
Systemwide Energy Minimization in Real-Time Embedded Systems

Ravindra Jejurikar Rajesh Gupta

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

1 (949) 824-8168

E-mail: jezz@cecs.uci.edu, gupta@cs.ucsd.edu

CECS Technical Report #04-14

May, 2004

Abstract

Traditionally, dynamic voltage scaling (DVS) techniques have focused on minimizing the processor
power consumption as opposed to the entire system energy. However, the slowdown resulting from DVS
can increase the energy consumption of components like memory and network interfaces. Furthermore,
leakage power consumption, which is increasing with the scaling device technology, must also be consid-
ered. In this paper, we present an algorithm to compute task slowdown factors based on the contribution
of the processor leakage and standby energy consumption of the resources in the system. We combine
slowdown with procrastination of task executions to extend sleep intervals which significantly reduces
the leakage energy consumption. We show that the scheduling approach minimizes the total static and
dynamic energy consumption of the systemwide resources. In this work, we consider a real-time system
model using the Earliest Deadline First (EDF) policy. Our simulation experiments using randomly gen-
erated task sets show on an average10%energy gains over traditional dynamic voltage scaling. Our
procrastination scheme increases the average energy savings to15%.

1

Contents

1 Introduction 1

2 System Model 2

3 Low power scheduling 3
3.1 Slowdown Algorithm . 4
3.2 Procrastination Algorithm . 4

4 Processor Power Model 5
4.1 Shutdown Overhead . 6

5 Experimental Setup 7
5.1 Energy Consumption . 9

6 Conclusions and Future Work 9

List of Figures

1 Power consumption of 70nmtechnology for Crusoe processor:PDC is the leakage power,
PAC is the dynamic power andPon is the intrinsic power consumption in on state 7

2 Energy per Cycle for 70nm technology for the Crusoe processor:EAC is the switching
energy,EDC is the leakage energy andEon is the intrinsic energy to keep the processor on. 8

3 Energy consumption normalized to no-DVS . 10

List of Tables

2

1 Introduction

Power management is of primary importance in the operation of embedded systems, which can be
attributed to longer battery life, reliability and packaging costs. There are two primary ways to re-
duce power consumption in computing systems: (1)resource shutdown, commonly known as dynamic
power management (DPM) and (2)resource slowdown, also known as dynamic voltage scaling (DVS).
Resources such as memory banks, disk drives, displays and network interfaces possess shutdown capa-
bility and DPM techniques have been proposed to minimize the power consumption of these resources
[7, 11, 25]. Recent processors support slowdown and DVS techniques are known to be more effective
in reducing the processor energy consumption [5, 24]. DVS techniques exploit an energy-delay tradeoff
that arises due to the quadratic relationship between voltage and power whereas a linear relationship
between voltage and delay (frequency). Note that DVS decreases the energy consumption at the cost of
increased execution time. The longer execution time while decreasing the dynamic power consumption
of the processor, can increase the energy contribution of other components for the following reasons:

� The standby leakage currents are increasing with the advances of CMOS technology and a five fold
increase in the leakage power is predicted with each technology generation [6]. Longer execution
time implies more leakage power.

� A minimum power consumption is associated in keeping the processor active. Some of the major
contributors are the PLL circuitry, which drives up to 200mA current [10, 27] and the I/O and
analog components of the processor. Note that the I/O and analog components require higher
voltage levels (2.5V to 3.3V) that are not scaled with DVS. Only the processor core voltage (Vdd)
[10] is scaled under DVS.

� If components such as memory and other I/O interfaces need to be active (on state) along with the
processor, slowdown can increase the total energy consumption of the system.

Components such as memory banks, flash drives, co-processor (DSP, FPU, codecs), FPGA components,
analog interfaces and wired /wireless communication devices are pervasive in modern embedded sys-
tems. Most of these resources support multiple shutdown-states for energy minimization. Due to the
energy and delay costs of state transitions, the shutdown decisions have to be judiciously made to meet
the system requirements. This results in the device operating in the standby state (on-state but idle)
where significant power is consumed. Memory modules are present in almost all computing systems
with DRAMs and RDRAMs having standby current in the range of 30mA to 120mA [2, 3]. These de-
vices have operating voltages in the range of 1:8V to 3:3V, and can consume up to 0:36W of power.
SRAM modules have still higher standby currents of the order of 150mAto 250mA. The standby power
consumption of devices such as flash drives and wireless interfaces is up to 0:5W [1] and 1:4W [4] re-
spectively. Other components like FPGAs, co-processors and codecs also consume significant power
based on their functionality. The resource standby time is related to the program execution and can
increase with DVS (slowdown). With compiler assisted DPM techniques [7], standby time increases
proportionally to the execution time. Thus DVS techniques need to consider the standby power con-
sumption of the peripherals devices in the computation of slowdown factor to reduce the total power
consumption of the system.

Most of the works on DVS consider the energy consumption of the processor in isolation. Earlier
works have addressed minimizing the dynamic power consumption of the processor [5, 24], whereas

1

later works have focussed on leakage to minimize the total static and dynamic power consumption
[21, 28, 14]. Slowdown tradeoffs in the computation and communication subsystems are considered in
[17, 20]. Recent works have also considered the combined processor and memory energy consumption.
Fanet al. [8] consider memory power consumption to show that excess slowdown can increase the total
energy consumption. Miyoshiet al. [22] show that the slowdown decision can differ with different
processor families. Various shutdown policies for resources such as memory, disks and wireless cards
have been studied [7, 11, 25].

While most of the work on DVS is focussed on minimizing the processor power consumption, the
standby power is usually ignored. It is observed that devices like memory banks are in the active state
30%�90% of the task execution time [7]. With the steady increase in the amount of data which is often
distributed, the network and disk activity increases and so is the standby time of these devices. We take
into account the standby power consumption of the resources used by tasks to compute energy efficient
task slowdown factors. Given the resource usage and the resource standby time for the tasks, we propose
an algorithm to compute task slowdown factors to minimize the total energy. We enhance our technique
with procrastination scheduling which further reduces the processor leakage contribution by extending
the processor sleep intervals. Procrastination in real-time systems was first proposed by Leeet al. [16],
however they assume all tasks are executed at the maximum speed. We have combined slowdown and
procrastination scheduling in our earlier works [13]. We have proposed a better procrastination algorithm
that guarantees all deadlines under the EDF scheduling policy. The algorithm has been extended to fixed
priority scheduling in [12].

The rest of the paper is organized as follows: Section 2 introduces the system model and formu-
lates the problem. In Section 3, we present the computation of slowdown factors and procrastination
intervals under the EDF scheduling policy. The processor power model is discussed in Section 4 and
the experimental results are discussed in Section 5. Finally, Section 6 concludes the paper with future
directions.

2 System Model

A task set ofn periodic real time tasks is represented asΓ= fτ1; :::;τng. A 3-tuplefTi ;Di;Cig is used
to represent each taskτi, whereTi is the period of the task,Di is the relative deadline andCi is the worst
case execution time (WCET) of the task at the maximum processor speed. In this work, we assume task
deadlines are equal to the period (Di = Ti) and the tasks are scheduled by the EDF scheduling policy
[18]. All tasks are assumed to be independent and preemptive. The tasks are to be scheduled on a
single processor system based on a preemptive scheduling policy. We say a task isprocrastinated(or
delayed) if the processor remains idle despite the presence of the task in the processor ready queue. The
procrastination interval of a task is the time interval by which a task is procrastinated.

Similar to recent processors such as Intel XScale [10] and Transmeta Crusoe [27], the processor
support variable voltage and frequency levels. There aresavailable frequencies,f f1; :::; fsg in increasing
order of frequency and the corresponding voltage levels arefv1; :::;vsg. A slowdown factor(ηi) is
defined as the normalized operating frequency i.e. the ratio of the current frequency to the maximum
frequency,fs, of the processor. The important point to note is when the frequency is changed tofk, the
voltage level is also proportionately set tovk. The power consumption of the processor at a slowdown
of η is represented asP(CPU;η). Since processors support discrete frequency levels, the slowdown
factors are discrete points(f1

fs
; fs

fs
; :::;1) in the range [0,1]. The processor supports shutdown to reduce

2

the leakage power consumption. The processor is said to beidle if it is not executing a task. In the
idle state, the processor could in the shutdown state (no leakage) or in the standby state (active + idle)
when it consumes leakage power. The slowdown factor assigned to taskτi is represented asηi. When
task τi is assigned a slowdown factorfkfs , the task slowdown factor is represented byηk

i to make the
assignment explicit when required. We assume that the overhead incurred in changing the processor
speed is incorporated in the task execution time. This overhead, similar to the context switch overhead,
is constant and can be incorporated in the worst case execution time of a task. We note that the same
assumption is made in previous works [5, 24].

In addition to the processor, the system has a set ofm resourcesR = fR1; :::;Rmg that model the
peripheral devices. The resource is said to be in thestandbystate if it is on (active) but idle. The standby
state power consumption of each resourceRi is given byP(Ri) and the shutdown power of the resource
is assumed to be zero. The power consumed in performing the resource functionality is independent
of the task slowdown and not considered in our analysis. Each taskτi uses a subset of the resources
in R , represented byR τi . Despite the use of DPM policies, the resources are in a standby state for
a significant portion of time. We assume that the device standby time for each task is expressed in
number of processor cycles. Since the device activities are related to the program execution the standby
time is expected to be represented in terms of processor cycles. This is particularly true for compiler
directed DPM. Though the standby time can potentially vary with slowdown under OS directed DPM,
we assume that the number of cycles a resource is in standby state is independent of slowdown. LetC

Rj
i

be the number of cycles resourceRj is in the standby stand during the execution ofτi. If a task does not

use resourceRj , thenC
Rj
i = 0. We compute the task slowdown factors that minimize the total system

energy including the resource standby contribution. Note that we are not proposing DPM policies, but
considering the standby energy in computing static slowdown factors. In our work, we consider task
level slowdown factors as opposed to intra-task level slowdown.

3 Low power scheduling

Considering the contribution of the processor leakage power and the resource standby power, the
slowest speed need not be the optimal slowdown factor. The energy consumption of a taskτi at speedη
is given by :

Ei(η) =
Ci

η
P(CPU;η)+ ∑

Rj2R τi

C
Rj
i

η
P(Rj) (1)

The slowdown factor for a task that minimizes its total energy consumption is called thecritical speed
for the task. Based on the the EDF scheduling policy, a task-set ofn independent periodic tasks is
feasible at a slowdown factor ofηi for taskτi if the utilization under slowdown is no more than unity.
Thus we have an optimization problem:

minimize:
n

∑
i=1

1
Ti

Ei(ηi) (2)

sub ject to:
n

∑
i=1

1
ηi

Ci

Ti
� 1 (3)

3

8i : ηi 2 f
fk
fs
jk= 1; :::;sg (4)

3.1 Slowdown Algorithm

While we do not know the time complexity of problem to compute the optimal task slowdown factors,
we present a heuristic algorithm to compute energy efficient slowdown factors. The proposed heuristic
is motivated by the algorithm in [23]. The algorithm consists of two phases : (1) computing the critical
speed for each task (2) Increasing the task slowdown factors if the task set is not feasible. We compute
the energy consumption of each task at each discrete slowdown factors and the critical speed is the
slowdown factor that minimizes the task energy. Due to different resource usages of task, the critical
speed can differ for each task. In the second step, we present a heuristic to select a task whose speed is
increased. The candidate tasks for speedup are the tasks that do not have the maximum speed. Givenηk

i
is the current slowdown of a candidate taskτi , the next higher slowdown factor is represented byηk+1

i .
Among all candidate tasks, we increase the slowdown of a task that results in the minimum energy
increase per unit time. For each candidate taskτi, we compute the increase in energy consumption,∆Ei ,
and the time gained by the speedup,∆ti , where∆Ei = Ei(ηk+1

i)�Ei(ηk
i) and∆ti =Ci(

1
ηk

i
� 1

ηk+1
i
). The

slowdown factor (speed) of the candidate task with the minimum value of∆Ei
∆ti

is increased. The same
heuristic is used in [23] to increase the task slowdown factor. The pseudo-code for the algorithm is given
in Figure 1.

Algorithm 1 Computing Slowdown Factors
1: Compute the critical speed for each task;
2: Initialize ηi to critical speed ofτi;
3: while (not feasible)do
4: Let τm be task satisfying:
5: (a) ηm is not the maximum speed;
6: (b) ∆Em

∆tm
is minimum;

7: Increase speed of taskτm;
8: end while
9: return slowdown factorsηi ;

3.2 Procrastination Algorithm

Task procrastination [16] [13] has been shown to increase the sleep intervals and thereby reduce
the energy consumption of idle intervals. Task procrastination is increasingly important as the device
leakage currents is rapidly increasing. We use the procrastination algorithm proposed in our earlier
work [13]. A maximum procrastination intervalZi is computed for each taskτi as given by Theorem 1.
The procrastination algorithm ensures that no task is procrastinated more than itsZi. Task executions
are procrastinated only when the processor is in the sleep state. It is assumed that thepower manager
that handles task procrastination is implemented as a controller. When the processor enters sleep state,
it hands over the control to the power manager (controller), which handles all the interrupts and task
arrivals while the processor is in sleep state. The controller has a timer to wake the processor after a

4

specified time period. The procrastination algorithm is shown in Figure 2. When the processor is in
sleep state and the first taskτi arrives, the timer is set toZi. The timer counts down every clock cycle. If
another task arrives before the timer expires, the timer is adjusted based on the new task arrival. When
another taskτ j arrives, the timer is updated to the minimum of the current timer value andZj . This
ensures that no task in the system is procrastinated by more than its maximum procrastination interval.
When the timer counts down to zero (expires), the processor is woken up and the scheduler dispatches
the highest priority task in the system for execution. All tasks are scheduled at their assigned slowdown
factor.

Algorithm 2 Procrastination Algorithm [13]
1: On arrival of a new job Ji:
2: if (processor is in sleep state)then
3: if (Timer is not active)then
4: timer Zi; fInitialize timerg
5: else
6: timer min(timer;Zi);
7: end if
8: end if

9: On expiration of Timer (timer= 0):
10: Wakeup Processor;
11: Scheduler schedules highest priority task;
12: Deactivate timer;

13: Timer Operation:
14: timer – –;fCounts down every clock cycleg

Theorem 1 Given tasks are ordered in non-decreasing order of their period, the procrastination algo-
rithm guarantees all task deadlines if the procrastination interval Zi of each taskτi satisfies:

8i
i = 1; :::;n

Zi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (5)

8k<i Zk� Zi (6)

The details of the proof are given in the technical report [26].

4 Processor Power Model

In this section, we describe the power model used to compute the static and dynamic components of
power consumption of CMOS circuits. The dynamic power consumption(PAC) of CMOS circuits is
given by,

PAC=Ce f fV
2
ddf (7)

5

whereVdd is the supply voltage,f is the operating frequency andCe f f is the effective switching ca-
pacitance. The major contributors of leakage are the subthreshold leakage and the reverse bias junction
current. We use the power model and the technology parameters described by Martinet al. [21].

The subthreshold currentIsubn, as a function of the supply voltageVdd and the body bias voltageVbs

is given below :
Isubn= K3eK4VddeK5Vbs (8)

whereK3, K4 andK5 are constant fitting parameters. The leakage power dissipation per device due to
subthreshold leakage(Isubn) and reverse bias junction current(I j) is given by,

PDC =VddIsubn+ jVbsjI j (9)

and the total leakage power consumption isLg �PDC, whereLg is the number of devices in the circuit.
The relation of threshold voltageVth andVbs is represented by,Vth = Vth1�K1 �Vdd�K2 �Vbs where
K1, K2 andVth1 are technology constants. The cycle timetinv as a function of theVdd and the threshold
voltageVth is given by,

tinv =
LdK6

(Vdd�Vth)α (10)

The technology constants for the 70nm technology given in [21] are used. The value forCe f f based
on the Transmeta Crusoe processor, scaled to 70nmare used. To reduce the leakage substantially, we use
Vbs=�0:7V. The static and dynamic power consumption as the supply voltage is varied in the range of
0:5V and 1:0V is shown in Figure 1.

In addition to the gate level leakage, there is an inherent cost in keeping the processor on. This
intrinsic cost (power) of keeping the system on is referred to asPon. The power consumption of these
components will scale with technology and architectural improvement and we assume a conservative
value ofPon= 0:1W.

We define theprocessor critical speedas the operating point that minimizes the energy consumption
per cycle. Figure 2 shows the energy consumption per cycle for the 70nm technology. It is seen From
the power model that the processor critical speed is atVdd= 0:70V. From the voltage frequency relation
described in Equation 10,Vdd= 0:7V corresponds to a frequency of 1:26 GHz. The maximum frequency
atVdd = 1:0V is 3:1 GHz, resulting in a critical slowdown ofηcrit = 1:26=3:1= 0:41.

4.1 Shutdown Overhead

In previous work, the overhead of processor shutdown/wakeup has been neglected or considered only
as the actual time and energy consumption incurred within the processor. However, a processor shutdown
and wakeup has a higher overhead. When switched to the deepest sleep mode, the processor loses its
register and cache contents. Thus the cost of shutdown and wakeup includes additional costs as follows
: (1) inherent energy delay cost of processor wakeup (2) saving registers to main memory (3) flushing
dirty data cache lines to main memory (4) extra misses on a cold start (empty structures) in components
such as data / instruction caches, translation look aside buffers (TLBs) and branch target buffers (BTBs),
which are empty on wakeup. This results in extra memory accesses and thereby an additional energy
overhead.

We estimate the energy overhead due to shutdown which we use in our simulations. Typical embedded
processors such as the Intel PXA family processors have typically cache sizes of 32KB. Assuming 20%

6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ow

er

Vdd

PAC
PDC
Pon

Figure 1. Power consumption of70nm technology for Crusoe processor:PDC is the leakage power,PAC is the dynamic

power andPon is the intrinsic power consumption in on state

lines of the data cache to be dirty before shutdown results in 6554 memory writes. With an energy cost
of 13nJ [15] per memory write, the cost of flushing the data cache is computed as 85µJ. On wakeup,
there is an additional cost due to cache miss. Note that a context switch occurs when a task resumes
execution which has its own cache miss penalty. However, shutdown has its own additional cost than a
regular context switch due to the fact that these structures are empty. We assume 10% additional misses
rate in both the instruction and data cache. Therefore, the total overhead of bringing the processor to
active mode is 6554 cache misses. A cost of 15nJ [15] per memory access, results in 98µJ overhead.
Adding the cache energy overhead to the energy of charging the circuit logic (300µJ), the total cost is
85+98+300= 483µJ .

Due to the cost of shutdown, we have to make a decision whether to shutdown or not. An unforeseen
shutdown can result in extra energy and/or missing task deadlines. Based on the idle power consumption,
we can compute the minimum idle period, referred to as theidle thresholdintervaltthreshold, to break even
with the wakeup energy overhead. Since the idle power consumption in our power model is 240mW, and
the shutdown energy overhead is 483µJ, tthreshold is 2:01ms. We assume a sleep state power of 50µW,
which can account for the power consumption in the sleep state and that of the controller.

5 Experimental Setup

We implemented the different scheduling techniques using a discrete event simulator. To evaluate
the effectiveness of our scheduling techniques, we consider several task sets, each containing up to

7

0

1e-10

2e-10

3e-10

4e-10

5e-10

6e-10

7e-10

8e-10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E
ne

rg
y

pe
r

C
yc

le

Vdd

EAC
EDC
Eon

Etotal

Figure 2. Energy per Cycle for70nmtechnology for the Crusoe processor:EAC is the switching energy,EDC is the leakage

energy andEon is the intrinsic energy to keep the processor on.

20 randomly generated tasks. We note that such randomly generated tasks are a common validation
methodology in previous works [16, 24, 9]. Based on real life task sets [19], tasks are assigned a random
period in the range [10 ms,120 ms]. An initial utilizationui of each task is uniformly assigned in the
range [0.05, 0.5]. The Worst Case Execution Times (WCET) for each task is set toui �Ti at the maximum
processor speed. The execution time of each task is scaled to ensure a processor utilization less than one,
thereby making the task set feasible.

The tasks are scheduled on a single processor system. In addition to the processor, the system has three
resources with standby power consumption of 0:2W, 0:4W and 1:0W. These are typical standby power
consumption for memory, flash drives and 802.11 wireless interfaces and represent these resources. The
typical standby time for the resources as a percentage of the task execution time is assumed to be in
the range [20,60], [10,25] and [5,20] respectively. While the usage of network interfaces widely vary
based on the applications, we assume conservative standby time. Note that our techniques will result
in increased gains with larger resource standby intervals. Each task is assumed to use minimum one
(memory) and maximum all resources and the standby time is uniformly assigned in the corresponding
ranges. The wireless interface (1.0W) is assigned to a task only if the task uses all resources.

All tasks are assumed to execute up to their WCET. Experiments were performed on various task
sets and the average results are presented. We use the processor power model described in Section 4 to
compare the energy consumption of the following techniques :

� No DVS (no-DVS): where all tasks are executed at maximum processor speed.

8

� Traditional Dynamic Voltage Scaling (DVS) : where tasks are assigned the minimum possible
slowdown factor.

� Critical Speed DVS (CS-DVS): where task slowdown factors are computed based on the algorithm
presented in Section 3.

� Critical Speed DVS with Procrastination (CS-DVS-P): This is the Critical Speed DVS (CS-DVS)
slowdown with the procrastination technique under EDF scheduling policy.

5.1 Energy Consumption

Figure 3 shows the energy consumption of the techniques normalized to no-DVS scheme. We refer the
processor utilization at maximum speed asU and is shown along the X-axis with the energy consumption
along the Y-axis. With the resource standby time in the specified range, the resources consume around
10% of the total energy in our experimental setup. Traditional DVS scheme does not consider the
resource standby time and no-DVS and DVS schemes have similar energy consumption at higher values
of U (80% to 100%). With the processor consuming the majority of the energy, DVS leads to energy
gains atU drops below 80%. At lower utilization however, traditional DVS scheme results in increased
processor leakage as well as longer resource standby time and consumes more energy. AsU drops
below 40%, the energy consumed by DVS increases and even surpasses no-DVS at very low values of
U . CS-DVS computes task slowdown factors considering the resource standby power consumption and
saves at least 5% to 10% over the traditional DVS. The CS-DVS technique executes each task no slower
than its critical speed and shuts down the system to minimize energy consumption. However if the idle
intervals are not sufficient to shutdown, significant energy savings cannot be achieved (over DVS) as
seen at utilization of 30% and 40%. It is seen that the procrastination scheme results in more energy
saving from this point. As the utilization lowers, executing tasks by the CS-DVS scheme results in idle
intervals in the system and the idle energy consumption contributes to a significant portion of the total
energy. The procrastination scheme (CS-DVS-P) clusters task executions thereby increasing the sleep
intervals and achieves more energy savings. CS-DVS-P minimizes the idle energy consumption to result
on an average 15% energy savings over the CS-DVS scheme.

6 Conclusions and Future Work

In this paper, we have presented a scheduling algorithm that consider the contributions of processor
leakage and resource standby energy to minimize the total energy consumption in a system. We show
that executing at the maximum or minimum processor speed need not be the optimal operating point.
Detailed power models of the resources are important in computing the optimal operating point. Incor-
porating the resource usage patterns and their power models is increasingly important as systems are
getting diverse with more resources contributing to the total energy consumption. Our experimental
results show that computing the critical execution speeds for tasks results on an average 10% energy
savings. The procrastination scheme increases the average energy savings to 15% by extending the sleep
intervals thereby controlling leakage power consumption. Such a scheduling framework will result in an
energy efficient operation of the system while meeting all timing requirements. We plan to extend these
techniques to scheduling multiple resources with DVS capability and their effects on system wide DPM
policies.

9

0.6

0.7

0.8

0.9

1

1.1

1.2

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 E

ne
rg

y

% processor utilization at maximum speed

Energy consumption normalized to no-DVS

no-DVS
 DVS

CS-DVS
CS-DVS-P

Figure 3. Energy consumption normalized to no-DVS

References

[1] Memtech SSD Corporation.http://www.memtech.com.

[2] Micron Technology, Inc.http://www.micron.com.

[3] Rambus Inc.http://www.rambus.com.

[4] Atheros Communications. Power consumption and energy efficiency comparisons of wlan prod-
ucts. InAtheros White Papers (http://www.atheros.com/pt/papers.html), May 2003.

[5] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Determining optimal processor speeds for
periodic real-time tasks with different power characteristics. InProceedings of EuroMicro Confer-
ence on Real-Time Systems, Jun. 2001.

[6] S. Borkar. Design challenges of technology scaling. InIEEE Micro, pages 23–29, Aug 1999.

[7] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. Irwin. Hardware
and software techniques for controlling dram power modes.IEEE Transactions on Computers,
50(11):1154–1173, 2001.

[8] X. Fan, C. Ellis, and A. Lebeck. The synergy between power-aware memory systems and processor
voltage. InWorkshop on Power-Aware Computing Systems, Dec. 2003.

10

[9] P. Gai, G. Lipari, and M. di Natale. Minimizing memory utilization of real-time task sets in single
and multi-processor systems-on-a-chip. InProceedings of IEEE Real-Time Systems Symposium,
Dec. 2001.

[10] Intel XScale Processor. Intel Inc.(http://developer.intel.com/design/intelxscale).

[11] S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management in systems
with multiple power-saving states.Trans. on Embedded Computing Sys., 2(3):325–346, 2003.

[12] R. Jejurikar and R. Gupta. Procrastination scheduling in fixed priority real-time systems. InPro-
ceedings of Language Compilers and Tools for Embedded Systems, Jun. 2004.

[13] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time em-
bedded systems. InProceedings of the Design Automation Conference, Jun. 2004.

[14] N. K. J. L. Yan, J. Luo. Combined dynamic voltage scaling and adaptive body biasing for hetero-
geneous distributed real-time embedded systems. InProceedings of International Conference on
Computer Aided Design, Nov. 2003.

[15] H. G. Lee and N. Chang. Energy-aware memory allocation in heterogeneous non-volatile memory
systems. InProceedings of International Symposium on Low Power Electronics and Design, pages
420–423, Aug. 2003.

[16] Y. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for reducing leakage power in hard
real-time systems. InEcuroMicro Conf. on Real Time Systems, Jun. 2003.

[17] J. Liu, P. H. Chou, and N. Bagherzadeh. Communication speed selection for embedded systems
with networked voltage-scalable processors. InProceedings pf International Symposium on Hard-
ware/Software Codesign, Nov. 2002.

[18] J. W. S. Liu.Real-Time Systems. Prentice-Hall, 2000.

[19] C. Locke, D. Vogel, and T. Mesler. Building a predictable avionics platform in ada: a case study.
In Proceedings IEEE Real-Time Systems Symposium, 1991.

[20] J. Luo, N. Jha, and L. S. Peh. Simultaneous dynamic voltage scaling of processors and communi-
cation links in real-time distributed embedded systems. InProceedings of Design Automation and
Test in Europe, Mar. 2003.

[21] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage scaling and adap-
tive body biasing for lower power microprocessors under dynamic workloads. InProceedings of
International Conference on Computer Aided Design, Nov. 2002.

[22] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. Critical power slope:
Understanding the runtime effects of frequency scaling. InProceedings of International Confer-
ence on Supercomputing, Jun. 2002.

[23] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying time and energy
constraints. InProceedings of IEEE Real-Time Systems Symposium, Dec. 2002.

11

[24] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems on variable
speed processors. InProceedings of International Conference on Computer Aided Design, pages
365–368, Nov. 2000.

[25] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic power management for portable
systems. InProceedings of the 6th annual international conference on Mobile computing and
networking, pages 11–19, 2000.

[26] Skipped for Blind Review. Apr. 2004.

[27] Transmeta Crusoe Processor. Transmeta Inc.(http://www.transmeta.com/technology).

[28] W. Zhang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and V. De. Compiler support for reducing
leakage energy consumption. InProceedings of Design Automation and Test in Europe, Mar. 2003.

12

