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Abstract

Communication design for SoCs poses the unique challenges in order to cover a wide range of architectures while offering
new opportunities for optimizations based on the application specific nature of system designs. In this report, we propose
automatic generation of communication architecture from communication link model where system components communicate
through logical links of network architecture. Automatic model refinement for communication architecture enables rapid
design space exploration in order to achieve the required productivity gains. The experimental results show the benefits of
our methodology and demonstrate the effectiveness of our automatic model generation for communication design.
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Communication Link Synthesis for SoC

Dongwan Shin, Andreas Gerstlauer and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

Communication design for SoCs poses the unique chal-
lenges in order to cover a wide range of architectures while
offering new opportunities for optimizations based on the
application specific nature of system designs. In this re-
port, we propose automatic generation of communication
architecture from communication link model where system
components communicate through logical links of network
architecture. Automatic model refinement for communica-
tion architecture enables rapid design space exploration in
order to achieve the required productivity gains. The exper-
imental results show the benefits of our methodology and
demonstrate the effectiveness of our automatic model gen-
eration for communication design.

1. Introduction

With the ever increasing complexity of system level de-
signs and the pressure of the time-to-market in the design
of System-on-Chip (SoC), communication between compo-
nents is becoming more and more important. Communica-
tion design for SoCs poses the unique challenges in order to
cover a wide range of architectures while offering new op-
portunities for optimizations based on the application spe-
cific nature of system designs.

We propose refinement-based communication design
methodology which is a set of models and transformations
between models that subdivide the design flow into smaller,
manageable steps as shown in Figure1. With each step, a
new model of the design is generated, where a model is a
description of design at certain level of abstraction, usually
captured in system level design languages. The abstraction
level of each model is defined by the amount of implemen-
tation detail in terms of structure or order.

In each of tasks, users can make design decisions manu-
ally by using an interactive graphical user interface (GUI),
for example, while transformations from one model into
another can be accomplished automatically by refinement
rules or model guidelines. After each refinement step in the
synthesis flow, a corresponding model of system is gener-

refinement

architecture model

modeln

modeln+1

bus functional model

GUI

analysis

decision-making

library
design decisions

Figure 1. Refinement-based communication design
methodology.

ated, which means that design decisions made in each de-
sign task are reflected in the generated models.

Finally, metrics estimation, designers have to simulate
generated model to verify the functionality and to estimate
design metrics. In general, the design metrics are not satis-
factory in the first trial. Therefore, many iterations of these
tasks may be needed for each design step.

Figure 2 shows the communication synthesis
flow [Ger03] which is divided into two tasks: net-
work synthesisandcommunication link synthesis. During
the network synthesis, the topology of communication
architecture is defined and abstract message passing
channels between system components are mapped into
communication between adjacent communication stations
(communicating system components, e.g. processing
elements, communication elements) of the system archi-
tecture. The network topology of communication stations
connected by logical link channels is defined, bridges and
other communication elements are allocated as necessary,
abstract message passing channels are routed over sets of
logical link channels. The result of the network synthesis
step is a refined communication link model of the system.
The communication link model represents the topology
of communication architecture where components and
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additional communication stations communicate with
logical link channels.
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Figure 2. Communication synthesis flow.

There have been some reasons that we have chosen com-
munication link model as an intermediate model in commu-
nication synthesis flow [Ger03]. First, designer would like
to see the topology of communication architecture and es-
timate the performance of a communication architecture at
early stage of communication synthesis. Secondly, the sim-
ulation speed of communication link model is almost same
as that of architecture model according to experimental re-
sult in [Ger03]. Finally, communication delay of communi-
cation link model is not as accurate as that of bus functional
model but the accuracy of communication delay in commu-
nication link model can be improved by efficient and accu-
rate estimation tools.

Communication link synthesisis followed by network
synthesis. Logical links channels between adjacent stations
are then grouped and implemented over an actual commu-
nication medium (e.g. system busses). During communica-
tion link synthesis, each group of logical link channels can
be grouped, and be implemented separately onto a commu-
nication medium with associated protocol. The parameters
such as addresses and interrupts for synchronization are as-
signed to each logical link channel.

As a result of the communication synthesis process, a
bus functional model of a system is generated. The bus
functional model is a fully structural model where compo-
nents are connected via pins and wires and communicate

in a cycle-accurate manner based on media protocol timing
specifications. In the backend process, behavioral descrip-
tions of computation and communication in each compo-
nent of the bus functional model are then synthesized into
targeted hardware or software implementations.

In this report, we look at how we speed up the communi-
cation link synthesis process by enabling automatic model
refinement. The rest of the report is organized as follows.
Section2 gives an overview of related works. Section3
shows our communication link synthesis flow and Section4
describes the media protocol library. Section5 looks at the
tasks of communication link refinement. Finally, we present
experimental results in Section6 and wind up with a sum-
mary and conclusion.

2. Related Works

Narayan and Gajski presented interface refinement step
integrated inSpecSyn[GVNG97]. Their interface refine-
ment step consists of two steps: bus generation and pro-
tocol generation. The bus generation algorithm [NG94a]
determines the bit width of a bus implementing a set of ab-
stract communication channels. Using the computed bus
width, the protocol generation step [NG94b] defines the ex-
act mechanism of transferring data over the bus. Different
low level protocols, such as full handshake, half handshake,
fixed delay and even hardwired ports are supported bySpec-
Syn.

Daveau et al. [DMBIJ97] proposed an algorithm which
handles bus protocol selection and interface generation
which is based on allocation of communication units. They
support low level protocols such as bidirectional handshake,
single and dual FIFO in a communication library.

Bolsen et al. [BML+97] developed system environment
called CoWare, which supports specification of heteroge-
neous communicating processes, which are specified in
DFL, VHDL, or C. Their main focus is system integra-
tion and handling of communication in embedded systems.
The heterogeneous specification is mapped onto different
processing elements. The inter-process communication is
abstracted with point-to-point communication channel with
rendez-vous semantics. It is implemented by remote proce-
dure call (RPC). Hardware/software communication chan-
nels are mapped onto a fixed communication architecture,
which is based on several library models implementing dif-
ferent I/O scenarios. For software, the communication pro-
cedures are captured as parameterized C functions that are
mapped onto a software model, i.e. they adapt to proces-
sor specific I/O handling, interrupt handling, etc. For hard-
ware, a hardware interface cell is generated to connect with
a handshake protocol to an I/O control unit.

Knudsen and Madsen [KM98] presented a communica-
tion estimation model and shows the importance of inte-
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grating communication protocol selection with hardware/-
software partitioning by the use of this model.

In [GABP98], Gogniat et al. proposed the communi-
cation interface generation method from partitioned and
scheduled system model for HW/SW interfaces for code-
sign of embedded systems.

Balarin et al. [BGJ+97] developedPOLISwhich focused
on control dominated applications with system architectures
composed of a single processor surrounded by custom or
library hardware.POLIS uses Codesign Finite State Ma-
chines (CFSM) as the internal representation for a system
description, separating communication, behavior and tim-
ing of the system. The communication model is globally
asynchronous, locally synchronous, with nonblocking finite
buffers between CFSMs. C code and HDL code are gener-
ated from the CFSMs mapped to software and hardware,
respectively. Except for the I/O drivers and code gener-
ated from the CFSMs, software code consists of a gener-
ated application specific operating system for the selected
processor. All communication within software or between
software and hardware occurs through shared memory, I/O
ports or memory mapped I/O. The synchronized hardware
includes address decoders, multiplexers, latches and glue
logic. Special purpose hardware must follow a simple,
data/strobe based protocol in order to be interfaceable with
other CFSMs.

Lyonnard et al. [LYBJ01] [CBG+02] presented interest-
ing schemes for putting together heterogeneous components
on a bus using wrappers for design of application specific
multi-processor SoCs. In their approach, architecture is
generated from an architecture template by setting the pa-
rameters for the four types of elements: processor local
architectures, communication coprocessors, IP components
and communication network.

However, most of research work has been on automatic
decision-making on communication topology of system ar-
chitecture. There has been little attention paid to automatic
generation of network topology of communication archi-
tecture from the partitioned, scheduled architecture model.
Samar et al. [ASG03] [SAG04] proposed automatic genera-
tion of communication model from the partitioned architec-
ture model. But they addressed synchronization by inter-
rupt handling and data formating issues but did not address
transducer synthesis and integration of IPs into a design.

3. Refinement-based Communication Link
Synthesis

Communication link synthesis is the process of moving
from one model to the next, gradually transforming models
and refining the logical link communication in the commu-
nication link model down to its bus functional implemen-
tation. Communication link synthesis groups logical links

between adjacent communication stations, which are imple-
mented over a system bus. As a result of the communication
link synthesis, a bus functional model of a system is gener-
ated. The bus functional model is a fully structural model
in which components are connected via pins and wires and
communicate in time accurate manner based on protocol
timing specifications of the system busses.

Communication link synthesis implements the function-
ality of link layer, media access layer and protocol layer
and inlines them into corresponding components. The link
layer defines the type of a communication station (e.g. mas-
ter/slave on a bus) for each of its incoming or outgoing
links. It is also responsible for implementing synchroniza-
tion between communication stations, e.g. by interrupts or
polling in case of interrupt sharing.

The media access layer is responsible for slicing blocks
of bytes into bus word Furthermore, the media access layer
resolves simultaneous bus accesses of components through
arbitration. Depending on the arbitration scheme chosen,
additional arbitration stations are introduced into the system
as part of the media access layer.

Finally, the protocol layer is responsible for driving and
sampling the external pins according to the protocol timing
diagrams and thereby matching the transmission timing on
the sender and receiver sides.

We begin with a communication link model, output
model of the network synthesis process, which represents
communication topology of the communication architec-
ture. The components on top level of the design communi-
cate with each other via logical link channels. Each channel
comprises of the data itself andsend/receivemethods that
enable the data transaction.

The user provides a set of design decisions such asmas-
ter/slave assignment for components, address assignment
and interrupt mapping for components or messages, andar-
bitration scheme and bus access priorities. System busses
may be inserted in the design by instantiations from a me-
dia protocol library. With these inputs, the communication
refinement tool produces an output model, bus functional
model that reflects the bus architecture of the system. In the
output model, the top level of the design consists of system
components and wires of the system busses. The compo-
nents themselves are refined to their bus functional models
that communicate using the system busses.

3.1. Design Decisions

The refinement engine works on directions given to it
by the communication link design decisions. The decision
making process can either be automated or interactive as per
the user’s methodology. However, the decisions must in-
put to the refinement engine using a specific format. Some
typical features of the communication architecture include

3



master/slave selection, address assignment, interrupt map-
ping andpriorities of components on a bus. Based on these
decisions, the refinement engine imports the required pro-
tocols from the media protocol library and generates inter-
faces and drivers for components so that they may talk over
the system busses. For the purpose of our implementation,
we annotated the input model with the set of design deci-
sions. The refinement tool then detects and parses these
annotations to perform the requisite model transformations.

3.1.1 Master/Slave Assignment

As a part of link layer implementation, system components
in communication link model should be either master or
slave on a bus. Then communication link refinement tool
will take protocols for master or slave out of a media proto-
col library and insert into the corresponding components.

3.1.2 Interrupt Mapping

To implement the blocking semantics of the message pass-
ing communication, system should perform the proper syn-
chronization of data transfers between components. De-
pending on the bus, synchronization can be inherent in the
protocol. The synchronization can be performed byinter-
rupting or polling. With polling, master have to poll all
slaves to see if they want to do anything and thus polling
might have serious effects on throughput of the system. But
with interrupting, master can run along nicely until such
time that a slave wants to signal an event, which means the
system does not waste time going to the slave, the system
lets slaves come to the master where they are ready. Gener-
ally, in bus based systems, programmable processors have
interrupt controller to handle multiple interrupts from slaves
which need to be arbitrated by interrupt controller.

The interrupt controller accepts requests from slaves, de-
termines which of the incoming request is of the highest im-
portance (priority), ascertains whether the incoming request
has a higher priority value than the level currently being ser-
viced, and issues an interrupt to the programmable proces-
sor. The interrupt controller places the service routine ad-
dress (vector address) on the data bus. The programmable
processor services the interrupting device from this address.

3.1.3 Address Assignment

As part of link layer implementation, addressing of chan-
nels need to be determined. In general, bus addresses are a
combination of source component, destination component,
and ID of the message to be transferred. The address of
a message passing channel on a system bus should be as-
signed. The address will be used to distinguish messages
polling as part of synchronization in case of interrupt shar-

ing. Figure3 show the screenshot of address assignment for
channels.

Figure 3. A screenshot for address assignment and
interrupt mapping for channels.

3.1.4 Arbitration

If the bus supports multiple masters connected to the bus, it
has to supply an arbitration scheme that is used to regulate
accesses to the shared bus wires. Arbitration can be dis-
tributed or centralized. In a centralized arbitration scheme,
the master side of the arbitration protocol instantiated in
each master communicates with the slave side of the arbi-
tration protocol instantiated in an additional arbiter compo-
nent attached to the bus. In a distributed arbitration scheme,
there is no slave side of the arbitration protocol and the mas-
ter sides of the protocol in each master regulate accesses
among themselves. For the arbitration, we have to select
arbitration scheme and priorities of masters on the system
bus, which are annotated into each component.

3.2. Transaction Level Modeling of Input Model

The input model of the communication link synthesis is
the communication link model which is generated from net-
work synthesis as shown in Figure4. The communication
link model reflects communication topology of the commu-
nication architecture where components communicating via
logical link channels which implement message passing se-
mantics.

For each data item (variable) communicated between
components, the upper layers of protocol stack such as pre-
sentation layer, session layer, transport layer and network
layer are inlined into the corresponding components. In
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Figure 4. Communication link model.

the communication link model, end-to-end channels have
been replaced with point-to-point logic link channels be-
tween components that will later be physically directly con-
nected through bus wires. In the communication link model,
communication elements are inserted from network proto-
col library and synthesized in order to connect two different
busses.

3.3. Bus Functional Model of Communication Ar-
chitecture

Bus functional model is the final result of the system syn-
thesis process and defines structure of the system architec-
ture in terms of components and connections. Computa-
tion in specification has been mapped onto components and
communication onto busses. At the top-level of behavior
hierarchy, a design consists of concurrent, non-terminating
system components that communicate through the busses.

Inside the component, behavior models of bus drivers
and bus interfaces (protocol stack) describe the communi-
cation functionality of the component, i.e. the implementa-
tions of all communication layers in protocol stack are in-
lined into the components in form of channel adapters and
implements the abstract transaction in architecture model
over busses. Those bus adapters (a stack of communication
layers) specify how the component implements the seman-
tics of the abstract transactions by driving and sampling the
wires of the system bus. Behavioral blocks inside the com-
ponent, in turn, connect to the equivalent message passing
channel interface provided by bus adapters.

Figure 5 shows an example of bus functional model
which is refined from the communication link model in
Figure 4. The logical link channels in the communica-
tion link model are inlined and connected to next higher
layer (presentation layer). MAC and protocol layer channel
adapters are taken out of media protocol library and inserted

into the bus functional model of the corresponding com-
ponents and connected to the corresponding inlined logical
link adapters.

Additional communication elements such as interrupt
controller (PIC) and arbiter (Arbiter) are inserted into the
bus functional models in order to resolve multiple accesses
of masters on a bus.

Inside a programmable component (DSP), interrupt ser-
vice routine (ISR) and interrupt handling methods are gen-
erated and inserted for synchronization between other com-
ponents (HW1andHW2).

4. Media Protocol Library

The media protocol library [GCS+03] is a set of channels
that model the protocols of system busses. These channels
provide the standard read/write methods for the bus proto-
col. Additional methods may be required for more complex
designs that support arbitration, multiple interrupt signals
etc. Each bus transaction also requires definition of a mas-
ter and slave. Therefore, the protocol library must provide
for unique channels for both master and slave sides. The
ports of the bus protocol channel represent the actual bus
wires which are later exposed in the bus functional model.

4.1. Bus Database

The bus database contains models of busses including
associated protocols where the term “bus” refers to commu-
nication structures in general, e.g. networks and their proto-
cols. Models taken out of the bus database are inserted by
communication link refinement to implement communica-
tion inside the components connected to the busses of the
system.

Bus models in the bus database consist of a stack of two
layers: physical layer and media access layer. At the bot-
tom of the stack, the physical layer is connected to the ac-
tual physical bus wires and it implements the bus primitives
defined by the bus protocol for data transfers, synchroniza-
tion and arbitration. On top of the physical layer, the media
access layer provides an abstraction of external communi-
cation into data links and memory accesses by using and
combining bus primitives to regulate media accesses and
slice abstract data into bus words.

Each physical layer can have two separate sides with dif-
ferent implementations for bus masters and bus slaves. The
different models of the two physical layers for bus mod-
els are stored as channels. Each channel provides a pro-
tocol implementation for one single component connected
to the bus, i.e. each connected component implements a
bus protocol by creating internal instances of the required
protocol models. Physical layer models connect to the bus
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wires through ports of the model and pins of the compo-
nent. Higher level models are stacked on top of each other
via interfaces implemented by each model where a model
calls the methods of the model beneath it via ports of cor-
responding interface type. These channels provide for the
standardread/write methods for the bus protocol. Addi-
tional methods may be required for more complex designs
that support arbitration, multiple interrupt signals etc.

At the top level of the bus database, all channels and be-
haviors that are part of the same bus model are then grouped
together under a single, top level bus channel that acts as a
container representing the overall bus protocol in the bus
database.

4.1.1 Physical Layer

Physical layer models provide primitives for atomic bus
transactions at their interfaces and they describe the basic
timing of events (value changes) on the wires of the bus
for each primitive. Timing diagrams of bus transactions
are represented through state machines and associated tim-
ing constraints defining the possible sequences of driving
and sampling bus wires. Physical layer protocol models are

used by communication link refinement to provide models
of the protocol behavior on the wires of the bus both for
system simulation and for synthesis of protocol implemen-
tations in actual hardware.

In general, a bus can have separate physical protocols
for basic data transfers, synchronization, and arbitration. A
protocol model provides a description for implementation
of the protocol in a component connected to the bus wires.
Each physical protocol can have two separate models with
different implementations for bus master and bus slave type
component.

Data Transfer Protocol The mandatory data transfer pro-
tocol is the core of the bus and it describes primitives
for transferring native bus words distinguished by bus ad-
dresses. It has to provides methods for all atomic bus cy-
cles available over the core bus, including special types like
burst mode, etc.

In case of a master/slave arrangement (separate models
for master and slave side), the master side is actively initiat-
ing bus cycles and the slave slide can only passively listen
on the bus for the start of a cycle to participate in. Conse-
quently, methods on the slave side are considered blocking
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and only return when the transfer has been completed suc-
cessfully with the corresponding master. In order to enable
polling, methods on the master side, on the other hand, must
not block even if no corresponding slave is available to suc-
cessfully complete the transfer (note that in order to satisfy
this requirement, active slaves might be necessary to answer
and decline a transfer if no data is available through higher
layers).

In case there is no distinction between masters and slaves
(master model and slave model are the same), the single
data transfer protocol model acts both as master and slave
where for each transfer the sending side is assumed to be
the master and the receiving side the slave. Apart from that,
the same restrictions for the sending (master) and receiving
(slave) methods apply.

Synchronization Protocol As explained in the previous
section, the data transfer protocol generally only supplies
inherent one way synchronization from master to slave.
However, in order to implement reliable communication
with guaranteed data delivery, two way synchronization be-
tween communication partners is required. Therefore, a
bus can supply an optional, distinct synchronization proto-
col to efficiently send events from slave to master. Usually,
this means an interrupt protocol and interrupt wires through
which a slave can send interrupts to a master. In the same
manner as data transfer protocols, interrupt protocols can
be arranged as separate models for master side and slave
side, or as one common model acting as both master (when
sending) and slave (when receiving).

If the synchronization protocol annotations in the bus
channel point to the data transfer protocol model(s), two
way synchronization with blocking transfers on both sides
has to be implemented as part of the data transfer proto-
col, and no separate synchronization protocol is available
or necessary. Similarly, if no synchronization protocol is
supplied, no event transfer mechanism is available as part
of the bus.

Arbitration Protocol If the bus supports multiple masters
connected to the bus, it has to supply an arbitration protocol
that is used to regulate accesses to the shared bus wires. In
a centralized arbitration scheme, the master side of the ar-
bitration protocol instantiated in each master communicates
with the slave side of the arbitration protocol instantiated in
an additional arbiter component attached to the bus. In a
distributed arbitration scheme, there is no slave side of the
arbitration protocol and the master sides of the protocol in
each master regulate accesses among themselves.

The master side of the arbitration protocol can either be
provided as a separate physical layer protocol model or it
can be a built-in part of the data transfer protocol in which
case the arbitration master annotation points back to the data

transfer protocol model. In case of a separate arbitration
protocol, the master side arbitration protocol model has to
implement a interface for acquiring and releasing access to
the bus. In either case, arbitration has to be made available
for each component that will act as a data transfer protocol
master if multiple masters sharing the bus are supported.

4.1.2 Media Access Layer

Media access layer models abstract accesses to the actual
physical medium through the protocol into canonical inter-
faces for regulated, non-conflicting exchange or communi-
cation of data of arbitrary size and type. Hence, the me-
dia access layer regulates conflicting bus accesses in case
the bus supports multiple masters through the bus arbitra-
tion protocol, and it slices data chunks into bus words or
frames that are transmitted using the primitives (and possi-
bly choosing among modes) of the bus data transfer proto-
col. Note that the media access layer does not implement
any additional synchronization (e.g. through the synchro-
nization protocol) but rather inherits the synchronization se-
mantics from the underlying data transfer protocol.

The media access layer consists of two parts, models for
implementation of bi-directional data links and models for
accesses to shared memories connected to the bus. Manda-
tory data link models provide primitives to create point-to-
point logical links for exchanging data between two com-
munication partners attached to the bus. Optional memory
access models are required if the bus supports shared mem-
ories and addressing of and access to storage of the compo-
nent. In both cases, media access layer models can consist
of separate implementations for use in bus master and bus
slave type components.

Since they will be accessed and used by automatically
generated code, media access layer interfaces have to ad-
here to a certain canonical format. A media access layer
interface defines a set of methods for transferring a block of
data over the bus using a bus address to distinguish between
different logical connections made over the same physical
bus. Consequently, a media access method has no return
value and takes three parameters: a bus address of integral
type corresponding to the range of addresses available on
the bus, a pointer to a data block, and the size of the data
block in bytes. A media access layer interface has to de-
fine exactly two methods for reading and writing a block of
data from/to the bus where the names of the methods have
to match the corresponding annotations at the bus channel.

Data Link Layer The data link part of the media access
layer is used to transfer streams of data packets between
logical endpoints inside components attached to the bus
where two logical endpoints define a bi-directional, point-
to-point logical link. Since streams only support sequential
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access (no random access), bus addresses are used to dis-
tinguish among different logical links on the bus only, i.e.
data link models use the same bus address supplied as pa-
rameter for all bytes in a packet. Addresses supplied to data
link model methods are used as addresses on the bus where
addresses can be assumed to be aligned on bus word bound-
aries as defined in the bus channel annotations.

The data link part of the media access layer can provide
different master and slave sides of the model if the underly-
ing data transfer protocol in the physical layer differentiates
between bus masters and slaves and if separate functional-
ity is needed. For example, acquiring and releasing access
to the bus through calls to the arbitration protocol is only
needed on the master side, if supported by the bus at all.

Memory Access The memory access part of the media
access layer provides methods for accessing bytes of data
stored in a shared memory component attached to the bus.
Since memories need to support random access, data bytes
in all memories attached to the bus have to be individually
distinguishable. Therefore, bus addresses are used to select
among different characters stored in memory where each
character holds a certain amount of bytes as defined by the
bus and where consecutive bytes in memory are accessed as
consecutive characters on the bus. Consequently, for each
memory access the address supplied is the address of the
first character in the block of data to be accessed and the
length of the block divided by the bus character size deter-
mines the range of bus addresses accessed. A media ac-
cess layer memory model consists of master and slave sides
for initiating and serving shared memory accesses over the
bus. The master side provides methods with names match-
ing the corresponding bus channel annotations for reading
and writing blocks of data bytes from/to memory used in
components that access shared storage over the bus. The
slave side, on the other hand, provides methods for serv-
ing incoming random memory accesses used in components
that provide shared storage (e.g. dedicated shared memory
components).

4.2. Bus Functional Component Database

For components with fixed, pre-defined interfaces and
communication functionality, the component database has
to contain a bus functional model of the component. A bus
functional component model accurately describes the com-
ponent interface at the pin level and it provides a simulation
model of communication aspects of the component on top
of any computation functionality as defined by the behavior
model of the component, if any.

Bus functional models can be thought of as additional
communication layers that wrap around the component be-
havioral model. A bus functional model can consist of sev-

eral layers of behaviors that create a hierarchy or tree of
behavior instantiations. At minimum, a top level bus func-
tional layer has to exist that provides a pin accurate model of
the component. Through this layer and its optional sublayer
instance hierarchy, the bus functional component model de-
scribes the communication behavior of the component at its
pins and it has to provide the same computational function-
ality as the behavioral model of the component.

For IPs with fixed computation and communication
functionality the bus functional IP model provides a timing
accurate and data accurate descriptions in terms of signals
that can be observed at the pins of the component. Bus func-
tional IP models only have to provide a single bus functional
layer but they can consist of several hierarchical layers in-
ternally.

For programmable component with flexible computation
behavior (i.e. no functionality provided in the component
behavior, but fixed, pre-defined interfaces and communica-
tion functionality, the bus functional component model has
to provide a hierarchy with at least two layers: a top level
bus functional layer describing the component pin interface
on the outside and an internal empty hardware abstraction
layer (HAL) shell at the leaf of the bus functional model
hierarchy describing the interface for accessing the com-
munication implementation of component from the pro-
grammable computation on the inside.

A component is considered programmable in terms of
its computation if the bus functional component model pro-
vides a hardware abstraction layer (HAL) shell. Commu-
nication link synthesis will use the HAL shell of the bus
functional component model as a template and modify it
to implement computation on the component on top of the
services provided by the HAL shell. In terms of services,
the HAL shell defines the insertion point for implementing
the computation of the component and it provides commu-
nication services for stream and memory I/O and interrupt
handling. The HAL shell together with the outer bus func-
tional layers model the corresponding capabilities of the
pre-defined component implementation (e.g. number and
type of external interfaces, amount and level of interrupts,
etc.).

The HAL shell marks the boundary between hardware
and software in programmable components. The code for
the HAL shell and the sub-behavior hierarchy inserted into
the HAL shell by communication link refinement will later
be implemented in software. On top of an implementation
of the HAL shell on the target processor taken out of the
OS databases, target specific code will be generated for the
HAL model. Layers of the component model above up to
and including the bus functional layer shell represent the
hardware implementation of the component and will later
be replaced with a description of the real component hard-
ware taken out of the databases for manufacturing.
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If no hardware abstraction layer shell is provided, on the
other hand, the bus functional component model is consid-
ered to be a self contained simulation model of the complete
component including computation and communication that
will be plugged into the system simulation as is. Figure6
shows an example of PE bus functional component database
for a programmable processor. In this example, HAL, HW
and BF shell are implemented in the library, but the func-
tionality inside OS shell, for example, interrupt handlers
and semaphores need to be generated by communication
link refinement tool.
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Figure 6. PE bus functional model for programmable
component.

Interrupt Handling Bus functional models for pro-
grammable components as shown in Figure6 have to in-
clude a definition of the interrupt capabilities of the com-
ponent and its interrupt handling. As described previously,
the top level bus functional layer defines the interrupt pins
available at the physical component interface and the HAL
model provides corresponding empty interrupt handler tem-
plates. The different layers of the bus functional component
model then describe the component’s interrupt behavior of
detecting interrupts, suspending regular computation, and
executing the HAL interrupt handlers during system simu-
lation.

In order to support more complex interrupt capabilities
with more than one source of interrupts, different priorities
and masking, the component database needs to include in-
terrupt controllers as part of the bus functional component
models. Interrupt controllers sit in front of the basic compo-

nent core model and are modeled by adding another layer to
the bus functional component model between the processor
core and the outer bus functional layer. Typically, the inter-
rupt controller provides a set of interrupt lines at the pins of
the top level bus functional layer while internally commu-
nicating with the core via the component bus and the core’s
interrupt condition input. The core then interrupts normal
computation and executes the appropriate handler depend-
ing on the inputs received from the interrupt controller.

5. Tasks for Communication Link Refinement

Communication link refinement tool refines the input
communication link model into bus functional model of a
system. The refinement process can be divided into five
steps, namely,channel grouping, PE bus functional model
instantiation, protocol stack generation and insertion, com-
munication element synthesis and insertion, andport map-
ping and bus wiring, each can be further divided into sub-
steps.

5.1. Channel Grouping

First task of communication link refinement is chan-
nel grouping. With the help of channel mapping decision
of users, link layer channels between components will be
grouped into corresponding system busses. For example,
the channelsL1 andL3 in Figure4 are grouped toDSPBus
and the channelL2 is grouped toHBus.

5.2. PE Bus Functional Model Instantiation

The bus functional models for components with fixed,
predefined protocol interfaces, for example, programmable
processor, IP, system memory and FPGA, need to be taken
out of and be instantiated from PE bus functional library.
The bus functional model instantiation process is shown in
Algorithm 1

Algorithm 1. InstantiateBF (IRDesign)

1: for all Bus∈ IRdesigndo
2: BusWireBus = CreateBusWire (IRdesign, Bus)
3: end for
4: for all BPE ∈ IRdesigndo
5: if HasBFModel (BPE)) then
6: CreateInstance (IRdesign, BPE, BusWireBusPE)
7: else
8: CreatePort (BPE, BusWireBusPE)
9: end if

10: end for
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For example, PE bus functional model of the DSP pro-
cessor (DSPBF) and the memory (MEM BF) are taken out
of a PE bus functional library and instantiated into the bus
functional model as shown in Figure5.

5.3. Protocol Stack Generation and Insertion

During communication link design, link layer, MAC
layer and protocol layer are inserted into components. The
MAC layer and protocol layer are a part of the media pro-
tocol library. Therefore they need to be taken out of media
protocol library and instantiated into corresponding compo-
nents. But link layer has to be generated during communi-
cation link refinement.

5.3.1 Link Layer Adapter Channel

The link layer is responsible for implementing synchroniza-
tion as shown in Figure7. In the figure, synchronization is
achieved by interrupts (intr in line 5, line 9, line 17, line 21).
cCPUBusMasterLinkandcCPUBusSlaveLinkchannel is an
adapter channel in master side and slave side respectively.
The interface methods in the master side wait for interrupt
from slaves (line 5, line 9). If the master gets interrupt from
a slave, it will invoke MAC layer interface method to ac-
cess the corresponding bus protocol (line 6, line 9). In the
slave side, the slave sends interrupt to a master to notify data
transfer request (line 17, line 21). The address port in the
channels represents the addresses of the message or the the
registers in the slaves (line 18, line 22).

The link layer adapter channel to access memory compo-
nent does not have interrupt line because memory compo-
nent is always ready for memory access. It will read/write
data to assigned range of addresses of the memory compo-
nent (line 7, line 10). The address port (addr) in the chan-
nels represents the base address of the memory component
which then is assigned a range of addresses with a base ad-
dress plus offsets (offsetin line 7 and line 10) for messages
to enable memory mapped I/O.

5.3.2 Protocol Stack Insertion

The protocol stack insertion process is shown in Algo-
rithm 2. The input to Algorithm2 is the internal repre-
sentation for the whole designIRDesign. Each component
behaviorBPE inside the design is checked if it is software
component or hardware component (line 2 and line 11). If
the component is software, the link layers (Clink) as shown
in Figure7 for general bus accesses and Figure8 for mem-
ory accesses, are created with the corresponding operating
system (OS) interface port (Pos) inside its application shell
(BPEapp) (line line 4 – line 5). Also OS adapter channel
(Cos) will be instantiated with the link channel interface port
(Plink) inside the OS shell (BPEOS) (line 3, line 6). In case of

Figure 7. Link layer adapter channel for general bus
access.

1 channe l cCPUBusMasterLink ( ICPUBusLinkAccess mac ,
i r e c e i v e i n t r ,

2 i n uns igned long long i n t addr )imp lements
i t r a n c e i v e r

3 {
4 vo id r e c e i v e (vo id ∗da ta , uns igned long i n t

l e n ) {
5 i n t r . r e c e i v e ( ) ;
6 mac . read ( addr ,da ta , l e n ) ;
7 }
8 vo id send (c o n s t vo id ∗da ta , uns igned long i n t

l e n ) {
9 i n t r . r e c e i v e ( ) ;

10 mac . w r i t e (addr , da ta , l e n ) ;
11 }
12 } ;
13 channe l cCPUBusSlaveLink ( ICPUBusLinkAccess mac ,

i s e n d i n t r ,
14 i n uns igned long long i n t addr )imp lements

i t r a n c e i v e r
15 {
16 vo id r e c e i v e (vo id ∗da ta , uns igned long i n t

l e n ) {
17 i n t r . send ( ) ;
18 mac . read ( addr ,da ta , l e n ) ;
19 }
20 vo id send (c o n s t vo id ∗da ta , uns igned long i n t

l e n ) {
21 i n t r . send ( ) ;
22 mac . w r i t e (addr , da ta , l e n ) ;
23 }
24 } ;

Figure 8. Link layer adapter channel for memory ac-
cess.

1 channe l ShmLinkMem ( ICPUBusMasterMemAccess shm , i n
uns igned long long i n t addr )

2 imp lements IMemLink
3 {
4 vo id read ( uns igned long i n to f f s e t , vo id ∗

da ta , uns igned long i n t l e n ){
5 shm . read ( addr +o f f s e t , da ta , l e n ) ;
6 }
7 vo id w r i t e ( uns igned long i n t o f f s e t , vo id ∗

da ta , uns igned long i n t l e n ){
8 shm . w r i t e (addr + o f f s e t , da ta , l e n ) ;
9 }

10 } ;
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PE connected to the shared memory, the memory interface
port (Pmem) will be created in the OS shell of the software
component (line 7 – line 9).

If the component is hardware, all protocol stacks includ-
ing link layer, MAC layer and protocol layer are taken out
of media protocol library and inserted into the model of
hardware components (line 12 – line 14). The protocol
layer adapter will be inserted with corresponding bus wires
(BusWires) on top of bus functional model. Also if the com-
ponent accesses the shared memory, the MAC and protocol
layer for memory access will be inserted (line 15 – line 18).

Algorithm 2. InsertStack (IRDesign)

1: for all BPE ∈ IRdesigndo
2: if BPE == SW then
3: CreatePort (BPEOS, PMAC)
4: CreatePort (BPEapp, Psemap)
5: CreateInstance (BPEapp, SMAC, Psemap)
6: CreateInstance (BPEOS, Ssemap, PMAC)
7: if BPE is connected to memorymemthen
8: CreatePort (BPEOS, Pmem)
9: end if

10: CreateInstance (BPEHAL, BPEOS, {PMAC,Pmem})
11: else ifBPE == HW then
12: CreateInstance (BPE, Sproto, BusWire)
13: CreateInstance (BPE, SMAC, Sproto)
14: CreateInstance (BPE, Slink, SMAC)
15: if BPE is connected to memorymemthen
16: CreateInstance (BPE, Smemproto, BusWire)
17: CreateInstance (BPE, SmemMAC, Sproto)
18: end if
19: end if
20: end for

For example, the functionality of link layer, MAC layer
and protocol layer is inlined into the custom hardware com-
ponent (HW1) and the channel adapters are connected to
each other to access bus wires in the bus functional model
as shown in Figure5.

5.4. Communication Element Synthesis and Inser-
tion

As part of bus functional model, communication ele-
ments such as transducer, arbiter and interrupt controller
might have to be inserted into the system architecture. The
transducer that translate between incompatible bus proto-
cols will act as bridges connecting two busses or as bus in-
terfaces for components with fixed, predefined protocols.
Arbiter and interrupt controller will resolve the multiple ac-
cesses of masters on busses and multiple accesses of slaves

to processors, respectively. Like the other components, the
behaviors of the communication elements are instantiated
and added to the set of concurrent, non-terminating compo-
nents at the top level of the design.

5.4.1 Memory Interface Controller

Since memory components have their own fixed interface
protocol, they cannot be directly connected to the system
bus and memory interface controller, therefore, was inserted
into communication link model during network synthesis.
The behavior of the memory interface controller should be
refined into pin-accurate protocol model.

For shared memory transfers, protocol channels provide
split transactions that allow the shared memory to list to and
serve incoming accesses. Therefore, memory interface con-
troller might have to support split transaction of the mem-
ory. Figure9 shows an example of the memory interface
controller which connects system bus (CPU bus) and mem-
ory component (SRAM bus).

The memory interface controller connects to the system
bus on the one hand (line 3 – line 12) and to memory bus on
the other hand (line 14 – line 18) through corresponding sets
of ports. Since the memory interface controller has to act as
both master (for communication on the memory bus) and
slave (for communication on the system bus), it connects
with readandwrite interfaces of the control lines.

For implementation of the memory bus protocol, the
memory interface controller instantiates a memory bus
adapter (line 21). For memory accesses, protocol addresses
have to be used to distinguish among individual addressable
words in the memory (GA line 29) and addresses have to be
incremented properly according to alignment for all succes-
sive transfers in a consecutive blocks of data (line 34 – line
40 and line 49 – line 55).

For example, the implementation of a memory interface
controller (M TX) is generated and inserted into the bus
functional model as shown in Figure5.

5.4.2 Interrupt Handling

As we described in Section4.2, bus functional models for
programmable components have to include a definition of
the interrupt capabilities of the component and its inter-
rupt handling. The top level bus functional shell defines
the interrupt pins available at the physical component in-
terface and the HAL model provides corresponding empty
interrupt handler templates. Therefore interrupt lines from
slaves need to be connected the interrupt pins on the pro-
grammable components. Also the empty interrupt handler
need to be filled and instantiated in HAL shell and call in-
terrupt tasks in operation system shell of the programmable
components.
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Figure 9. An example of memory interface controller.

2 # d e f i n e GBUSCLK 5
3 b e h a v i o r MemCtrlBF (
4 / / CPU bus
5 i n s i g n a l b i t [ 3 1 : 0 ] GA,
6 i n s i g n a l b i t [ 3 1 : 0 ] GDOUT,
7 ou t s i g n a l b i t [ 3 1 : 0 ] GDIN ,
8 i n s i g n a l b i t [ 7 : 0 ] GBE,
9 i n s i g n a l b i t [ 0 : 0 ] GRD,

10 i n s i g n a l b i t [ 0 : 0 ] GWR,
11 ou t s i g n a l b i t [ 0 : 0 ] GACK,
12 i n s i g n a l b i t [ 0 : 0 ] GID ,
13 i n s i g n a l b i t [ 0 : 0 ] GBSTART,
14 / / SRAM bus
15 ou t s i g n a l b i t [ 1 8 : 0 ] A,
16 i n o u t s ig n a l b i t [ 7 : 0 ] IO ,
17 ou t s i g n a l b i t [ 0 : 0 ] CS ,
18 ou t s i g n a l b i t [ 0 : 0 ] OE,
19 ou t s i g n a l b i t [ 0 : 0 ] WE)
20 {
21 / / p r o t o c o l adap te r f o r SRAM
22 MasterMem mem(A, IO , CS , OE, WE) ;
23 vo id main ( ) {
24 b i t [ 3 1 : 0 ] addr , d a t a ;
25 b i t [ 7 : 0 ] p ;
26 uns igned i n t i ;
27 wh i le ( t r u e ) {
28 do {
29 wa i t (GBSTART f a l l i n g ) ;
30 } wh i le ( ( GID != 0) | | (GA < 0 x 0 f f f f | | GA >

0 x 4 f f f f ) ) ;
31 addr = GA;
32 i f ( !GRD) { / / w r i t e
33 d a t a = 0 ;
34 f o r ( i =0; i <4; i ++) {
35 p = 0 ;
36 d a t a = d a t a<< 8 ;
37 i f (GBE[3 − i ] ) {
38 mem. read ( addr ++ , &p ) ;
39 d a t a += p ;
40 }
41 }
42 GDIN = d a t a ; / / d r i v e da ta
43 GACK = 0 ; / / acknowledge
44 w a i t f o r (GBUSCLK) ;
45 GACK = 1 ;
46 }
47 e l s e i f ( !GWR) { / / read
48 d a t a = GDOUT; / / t a k e da ta
49 f o r ( i =0; i <4; i ++) {
50 i f (GBE[3 − i ] ) {
51 p = d a t a[ 3 1 : 2 4 ] ;
52 mem. w r i t e (addr ++ , p ) ;
53 }
54 d a t a <<= 8 ;
55 }
56 GACK = 0 ; / / acknowledge
57 w a i t f o r (GBUSCLK) ;
58 GACK = 1 ;
59 }
60 }
61 }
62 } ;

Figure10shows interrupt handling task in operation sys-
tem shell in the programmable component. All link adapter
channels connected to the programmable component have
corresponding interrupt handling tasks which will be in-
voked by the interrupt handler in the operation system shell
of the component model (line 17 – line 20 in Figure11).

Figure 10. Interrupt handling task.

1 b e h a v i o r CPUIntTask (OSAPI os , i s e n d ev )
imp lements CPUIntTask , OSTASK INIT

2 {
3 vo id s t a r t ( vo id ) {
4 os . t a s k r e s u m e ( o st a s k i d ) ;
5 }
6 vo id main (vo id ) {
7 os . t a s k a c t i v a t e ( o s t a s k i d ) ;
8 wh i le ( t r u e ) {
9 os . t a s k s l e e p ( ) ;

10 ev . send ( ) ;
11 }
12 }
13 vo id o s t a s k c r e a t e (vo id ) {
14 o s t a s k i d = os . t a s k c r e a t e ( ” i n t H a n d e r ” ,

2 , 0 , 0 ) ;
15 }
16 } ;

Figure11 shows the refined operation system shell for
the component. Inside the model, we can see an OS API
channel which implements scheduling policy for operation
system as shown in line 4. The FCFS is the OS API which
has first-come first-service scheduling policy. The OS API
will be connected to semaphore (line 6 – line 8), interrupt
tasks (line 12 – line 14) shown in Figure10and application
shell of the component (line 16).

Figure12shows interrupt handling method in HAL shell
of the programmable component. The HAL shell has the in-
terrupt handler for each interrupt line (line 7 – line 12). For
example, the processor has four lines of interrupts, there
are four interrupt handlers in HAL shell. In the figure,
intHandler method is invoked whenever interrupts come
into the processor. TheintHandler method will take with
the interrupt controller (PIC) outside of hardware shell of
the component and get the interrupt status and invoke in-
terrupt handling routines (int0Handler, int1Hander). Again
the interrupt handling routines in the HAL shell will call in-
terrupt handling methods in the operation system shell (line
8, line 11).

Algorithm 3 shows the process which inserts interrupt
handling methods in OS shell and HAL shell of the com-
ponent. First, all channels (CPE) in the software compo-
nents have the assigned interrupt line and the corresponding
semaphore and interrupt handling tasks and methods are in-
serted into OS shell of the component (line 4 – line 6). The
interrupt handling methods are invoked in HAL shell of the
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Figure 11. Interrupt handling method in OS shell.

1 b e h a v i o r CPUOS( ICPUBusLinkAccess macBus ,
ICPUBusMasterMemAccessml ink Bus )

2 imp lements In tHand le rsCPU
3 {
4 FCFS os ; / / OS channe l
5 Shmlink M1 IShmlink M1 ( ml ink Bus , (2048 u l l ) ) ;

/ / memory
6 / / os semaphore
7 c o s h a n d s h a k e F l a gm l i n k 0 B u s ( os ) ;
8 c o s h a n d s h a k e F l a gm l i n k 1 B u s ( os ) ;
9 / / l i n k c h a n n e l s

10 CPUBusMasterDLink ml i n k 0 B u s D r i v e r ( macBus ,
F lag m l i nk 0 Bus , (1024 u l l ) ) ;

11 CPUBusMasterDLink ml i n k 1 B u s D r i v e r ( macBus ,
F lag m l i nk 1 Bus , (1025 u l l ) ) ;

12 / / i n t e r r u p t t a s k s
13 CPU IntTask m l i n k 0 B u s i n t T a s k ( os ,

F l a g m l i n k 0 B u s ) ;
14 CPU IntTask m l i n k 1 B u s i n t T a s k ( os ,

F l a g m l i n k 1 B u s ) ;
15 / / a p p l i c a t i o n
16 CPUSW CPU( m l i nk 0 BusDr i ve r ,

m l i nk 1 BusDr i ve r , IShmlink M1 , os ) ;
17 vo id m l i n k 0 B u s i n t H a n d l e r ( vo id ) { / /

i n t e r r u p t hand le r
18 os . i e n t e r ( ) ;
19 m l i n k 0 B u s i n t T a s k . s t a r t ( ) ; / / c a l l

i n t e r r u p t t a s k
20 os . i r e t u r n ( ) ;
21 }
22 vo id m l i n k 1 B u s i n t H a n d l e r ( vo id ) { /∗ . . .

∗ / }
23 vo id main (vo id ) {
24 os . i n i t ( ) ;
25 CPU . o s t a s k c r e a t e ( ) ;
26 os . s t a r t ( ) ;
27 m l i n k 0 B u s i n t T a s k . o s t a s k c r e a t e ( ) ;
28 m l i n k 1 B u s i n t T a s k . o s t a s k c r e a t e ( ) ;
29 par {
30 CPU . main ( ) ;
31 m l i n k 0 B u s i n t T a s k .main ( ) ;
32 m l i n k 1 B u s i n t T a s k .main ( ) ;
33 }
34 os . t a s k t e r m i n a t e ( ) ;
35 }
36 } ;

Figure 12. Interrupt handling method in HAL shell.

1 b e h a v i o r CPUHAL( ICPUBusMaster mac , i n o u t b i t
[ 3 1 : 0 ] SR , i n o u t b i t [ 3 1 : 0 ] CR)

2 imp lements ICPUBusIn tVec tors
3 {
4 CPUBusMasterLinkAccess l i n k ( mac ) ; / / MAC

l a y e r
5 CPUBusMasterMemAccess mem( mac ) ; / / MAC

l a y e r f o r memory
6 CPU OS CPU( l i n k , mem) ; / / OS

s h e l l
7 vo id i n t 0 h a n d l e r ( uns igned i n t num){
8 CPU . m l i n k 0 B u s i n t H a n d l e r ( ) ;
9 }

10 vo id i n t 1 h a n d l e r ( uns igned i n t num){
11 CPU . m l i n k 1 B u s i n t H a n d l e r ( ) ;
12 }
13 /∗ . . . ∗ /
14 vo id i n t H a n d l e r (vo id ) { /∗ . . . ∗ / }
15 vo id main (vo id ) {
16 CPU . main ( ) ;
17 }
18 } ;

component (line 7). In case of the hardware component,
The interrupt line will be inserted as output port of the com-
ponent (line 10).

Algorithm 3. InsertISR (IRDesign)

1: for all BPE ∈ IRdesigndo
2: if BPE == SW then
3: for all CPE ∈ IRdesigndo
4: CreateOSSemaphore (BPEOS, CPE)
5: CreateIntrHandlerTask (BPEOS, CPE)
6: CreateIntrHandlerMethod (BPEOS, CPE)
7: CreateIntrHandlerMethodCall (BPEHAL, CPE)
8: end for
9: else ifBPE == HW then

10: CreateInstance (BPE, Mintr );
11: end if
12: end for

For example, DSP processor are connected to two logical
link channels which are assigned to two different interrupts
(intA andintB) by user decision on interrupt mapping. The
interrupt handler tasks and methods for the two interrupts
are generated in OS shell and HAL shell of the bus func-
tional of DSP processor (Figure5). Also hardware compo-
nentsHW1andHW2have the implementation of interrupt
generation.
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5.4.3 Arbitration

For busses that support arbitration, the user may designate
more than one master Essentially, the master side proto-
col should have a special method which is annotated to be
identified as the bus arbitration method. If such a chan-
nel method is not found, we have to generate a centralized
bus arbiter as per the requirements. The arbitration mecha-
nism will be instantiated from the protocol library, because
it is the part of bus protocol. The protocol layer in a mas-
ter has the method to request bus access. Based on design
decisions, we generate a priority-based or round-robin arbi-
tration unit. The arbiter behavior is exactly like that of an
interrupt controller, except that it resolves conflicts between
masters.

5.4.4 Communication Element Insertion

Algorithm 4 shows the communication element insertion
process. First, for each slave on a bus, we have to create
an interrupt port and connect the created interrupt port with
corresponding interrupt wire on the bus (line 2 – line 6) be-
cause the synchronization between master and slave is im-
plemented.

If the number of master components are connected with
a bus is more than one, then the bus should have arbiter to
resolve multiple accesses of the masters. All masters need
to have arbitration ports to be connected to the arbiter on the
bus (line 9 – line 11). The arbiter will be instantiated with
the created arbitration wires on the top level of a design (line
18).

If a master is connected with more than one slave, it will
have interrupt controller to resolved multiple access from
the slaves. The interrupt controller will be inserted with the
created interrupt wires (line 13).

For example, arbiter (arbiter) on DSPBusand pro-
grammable interrupt controller (PIC) for DSP are taken out
of media protocol library and instantiated into the bus func-
tional model as shown in Figure5.

5.5. Port Mapping and Bus Wiring

Now all protocol stacks and communication elements are
inserted into corresponding components, the components
on top of the design need to be connected to each other
through wires of the busses. The ports are already changed
during protocol stack and communication elements inser-
tion. The connections between port and busses are defined
through the port mapping as shown in Algorithm5. The
interrupt lines and arbitration lines are connected based on
the priorities of the components connected.

Algorithm 4. InsertCE (IRDesign)

1: for all Bus∈ IRdesigndo
2: for all Bs ∈ slaves connected theBusdo
3: IntrWires = CreateIntrWire (IRdesign, Bs)
4: Pi = CreatePort (Bs, IntrWires)
5: Connect (Pi , IntrWires)
6: end for
7: if number of masters on theBus> 1 then
8: for all Bm ∈ masters on theBusdo
9: ArbitWirem = CreateArbitWire (IRdesign, Bm)

10: Pa = CreatePort (Bm, ArbitWirem)
11: Connect (Pa, ArbitWirem)
12: if number of slaves connected to masterBm > 1

then
13: CreateInstance (IRdesign, Bi , IntrWires);
14: else
15: Connect (Bsw, Pi , IntrWires)
16: end if
17: end for
18: CreateInstance (IRdesign, Ba, ArbitWirem);
19: end if
20: end for

Algorithm 5. Wiring (IRDesign)

1: for all PEBPE ∈ IRdesigndo
2: for all portPPE ∈ BPE do
3: wPPE = FindBusWire (IRdesign, PPE)
4: Connect (BPE, wPPE, PPE)
5: end for
6: CreateInstance (IRdesign, BPE, BPEBF )
7: end for
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6. Experimental Results

Based on the described methodology and algorithms, we
developed a communication link refinement tool,SpecC
Communication Link Refinement (sccr), which takes com-
munication link model in SpecC. For experiments, we used
the communication link models ([SGG04]) which were
generated by network refinement tool from the architecture
models as shown in [SGG04].

Table1 shows the characteristics of the partitioned archi-
tecture models of these examples. Different architectures
using Motorola DSP56600 processor (DSP), MIPS based
CPU (CPU) and custom hardware (HW) were generated
and various bus architectures were tested. In Table1, the
number of channels represents the number of message pass-
ing channels in top level of architecture model and the total
traffic refers to the amount of data exchanged between com-
ponents.

Table2 shows design decisions which are made during
communication link synthesis. In this table, addresses and
interrupts for channels are decided by users. Priorities for
arbitration are assigned into master components on busses.

We have to measure the quality of the generated mod-
els in order to be able to assess the model quality. For the
communication link refinement, we can use two quality of
metrics: the code size of the models and the readability of
the refined model.

Table3 shows the results of communication link refine-
ment. We used the Lines of Code (LOC) metric. Modi-
fied lines of code by automatic refinement is calculated by
modi f ied= inserted− library + deletedin fifth column.
We assume that a person can modify 10 LOC per hour, thus,
manual takes several hundred hours for reasonably complex
designs. Automatic refinement on the other hand completes
in the order of a second. In order to compute the produc-
tivity gain, we assume that design decisions (address as-
signment, interrupt mapping, arbitration) for communica-
tion link refinement takes 5 minutes to do. The productivity
gain is around 1000 times as a result of automatic refine-
ment. For example, gain for arch1 of JPEG is calculated by
427= (35.6 hr.)/(0.10 sec.+ 5 min.).

7. Conclusions

In this report, we presented a methodology and al-
gorithms to automatically generate bus functional models
from communication link model. During communication
link synthesis, logical links between adjacent components
are grouped and implemented over a system bus. As a result
of communication link refinement, bus functional model is
developed in order to reflect communication architecture of
a system. The functionality of link layer, MAC layer and

protocol layer need to be inlined into components during
the communication link refinement.

Communication link refinement tool was developed and
integrated into SoC design environment. Using an indus-
trial strength example, the feasibility and benefits of the ap-
proach have been demonstrated and huge productivity gain
is obtained with communication link refinement tool. Our
main contribution in the report is the automation of a time
consuming and error prone process to achieve better de-
signer productivity. It also enables designers to evaluate
several design points during exploration.
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Table 3. Experiment results of communication link refinement.

Lines of Code Automatic Manual Productivity
Examples Link BF Modified (inserted (lib)/deleted) refinement refinement gain
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arch4 14033 15220 757 (1309 (674)/122) 0.84 s 75.7 hr 908
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