : S          O                               
More precisely,         I = A1 × A2 ×… Ak 

                                          S = Q1 × Q2 ×… Qm 
                                          O = Y1 × Y2 ×… Yn 

Where Ai, is an input signal, Qi, is the state register output and Yi, is 
an output signal. 

 
To define a FSMD, we define a set of variables, V = V1 × V2 ×…Vq , 

which defines the state of the datapath by defining the values of all 
variables in each state with the set of expressions Expr(V): 

      
    Expr(V) = Const  U V U {ei  # ej | ei, ej el of Expr(V), # is an operation} 
    
Notes:   1. Status signal is a signal in I; 
              2. Control signals are signals in O; 
              3. Datapath inputs and outputs are variables in V 

                                        
 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 10 

RTL Design Model 

Control 
unit

Datapath

Control 
signals
Status  
signals

Control 
inputs

Datapath
inputs

Datapath
outputs

Control 
outputs

Control 
unit

Datapath

Control 
signals
Status  
signals

Control 
inputs

Datapath
inputs

Datapath
outputs

Control 
outputs

High-level block diagram 

Register-transfer-level block diagram 

Control unit Datapath

Bus 1
Bus 2

Bus 3
Status
signals 

Control 
signals

Control
outputs 

Datapath
outputs

Datapath
inputs

Control 
inputs

Out Reg 

Register 

ALU       */÷

RF Mem

Selector 

Output 
logic 

Next-
state 
logic

-

D     Q

D     Q

D     Q

.

.

.
.
.
.

.

.

.

State
register 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 11 

RTL Design Model 

Control 
unit

Datapath

Control 
signals
Status  
signals

Control 
inputs

Datapath
inputs

Datapath
outputs

Control 
outputs

Control 
unit

Datapath

Control 
signals
Status  
signals

Control 
inputs

Datapath
inputs

Datapath
outputs

Control 
outputs

High-level block diagram 

Register-transfer-level block diagram 

Control unit Datapath

Bus 1
Bus 2

Bus 3
Status
signals 

Control 
signals

Control
outputs 

Datapath
outputs

Datapath
inputs

Control 
inputs

Out Reg 

Register 

ALU       */÷

RF Mem

Selector 

Program
Memory

Next-
address 

logic

-

.

.

.
.
.
.

Program
Counter



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 12 

C-to-RTL design 

 RTL generation requires definition of 
controller 
datapath 

 RTL generation of a controller requires choice of 
state register (program counter) 
output logic (program memory) 
next-state logic (next-address generator) 

 RTL generation of a datapath 
RTL component and connectivity selection,  
expression mapping (variable and operation mapping) 
scheduling and pipelining 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 13 

Square Root Approximation: C to CDFG 

0Start

t1=|a|
t2=|b|

x=max (t1, t2)
y=min(t1, t2)

t3=x>>3
t4=y>>1
t5=x-t3
t6=t4+t5

t7= max(t6,x)
Done=1
Out=t7

a=In 1
b=In 2

1

0

1

Start

In1 In 2

a b

a b

min

|a| |b|

max

>>1 >>3

-
+

max

1

Out Done

Flowchart Control/Data flow graph 

Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 

s5

s6

s7

Out

a b

min

|a| |b|

max

>>1 >>3

-

+

max

t1 t2

y x

t4 t3

t5

t6

t7

s1

s2

s3

s4

s5

s6

s7

Out

a b

min

|a| |b|

max

>>1

>>3

-

+

max

t1 t2

y

x

t4

t3

t5

t6

t7

s1

s2

s3

s4

ASAP ALAP 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 14 

Square Root Approximation: Scheduling 

0Start

t1=|a|
t2=|b|

x=max (t1, t2)
y=min(t1, t2)

t3=x>>3
t4=y>>1
t5=x-t3
t6=t4+t5

t7= max(t6,x)
Done=1
Out=t7

a=In 1
b=In 2

1

0

1

Start

In1 In 2

a b

a b

min

|a| |b|

max

>>1 >>3

-
+

max

1

Out Done

Flowchart Control/Data flow graph 

Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 

s5

s6

s7

Out

a b

min

|a| |b|

max

>>1 >>3

-

+

max

t1 t2

y x

t4 t3

t5

t6

t7

s1

s2

s3

s4

s5

s6

s7

s1

s2

s3

s4

Out

min

|a|

|b|

max

>>1

>>3

-

+

max

s8

a b

t1

t2

x

y t3

t4

t7

t6

t5

Resource-
constrained 

ASAP 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 15 

Square Root Approximation: CDFG to FSMD 

0

1

Start

In1 In 2

a b

a b

min

|a| |b|

max

>>1 >>3

-
+

max

1

Out Done

Control/Data flow graph 

Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 

s5

s6

s7

Out

a b

min

|a| |b|

max

>>1 >>3

-

+

max

t1 t2

y x

t4 t3

t5

t6

t7

s1

s2

s3

s4

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

ASAP FSMD 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 16 

Square Root Approximation: FSMD Design 
Example: Sq root (a + b) = max(0.875 x + 0.5 y), where x = max(|a|, |b|), y = min (|a|, |b|) 

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Control Start

Done

In 1

Out

In 2

•  Storage allocation and sharing 

•  Functional unit allocation and sharing 

•  Bus allocation and sharing 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 17 

Resource usage in SRA 

Square-root approximation 

No. of live 
variables

1233222
Xt7

Xt6

Xt5

XXt4

Xt3

Xy
XXXXx

Xt2

Xt1

Xb
Xa

s7s6s5s4s3s2s1

No. of live 
variables

1233222
Xt7

Xt6

Xt5

XXt4

Xt3

Xy
XXXXx

Xt2

Xt1

Xb
Xa

s7s6s5s4s3s2s1

Max. no.
of units

No. of 
operations

111212

1+

1-

2>>

11max

1min

2
1
1
2
1
1

2abs

s7s6s5s4s3s2s1

Max. no.
of units

No. of 
operations

111222

1+

1-

2>>

11max

1min

2
1

1
2

1

1

2abs

s7s6s5s4s3s2s1

Variable usage 

Operation usage 

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 18 

Resource usage in SRA 

Square-root approximation 

Max. no.
of units

No. of 
operations

111212

1+

1-

2>>

11max

1min

2
1
1
2
1
1

2abs

s7s6s5s4s3s2s1

Max. no.
of units

No. of 
operations

111222

1+

1-

2>>

11max

1min

2
1

1
2

1

1

2abs

s7s6s5s4s3s2s1

Connectivity usage 

Operation usage 

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

a b t1 t2 x y t3 t4 t5 t6 t7 

abs1 i o 
abs2 i o 
min i i o 
max i i i o i o 
>>3 i o 
>>1 i o 

- i i o 
+ i i o 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 19 

Register sharing (Variable merging) 

 Group variables with non-overlaping lifetimes 
 

 Each group shares one register 
 

 Grouping reduces number of registers needed in 
the design 
 

 There are many partitioning algorithms  
                        



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 20 

Merging variables with common sources 
and destination 

FSMD Datapath without register sharing Datapath with register sharing 

x = a + b

y = c + d
sj

si
Selector Selector

Selector

a , c b , d

x , y

+

a

Selector Selector

Selector Selector

c b d

x y

+



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 21 

Register sharing (Variable merging) 
Compatibility graph 

t1

t2

t3

t4

t5 t6

t7x

a y

b

1/0 0/1

1/0

1/0

1/0

1/0 0/1

0/1

No. of live 
variables

1233222
Xt7

Xt6

Xt5

XXt4

Xt3

Xy
XXXXx

Xt2

Xt1

Xb
Xa

s7s6s5s4s3s2s1

No. of live 
variables

1233222
Xt7

Xt6

Xt5

XXt4

Xt3

Xy
XXXXx

Xt2

Xt1

Xb
Xa

s7s6s5s4s3s2s1

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation Variable usage 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 22 

Register sharing (Variable merging) 
Compatibility graph 

t1

t2

t3

t4

t5 t6

t7x

a y

b

1/0 0/1

1/0

1/0

1/0

1/0 0/1

0/1

Selector Selector

R1 R2 R3

| a | | b | min max + - >>1 >>3

R1 = [ a , t1 , x , t7 ]          R2 = [ b , t2 , y , t3 , t5 , t6 ]         R3 = [ t4 ] 

Partitioned compatibility graph 

t1

t2

t3

t4

t5 t6

t7x

a y

b

1/0 0/1

1/0

1/0

1/0

1/0 0/1

0/1



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 23 

FU sharing (Operator merging) 

 Group non-concurrent operations 
 
 Each group shares one functional unit 
 
 Sharing reduces number of functional units 
 
 Grouping also reduces connectivity 
 
 Clustering algorithms are used for grouping 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 24 

FU-sharing motivation 

Partial FSMD Non-shared design Shared design 

x = a + b

y = c - d
sj

si

a

Selector Selector

c b d

x y

+/-

a b 

x 

+

 c  d

 y

-



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 25 

Operator-merging for SRA 
|a| |b|

max min

+ -

Compatibility graph 

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 

|a| |b|

max min

+ -

Partitioned compatibility graph 

Selector Selector

R1 R2 R3

[ abs/max]
>>1 >>3Selector

[ abs/min/+/- ]

Datapath after variable and operator merging 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 26 

Bus sharing ( connection merging ) 

 Group connections that are not used concurrently 
 

 Each group forms a bus 
 

 Connection merging reduces number of wires 
 

 Clustering algorithm work well 
 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 27 

Connection merging in SRA datapath 

XL
XM

X
s7

XN

XK
XXXXJ

XXXI
XH
XG

XXXXF
XE

XXD
XXXC
XXB

A
s6s5s4s3s2s1s0

XL
XM

X
s7

XN

XK
XXXXJ

XXXI
XH
XG

XXXXF
XE

XXD
XXXC
XXB

A
s6s5s4s3s2s1s0

D

A

B

C

E

F

G

H I

J

K

L

M

N

 Bus1 = [ A, C, D, E, H ] 

 Bus2 = [ B, F, G ]  

 Bus3 = [ I, K, M ] 

 Bus4 = [ J, L, N ] 

 Bus assignment 

Connectivity usage table Compatibility graph for input buses Compatibility graph for output buses 

Selector Selector

R1 R2 R3

[ abs/max]
>>1 >>3Selector

[ abs/min/+/- ]

A B C D E F G H

I
J

K L

M N
In 1 In 2

Out

Datapath after variable and operator merging 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 28 

Connection merging in SRA datapath 

 Bus1 = [ A, C, D, E, H ] 

 Bus2 = [ B, F, G ]  

 Bus3 = [ I, K, M ] 

 Bus4 = [ J, L, N ] 

 
Bus assignment 

Connectivity usage table 

Selector Selector

R1 R2 R3

[ abs/max]
>>1 >>3Selector

[ abs/min/+/- ]

A B C D E F G H

I
J

K L

M N
In 1 In 2

Out

Datapath after variable and operator merging 

R1 R2 R3

>>1 >>3

Bus 1

[ abs/min] [ abs/max/+/- ]

Bus 2

Bus 3

Bus 4

Datapath after variable, operator and connectivity merging 

XL
XM

X
s7

XN

XK
XXXXJ

XXXI
XH
XG

XXXXF
XE

XXD
XXXC
XXB

A
s6s5s4s3s2s1s0

XL
XM

X
s7

XN

XK
XXXXJ

XXXI
XH
XG

XXXXF
XE

XXD
XXXC
XXB

A
s6s5s4s3s2s1s0



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 29 

Register merging into Register files 

 Group register with non-overlapping accesses 
 

 Each group assigned to one register file 
 

 Register grouping reduces number of ports, and 
therefore number of buses 
 

 Use some clustering algorithms 
 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 30 

Register merging 

s0

R2

R3

R1

s7s6s5s4s3s2s1s0

R2

R3

R1

s7s6s5s4s3s2s1

H

Out

In 1 In 2

R1

R2

>>3 >>1

Bus 1

[ abs/max] [ abs/min/+/- ]

Bus 2

Bus 3

Bus 4

R3

 R1 = [ a, t1, x, t7 ] 
 R2 = [ b, t2, y, t3, t5, t6 ] 
 R3 = [ t4 ] 

Register assignment 

Datapath after register merging 

Register access table 

R1 R2

R3

Compatibility graph 
s0

a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

s7

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
y = min ( t1 , t2 )

t3 = x >> 3
t4 = y >>1 

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 31 

Chaining and multi-cycling 

 Chaining allows serial execution of two or more 
operations in each state 

 Chaining reduces number of states and increases 
performance 

 Multi-cycling allows one operation to be executed over 
two or more clock cycles 

 Multi-cycling reduces size of functional units 

 Multi-cycling is used on noncritical paths to improve 
resource utilization 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 32 

SRA datapath with chained units 

Datapath schematic  

In 1

R1 R2 R3

>>1

Bus 1

[ abs/max] [ abs/min/+/- ]

Bus 2

Bus 3

Bus 4

>>3

In 2

Out 

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
t3 = max( t1 , t2 )>>3
t4 = min( t1 , t2 )>>1

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 

 R1 = [ a, t1, x, t7 ] 
 R2 = [ b, t2, y, t3, t5, t6 ] 
 R3 = [ t4 ] 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 33 

SRA datapath with multi-cycle units 

In 1

R1 R2 R3

>>1

Bus 1

[ abs/max] [ abs/+/- ]

Bus 2

Bus 3

Bus 4

>>3

In 2

Out 

min

Datapath schematic  

s0
a = In 1
b = In 2

Start = 0Start = 1

s1

s2

s3

s4

s5

s6

t1 = |a|
t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
t3 = max( t1 , t2 )>>3
t4 = min( t1 , t2 )>>1

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

Square-root approximation 

 R1 = [ a, t1, x, t7 ] 
 R2 = [ b, t2, y, t3, t5, t6 ] 
 R3 = [ t4 ] 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 34 

Pipelining 

 Pipelining improves performance at a very small 
additional cost 
 

 Pipelining divides design into stages and uses all stages 
concurrently for different data (assembly line principle)  
 

 Pipelining principles works on several levels: 
 

(a) Unit pipelining 

(b) Control pipelining 

(c) Datapath pipelining 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 35 

SRA datapath with single AU 
In 1

R1 R2 R3

>>1

Bus 1

Bus 3
Bus 4

>>3

In 2

Out 

AU

Bus 2

Datapath 
schematic  

s0
a = In 1
b = In 2

Start = 0Start = 1

s2

s3

s4

s5

s6

s7

s8

t2 = |b|

t5 = x – t3

x = max( t1 , t2 )
t3 = max ( t1 , t2 )>>3

t4 = min ( t1 , t2 )>>1

t6 = t4 + t5

t7 = max ( t6 , x ) 

Done = 1
Out = t7

t1 = |a|
s1

Square-root approximation 

for single AU 
t7Outport

t4rite R3

t6t5t3t2bWrite R2

t7xt1aWrite R1

>>1>>3shifters
max+-minmax|b||a|AU stage 2

max+-minmax|b||a|AU stage 1
t4Read R3

t6t5t3t2t 2bRead R2

t7xxt1t1aRead R1

s12s11s10s9s8s7s6s5s4s3s2s1s0

t7Outport
t43

t6t5t3t2bWrite R 2

t7xt1aWrite R 1

>>1>>3shifters
max+-minmax|b||a|AU stage 2

max+-minmax|b||a|AU stage 1
t4Read R 3

t6t5t3t2t2bRead R 2

t7xxt1t1aRead R 1

s 8s 7s6s5s4s3s2s1s0

Write R

Timing 
diagram 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 36 

Pipelined FSMD implementation 

ALU

Selector

RF

Bus 2
Bus 1

Status
signals

Control
signals

Control inputs Datapath inputs

Datapath

Output
Logic

State
register

Next-
State
logic

Control unit
Control outputs Datapath outputs

Standard FSMD 
implementation 

Out Reg

s0

a =< ba > b

s2

y = x - 1

x = c + d
s1

Outport
t4rite R3

t6t5t3t2bWrite R2

xt1a
>>1>>3shifters

+-minmax|b||a|AU stage 2
+-minmax|b||a|AU stage 1
t4Read R3

t6t5t3t2t 2bRead R
xxt1t1aRead R1

s10s9s8s7s6s5s4s3s2s1
s

0

Write RF

Write SR

Write Status

ALU

Read Status

Write ALUIn
Read RF

Read CReg

s

2s

2s /s1

s0

Write CReg
Read SReg

Read ALUIn

s0

s 0

a,b

a>b

a,b
a,b

a>b
a>b

1

s1

1s
c,d

c,d
c,d

c+d

x

  x

x
x

x-1

y

s

s2

2

s2Example 
Timing 
diagram 



Copyright © 2010-20011 by Daniel D. Gajski EECS31/CSE31/, University of California, Irvine 37 

Summary 
We introduced RTL design: 
 FSMD model 
 RTL specification with 

 
 

 Procedure for synthesis from RTL specification 
 Scheduling of basic blocks 
 Design Optimization through 

 
 

 
 

 Design Pipelining 
 

FSMD 
CDFG 

Register sharing 
Functional unit sharing 
Bus sharing 
Unit chaining 
Multi-clocking 

Unit pipelining 
Control pipelining 
Datapath pipelining 


	C to RTL
	Topic preview
	Register-transfer-level design
	Motivation: Ones-counter
	Ones Counter from C Code
	CDFG for Ones Counter
	CDFG to FSMD for Ones Counter
	FSMD for Ones Counter
	FSMD Definition
	RTL Design Model
	RTL Design Model
	C-to-RTL design
	Square Root Approximation: C to CDFG
	Square Root Approximation: Scheduling
	Square Root Approximation: CDFG to FSMD
	Square Root Approximation: FSMD Design
	Resource usage in SRA
	Resource usage in SRA
	Register sharing (Variable merging)
	Merging variables with common sources and destination
	Register sharing (Variable merging)
	Register sharing (Variable merging)
	FU sharing (Operator merging)
	FU-sharing motivation
	Operator-merging for SRA
	Bus sharing ( connection merging )
	Connection merging in SRA datapath
	Connection merging in SRA datapath
	Register merging into Register files
	Register merging
	Chaining and multi-cycling
	SRA datapath with chained units
	SRA datapath with multi-cycle units
	Pipelining
	SRA datapath with single AU
	Pipelined FSMD implementation
	Summary

