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Abstract 
Running an application on a general purpose processor is not very efficient and implementing the 
whole application in hardware is not always possible. The best option is to run the application on a 
customized data path that is designed based on the characteristics of the application. The 
instruction set interface in normal processors limits the possible customization of the data path. In 
NISC, the instruction interface is removed and the data path is directly controlled. Therefore, any 
customization in the data path can be easily utilized by the supporting tools such as compiler and 
simulator and one set of such tools is enough to handle all kinds of data paths. To achieve this 
goal, a generic model is needed to capture the data path information that these tools require. In 
this report we present one such model and show how it can be used for simulation and compilation. 
We also discuss the issues that must be addressed during compilation and simulation based on the 
proposed model.  
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1 Introduction 
In a Soc design, the system is usually partitioned into smaller components that execute a specific 
set of tasks or applications. These components are usually in the form of an IP, developed by a 
third party or reused from previous designs. The efficiency of the SoC design relies on efficient use 
of IP cores as well as use of efficient IP cores. Efficient use of an IP core depends on the tools and 
techniques that are utilized for mapping the application to the IP. On the other hand the efficiency 
of an IP depends on how well it matches the needs and behavior of the application. The system 
components may be implemented by pure software, using a general purpose processor; pure 
hardware using logic gates; or a mixture of software and customized hardware.  

General purpose processors are fairly easy to program and the size of the application is bounded by 
the size of the program memory, which is normally very large. However, because of their 
generality, these processors are not very efficient in terms of quality metrics such as performance 
and energy consumption. Such processors use an instruction set as their interface which is used by 
a compiler to map the application. The available compilers can perform well as long as the 
instruction set is fixed, very generic  and fairly simple (RISC type). In other words, the efficiency of 
general purpose processors and the efficient use of them are very much limited by their instruction 
set.  

Implementing a system component in hardware only using logic gates and blocks can be very 
efficient in terms of performance and energy consumption. However, they have very little 
flexibility and the size of the applications that they can implement is bounded by the available chip 
area. Because of the complexities involved in developing such components, the synthesis tools can 
work only on relatively small applications. High design complexity and cost of these components 
limits their use in SoC. 

A better option for implementing a system component or an IP is to have a customized hardware 
for each application that runs an optimized software. This approach is more efficient than using 
only general purpose processor and more flexible than using logic blocks. Application Specific 
Instruction set Processors (ASIPs) tried to achieve this goal by performing the following steps: 

1. Finding a proper and critical sub-functionality of the application as a candidate for speedup. 

2. Designing an efficient data path for executing the candidate sub-functionality. 

3. Designing an instruction and updating the processor instruction decoder accordingly. 

4. Updating the compiler to take advantage of the new complex instruction. 

5. Compiling the application to use the new improved data path. 

Typically in ASIPs, the complexity of the instructions generated in the third step is very much 
limited by the instruction decoder. This in turn limits the type of possible data paths and hence 
limits the range and complexity of possible application sub-functionalities that can be improved. 
On the other hand, it is very difficult to have the compiler use such complex instructions 
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efficiently. Capturing and modeling the internal behavior of the processor in terms of instruction 
set and then using the model for generating compiler have proven to be very difficult or even 
impossible. This is one of the reasons behind failure or limitations of retargetable compilers. We 
believe that the instruction set is an extra unnecessary layer of abstraction between the processor 
behavior and the compiler. In processors, the most complexity and also the critical path is usually 
in the instruction decoder. In compilers, instruction selection performs very poorly for complex 
instructions (which led to replacement of CISC with RISC). NISC, No Instruction Set Computer, 
addresses this problem by removing the instruction set interface. In other words, Steps 3 and 4 
from the above list will be removed and instead the compiler directly maps the application to the 
customized data path by using register transfer (RT) matching techniques rather than instruction set 
matching techniques. We will show that by using the NISC concept, virtually any type of data path 
can be supported. This has two very important implications: first, any application characteristics 
can be utilized to generate the most optimized possible data path for executing that application; and 
second, a single set of supporting tool chain; such as compiler and simulator; are enough to map 
any application to any customized (and proper) data path.  

The controller (instruction decoder, etc.) is usually the most complex part of a normal processor 
and therefore it contains the critical path and also requires the most verification effort. In addition 
to the two formerly described advantages, the NISC concept significantly simplifies the controller 
and therefore the NISC processors can run much faster than their traditional ASIP counterpart and 
require much less development (especially verification) effort. 

The rest of this report is organized as follows. Section 2 compares NISC with instruction set based 
processors. Section 3 describes how optimized NISC processors can be obtained for an application. 
Section 4 explains how a NISC processor is modeled and the issues involving in simulation and 
compilation are discussed in Sections 5 and 6, respectively. Finally, Section 7 concludes the report.  

2 NISC’s View of the Processor 
In general a processor is a sequential hardware that can be viewed as a controller and a data path 
as shown in Figure 1. In each step, the controller generates control bits for the data path to perform 
a specific task and gets a feedback from data path to determine the state of the circuit in the next 
step. To execute an application efficiently, we need to have an optimized data path for the 
application and map (compile) the application on to the data path by generating, customizing or 
configuring the controller. The utilization of the data path depends on its controllability and the 
interface that the controller provides for this purpose.  

Figure 1 - General sequential hardware 

In today’s processors, the exposed interface of the controller is the Instruction Set and the compiler 
or the programmer can only control the sequence of these instructions in the program memory. 

Controller Data Path 

Feedback 

Control 
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Every processor has a complicated controller that converts the sequence of instructions in memory 
(address space dimension) to a sequence of control words for each clock cycle (time dimension). 
An instruction implicitly describes the behavior of the data path at different times. In a pipelined 
data path, the behavior of instructions overlap in time and the controller must extract the overall 
exact behavior of the data path at each clock cycle. Figure 2 shows the typical structure of RISC 
(Reduced Instruction Set Computer) and CISC (Complex Instruction Set Computer) processors [1]. 
In CISC, each complex instruction is translated to a sequence of µ-instructions and then each µ-
instruction participates in the generation of the control words at each cycle. In other words, CISC 
requires two translations in address space dimension (application à sequence of complex 
instructions, and complex instruction à sequence of µ-instructions) and one translation in time 
dimension (µ-instruction à control word). In RISC, the instructions are simpler and directly 
participate in generation of control words.  

Figure 2 - RISC and CISC block diagram 

The complexity of the controller and the one dimensional control (address space dimension only) 
in RISC and CISC processors limit the compiler or programmer’s control for utilizing the data 
path. Therefore, any data path customization is very difficult to be reflected in the processors 
interface let alone, updating the compiler to use it. VLIW machines tried to address this problem by 
limitedly adding the time dimension to their interface and allowing the compiler to determine what 
part of the data path it wants to use. However, they still use the instruction set interface which 
requires a decoder and limits the control over the data path. For example, in TI-C6x [2] VLIW 
processors, the fetch and decode take six pipeline stages while execution takes only five pipeline 
stages. 

Because of the above complexities, the controller and data path in normal processors are fixed or 
have very limited customization capability. For some changes in the data path, the whole controller 
as well as a significant part of the supporting tools such as compiler and simulator must be 
redesigned. On contrary, any data path customization is possible in NISC and is easily supported 
by the tools.  
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The instruction set in normal processors represents the behavior of both the controller and the data 
path. By removing the instruction set abstraction in NISC, we can consider the behavior of 
controller and data path separately. With a proper controller, the compiler can efficiently compile 
an application to any custom data path. In other words, the CFG (control flow graph) of the 
application is compiled based on the features of the controller and the DFG (data flow graph) of the 
application is compiled to the custom data path. To achieve this goal, we eliminate any translation 
between the address space dimension and the time dimension as much as possible. The NISC 
compiler generates the proper control words and loads them in the program memory. As Figure 3 
shows, the controller should only load the control words and apply them to the data path. The 
control words in NISC may be wider than the RISC instructions. However, due to better utilization 
of parallelism, the number of NISC control words may be less than the number of RISC 
instructions. Therefore the size of program memory in both NISC and RISC is not significantly 
different.  

 

Figure 3 - NISC block diagram 

Because of the clear separation of controller and data path in NISC, a wide range of customizations 
are now possible in the system. When compiling the basic blocks (a set of operations that always 
run consecutively, i.e. there is no jump operation among them) of the application, the compiler only 
needs to know the features of the data path and generate the corresponding control words. In the 
next sections we will describe how data path is modeled and will point out some possible 
approaches for using the model in simulator and compiler. The controller of NISC can also be 
customized to improve the control flow of the application. Changing the number of pipeline stages 
in the controller, adding a hardware stack for storing the return address of a function call and 
adding a branch prediction are examples of possible customizations of the controller. This 
information must be considered by the compiler when handling the CFG of the application. 

3 Generating the Optimized NISC for an Application 
An efficient implementation of an application can be achieved by compiling the application on a 
customized data path that has been designed for that application. Figure 4 shows how this can be 
done using NISC processors. In this methodology, first, the application is profiled and analyzed to 
extract its important characteristics that can be used for generating a customized data path. This 
process can be done automatically or by the designer and should provide information such as depth 
and structure of pipeline, level of parallelism, type and configuration of components and so on. 
This information is captured in the NISC model and is used to derive the compiler and simulator.   
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 The compiler gets the application and the NISC model as the input and generates the 
corresponding control words. It translates each operation of the application into a set of register 
transfers and then schedules them in order to meet the resource and timing constraints. 

The simulator gets the sequence of the control words and simulates them on the model of the target 
NISC processor. The simulator serves two purposes: first, it validates the correctness of the timing 
and functionality of the compiler’s output; and second, it evaluates the performance metrics such as 
speed and energy consumption. The performance results of the simulator can be analyzed to fine 
tune the structure of the customized NISC processor. 

As Figure 4 shows, the NISC processor model plays the key role in this methodology. Its structure 
determines the flexibility of the analyzer or designer for suggesting more optimized processors. It 
also affects the quality and complexity of the simulator and compiler. In this report, we mainly 
focus on the details of this model and describe what information it should capture and how this 
information can be later used in the simulator or compiler.  

Figure 4 - NISC based methodology 

4 NISC Processor Model 
The NISC processor model is used mainly for three purposes: translating application operations to 
register transfers, constructing the control words from the set of register transfers, and decoding the 
control words back to their corresponding register transfers. Our NISC model includes three 
category of information: the clock frequency, model of controller, and model of data path. The 
model of controller captures the functionality of “Next Address Generator” unit, number of 
pipeline stages in the controller and the possible branch prediction strategy. The model of data path 
captures the flow and timing of possible data transfers in the processor as well as the mapping 
between the control bits of the units and their functionality. In this section, we first describe the 
model of data path and then review the modeling and support of multi-cycle components as well as 
pipelined data paths.  

4.1 Model of Data Path 
The model of data path captures the type and direction of possible register transfers in the system 
and shows how components of the system are connected. In other words, it shows how data should 
be moved between two points in the system and how long will it take. The data path is captured 
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through a connectivity graph. The connectivity graph is a directed graph that its nodes are the 
components of the data path and its edges represent a direct connection between the corresponding 
components. Each component has a set of input, output and control ports and the edges of the graph 
connect only ports of components. Figure 5 shows an example of a simple data path and its 
corresponding connectivity graph. In Figure 5(a), the register file RF is connected to bus B which 
derives one of the two input registers of the ALU. The ALU gets its inputs from registers a1 and a2 
and writes its output to register o1. Figure 5(b) shows the connectivity graph of this simple data 
path. In this graph, each component has a name and specifies its type. For example, component B 
of type Bus1 corresponds to the bus B in the data path of Figure 5(a). The ports of the components 
in the graph are determined by its type and are connected to the ports of other components to 
represent a point to point connection. For example, component ALU has two input ports i1 and i2 
and one output port o. The output port o of ALU is connected to the input port i of register o1. 
Therefore,  the ALU.o→o1.i edge indicates that data can be transferred from ALU to o1. 

 
(a)data path (b) connectivity graph 

Figure 5 - NISC model of a simple data path 

 Figure 5(b) shows only the input/output ports and does not show the control ports. The component 
types that are used in the connectivity graph of Figure 5(b) are described in Figure 6 where the port 
configuration, timing information and behavior of each component type is shown. For example, the 
component type Reg1 defines a register with one input port i and one output port o and control 
ports ld and clk . It also defines the setup time for input port i, Ts(i), the setup time for control port 
ld, Ts(ld), and the delay of output port o, Td(o). The behavior of the component is described based 
on the values of ports. The Reg1 component type has a behavior that is synchronized with the clock 
and determines that on a clock edge if the value of control port ld is true, then the output port o gets 
the value of the input port i. Not that he RegFile component has two behaviors. The one that writes 
to the internal storage is synchronized with the clock while the behavior that reads from the internal 
storage is independent of the clock. s 
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Figure 6 - Component database for Figure 5 

In general, the components of the connectivity graph are selected from a component database 
which defines the ports, timing, control bits, behavior and attributes of each component type. The 
component attributes are mainly used by the compiler to map and bind the application operation 
and variables to the components of the connectivity graph. Examples of these attributes are: typed 
operations, such as unsigned addition, singed addition; typed storages, such as floating point 
storage, short integer storage. The behavior of a component describes the data transfers and 
operations between the ports of that component. The behavior is used by simulator to execute the 
sequence of control words generated by compiler. 

The control bits define a mapping between the attribute values and the actual values of control 
ports of a component. This information is used for generating the control words after compilation 
and decoding the control words during simulation. 

The timing information of the components is used: by a data path analyzer to extract information 
such as the critical path; by compiler to determine number of required clock cycles for a register 
transfer; and by simulator to validate the timings and evaluate the performance. The timing 
information is represented in four different forms: 

• Setup time Ts(x) for input or control ports. It shows the amount of time that the data must 
be available on ports x before the clock edge. 

• Output Delay Td(x) for output ports. It shows the amount of time after the clock edge that it 
takes for the value to appear on output port x. 

• Port-to-Port Delay Tpp(x→y) from input or control ports to output ports. It shows the 
amount of time that it takes for the effect of the value of input or control port x to appear on 
the output port y. 

• Sequence relation or time difference Tdif(x<y) between any two ports. It shows the amount 
of time that an event on y should or will happen after an event on x. Note that all other 
timing forms can be represented with Tdif. For example, Ts(x) = Tdif(x<clk) and 
Td(x)=Tdif(clk<x). However, the other forms carry more semantic information that can be 
used by the tools. 

Timing:{ 
Tpp(i1→o)=1.5;  T d(i2→o)=1; 
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Behavior:{ 
  switch(op){ 
    case ADD: o= i1+i2; break; 
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The structure of ports (and hence the interpretation of timing information) for each component 
depend on its type. We define seven types of components as follows: 

1. Register is a single-storage clocked component that has at least one input port and one 
output port. 

2. Register File is a multi-storage clocked component. For each input or output port, there is 
at least one address control port whose value determines which internal storage element is 
read by the corresponding output port or is written by the corresponding input port. 
Usually, for each input port a single bit control port enables the write. Writes are always 
synchronized with the clock, i.e. the address and input port value are used to update the 
internal storage only at the edge clock. Therefore, for input ports and their corresponding 
address control ports a setup time, Ts, must be defined. The reads from register file are 
independent of the clock and any time the value of a output address changes, the value of 
the corresponding internal storage appears on the output port. Therefore, for an output port 
r and its corresponding control port rIidx, Tpp(rIidx→r) must be defined. Other control 
ports may be used for enabling/disabling the reads or writes. 

3. Bus is component that has multiple input and control ports but one output port. It does not 
have any internal storage and therefore is not clocked. 

4. Memory is also a multi-storage component similar to Register File. However, it usually 
works as a combinational logic (clock independent) and may use only one address control 
port to determine the internal storage to be used for read or write. Typically, a chip-enable 
control signal enables/disables the memory and a read-write control signal determines the 
behavior of the memory. The timing protocol of memory can be captures through several 
Tpp and Tdif timings. 

5. Computational Unit is a combinational unit that performs an operation on the input data 
and produces an output. It may have control signals for determining the type of its 
operation. 

6. Pipelined Computational Unit is similar to the Computational Unit but has a specific 
number of internal pipeline stages. Therefore, instead of having port-to-port delays, a setup 
time is defined for the input and control ports relative to the first internal pipeline stage and 
an output delay is defined for the output ports relative to the last internal pipeline stage.  

7. Compound component is an abstraction of a connectivity graph that can be used as a 
component in another connectivity graph. By using this component, the model can support 
hierarchical designs. The ports, timing and behavior of this component are defined by its 
corresponding connectivity graph. Before any processing in the tools, these components 
may be expanded and the connectivity graph if flattened.  

To enable further customization of the data path towards the characteristics of the application, the 
NISC data path model should also support multi-cycle and pipelined data paths to provide faster 
and better performance. Pipelining not only improves the resource utilization but also can help 
reducing the clock period. By supporting multi-cycle component, the clock period is no longer 
limited by the critical path. In the next sections, we describe how these features are captures and 
review their possible effects on the simulator and compiler. 

4.2 Multi-cycle Component support 
A multi-cycle component takes more than one clock cycle to generate its output. This means the 
clock frequency is not necessarily bounded by the critical path. In the NISC processor model, 
whenever the clock period is less than the delay of component, that component should be treated as 
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multi-cycle. Therefore, no special representation is needed for such components in the model of 
data path. Whenever a register transfer involves a multi-cycle component, the NISC compiler must 
expand the corresponding control bits over multiple cycles during the generation of control words. 
In this way, the control words guarantee the correct execution and therefore the simulator does not 
need to handle multi-cycle components different than the normal ones. 

To understand this concept better, consider the following example based on data path of Figure 5. 
Assume the operation x=y+z is translated to o1=ALU(+, a1, a2) register transfer which takes four 
units according to the connectivity graph of Figure 5. If the clock period is at least 4 units, then the 
whole operation can be done in one cycle and the control word would be: 

 clock n:   o.load = 1; ALU.op = +; 

Now assume that the clock period is only two units. For a correct execution, the control signals of 
the ALU must remain unchanged during two consecutive cycles and the result must be loaded in 
the output register at the end of the second cycle. Therefore the control word would be: 

 clock n:   ALU.op = +; 
 clock n+1:  o1.load = 1; ALU.op = +; 

A multi-cycle component can be pipelined. This means that the control and input values need to 
remain stable only during one cycle but the output will be generated after multiple cycles. Assume 
that the ALU component is one stage pipelined and Ts(i1)=0.5, Ts(i2)=0, Td(o)=1. With a clock 
period of two units, the control word would be:  

 clock n:   ALU.op = +; 
 clock n+1:  o.load = 1;  

All of these cases can be simply detected by comparing the clock period with the timings of data 
transfers captured in the connectivity graph.  

4.3 Pipelined data path 
Pipelining is a powerful parallelizing feature that inevitably appears in any modern processor. The 
pipeline in a NISC processor is divided into two parts. The initial part of the pipeline is in the 
controller and only fetches the control words from the memory. This part of the pipeline is very 
simple and almost identical in all NISC processors. The second part of the processor pipeline 
resides in the data path. The flow of data in the data path pipeline is solely controlled by the 
fetched control word. In connectivity graph of the data path, the stages of the pipeline are 
represented by registers and pipelined computational units. Since the control words describe the 
complete behavior of the data path pipeline, the simulator can easily handle any complex pipeline 
structure by simply applying the control bits to the components and simulating individual 
component behaviors. However, the compiler must generate the exact and detailed behavior of the 
pipeline and therefore, the complexity and the structure of the pipeline have a direct effect on the 
complexity of the algorithms used in the compiler. In Section 6, we briefly describe what the 
compiler needs to do to handle the pipeline.  

5 Simulation 
The simulator is used for both validating the output of the compiler and evaluating the performance 
of the NISC processor. The output of the compiler has both timing and functionality information 
that must be validated. Validating the timing of register transfers can be statically done using the 
connectivity graph and comparing its information against the value of control bits in the control 
words. Therefore, the simulator needs only to validate the functionality of the output of the 
compiler. On the other hand, since each control word represents the behavior of the processor in 



 10 

one clock cycle, the number of executed control words is equal to the number of clock cycles that 
the execution takes. In this way, a functional simulation of the control words also represents the 
performance of the processor. 

Considering the general structure of a NISC processor shown in Figure 3, the main loop of the 
simulator is very simple and straight forward. Figure 7 shows the pseudo code of the simulation 
main loop. In order to calculate the next value of PC, the first part of the loop executes the 
functionality of the “Next Address Generation” unit using the content of control word and the 
feedback from data path. Then the data path pipeline is executed using the contents of the current 
control word. After the next control word is fetched from memory, the value of PC is set to the 
calculated new address.  

ControlWord cw = 0; 
while (not end of program) 
{ 
 nPC = calculate next PC from cw and data path feedback; 
 execute ( cw ); 
 cw = Mem[PC]; 
 PC = nPC; 
} 

Figure 7 - Pseudo code of the simulation main loop 

The main part of the simulator is a big function that decodes the control word and performs the 
corresponding register transfers in the data path. To generate this function, the flattened 
connectivity graph is traversed in reverse topological order to construct the register transfer blocks. 
A register transfer block is a sequence of operations that start with one or more reads from storage 
components and ends with only one write to a storage component. The register transfer blocks are 
generated in reverse topological order to ensure all storages are read before they are written. Figure 
8 shows the simulation main function of the data path of Figure 5. In this pseudo code, the control 
word cw contains all of the control bits of the components of the data path. For example, cw.a1.ld 
is the control bit of the control word that is connected to the ld bit of component a1. During the 
traversal of the connectivity graph, the behavior of each component is copied from its 
corresponding component type. In the second register transfer block of Figure 8, the first, third and 
fifth lines are the behaviors of the RegFile, Bus1 and Reg1 from Figure 5(c) respectively. Also, for 
every edge in the connectivity graph, an assignment is generated in the simulation function. For 
example, in the second register transfer block of Figure 8, the second and forth lines represent the 
RF.r→B.i and B.o→a1.i edges of the connectivity graph of Figure 5(b) respectively. 
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void execute(ControlWord cw) 
{ 

//Register transfer Block 1 
ALU.i2 = a2.o; 
ALU.i1 = a1.o; 
switch (cw.ALU.op) 
{ 
 case Add: ALU.o = ALU.i1 + ALU.i2; break; 
 case Sub: ALU.o = ALU.i1 - ALU.i2; break; 
 //… 
} 
o1.i = ALU.o;  
if (cw.o1.ld) o1.o = o1.i; 

 
 // Register transfer Block 2 
  RF.r = RF.regs[cw.RF.idx]; 
  B.i = RF.r;  
  if (cw.B.b1) B.o = B.i; 
  a1.i = B.o;  
  if (cw.a1.ld) a1.o = a1.i; 
 
 // Register transfer Block 3 
  //other part of the data path that writes into a2 
  a1.i = … 
  if (cw.a2.ld) a2.o = a1.i; 
} 

Figure 8 - Main simulation function for data path of Figure 5 

The generated code for the execute function in the simulator is compiled and optimized by a 
conventional C or C++ compiler. During this optimization, each register transfer block is reduced 
to manipulation of register data only. Figure 9 shows the optimized version of Figure 8. 

void execute(ControlWord cw) 
{ 

//Register transfer Block 1 
if (cw.o1.ld) 
 switch (cw.ALU.op) 
 { 
  case Add: o1 = a1 + a2; break; 
  case Sub: o1 = a1 - a2; break; 
  //… 
 } 

 
 // Register transfer Block 2 
  if (cw.a1.ld && cw.B.b1) 
   a1 = RF.regs[cw.RF.idx]; 
 
 // Register transfer Block 3 
  //other part of the data path that writes into a2 
  if (cw.a2.ld) a2 = …; 
} 

Figure 9 - Optimized main simulation function for data path of Figure 5 
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6 Compilation 
To execute an application on a given data path, the compiler must translate each operations of the 
application to sequences of register transfers by generating proper control words for each cycle. As 
in a typical synthesis tool, the compilation starts by converting the operations in application to 
three address operations. Then the typical phases of register allocation, operation binding and bus 
selection are performed.  

Register allocation can be done automatically or manually by the designer. The typical approach is 
to map all of the variables of the application to a register file or a scratch pad. While this is a 
straight forward approach, it can limit or prevent the utilization of features such as operation 
chaining and feedback paths. As an alternative, it is possible to map only the inputs and outputs of 
the basic blocks to the register file or scratch pad and let the compiler decide where the 
intermediate values in basic block should be stored. This approach can reduce the register pressure 
and significantly improve the quality of the results. 

After knowing where the data are stored (register allocation), the operation binding phase 
determines what unit in the data path must be used to perform the required operation on the data. 
Among the available units that perform a specific operation, the selection can be done based on the 
unit’s performance, power consumption or any other desired criteria.  

Finally, if the allocated registers that store the data and the selected unit that performs the operation 
are not connected directly, the data must be moved from the registers to the unit via one or more 
busses. This is done in the bus selection phase.  

The output of the compiler is a sequence of register transfers scheduled at different clock cycles. 
The set of register transfers that happen in the same cycle determine the value of control bits in that 
cycle.  

As we mentioned earlier in Section 4, compiling simple operations and supporting multi-cycle 
components is straight forward and is done by finding data transfer paths in the connectivity graph 
and generating the control words by comparing the timings of the selected path with the clock 
cycle period. In the rest of this section, we briefly mention the issues that are involved in handling 
the data path pipeline in the compiler. 

Since the data are read at the beginning of a pipeline path and the processor status (register file, 
memory and status bits) is updated at the end of it, the register transfers must be carefully 
scheduled to make sure the data and control dependencies are satisfied. For any pipeline structure, 
data dependency can be handled by fairly simple algorithms. However, handling control 
dependency especially in presence of speculative execution requires extra care and the complexity 
of corresponding algorithms vary depending on the structure of pipeline.  

In a pipelined processor, there is always a delay between issuing a branch command and updating 
the PC. This is delay, known as branch delay, is because of: first, delay of calculating the target 
address; and second, delay of calculating the condition for conditional branches. In the simplest 
case, the control words that are executed during the branch delay should do nothing (equivalent to 
NOP in normal processors). To mask the branch delay, either the compiler moves some operations 
after the branch (branch slot) or the processor predicts the target address and executes the 
operations speculatively (branch prediction). In case of branch prediction, only the operations that 
do not change the processor status can be executed speculatively.  

In a uniform pipelined data path, all pipeline paths in the processor have the same length and the 
branch delay is similar for all operations. In this way branch handling is significantly simplified 
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and the compiler performs a fixed algorithm irrespective of the current schedule of pipeline paths. 
Figure 10 shows a NISC processor with a uniform pipelined data path. In this processor, 
comparison, ALU operation and multiplication finish in the same pipeline stage. Because of the 
pipeline in the controller, a non-conditional branch takes at least one cycle to be resolved while a 
conditional branch will take four cycles to resolve. If the address generation uses a branch 
prediction, the first four control words (parallel operations) of a basic block must not update the 
processor status, i.e. they must not write to register file or memory. In absence of branch 
prediction, for unconditional branches one NOP and for conditional branches four NOPs must be 
inserted after the branch.  

Figure 10 - NISC with uniform pipeline paths 

A very general pipelined data path may contain multi-cycle units with different delays or different 
number of pipeline stages in different pipeline paths. We refer to this general case as 
heterogeneous pipelined data path. In a heterogeneous pipelined data path, the branch delay 
depends on the controller pipeline and the pipeline paths that update the status register. Therefore, 
branch delay of a conditional branch depends on the path that has been selected for calculating the 
condition and updating the status bits. For example, in Figure 11 two different paths with different 
delays can update the status register. The compiler may schedule a condition on any of these paths 
depending on the availability of the resources. In other words, the branch delay depends on the 
schedule and is not fixed any more. The number of NOP operations or the number of initial 
operations of a basic block that can be speculatively executed depends on their delay as well as the 
schedule of previous conditional operations. 
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Figure 11 - NISC with heterogenous pipeline paths 

In this section we presented the problems and issues that must be addressed in the compiler. The 
suggested approaches are included in this report to show that the information captured by the 
model are sufficient for addressing the issues involved in compilation of applications for a NISC 
processor. 

7 Conclusion and Future work 
In this report, we elaborated the concept of NISC and compared it with normal processors. By 
removing the instruction interface in NISC any application characteristics can be utilized to 
generate the most optimized possible data path for executing that application. Also, a single set of 
supporting tool chain; such as compiler and simulator; are enough to map any application to any 
customized (and proper) data path. To achieve this goal a general model is necessary that can 
capture any data path characteristics and can be used by simulator and compiler.  

NISC data path is captured by a connectivity graph whose nodes represent the components of the 
data path and edges show directed connections between the ports of the components. The 
components of the graph are selected from a database of component types. We showed that this 
model is general enough to capture advanced features such as multi-cycle components and 
pipelined data paths. We also showed how information of the model can be used to generate a 
simulator and to address the issues involved in compilation. 

Our work will focus on mainly three areas: 

• Modeling: we have done preliminary investigation on the proposed model in this report to 
make sure it can handle general cases and can provide the necessary information for simulator and 
compiler. More extensive analysis will be done in the future to make sure that the proposed model 
can capture all the necessary information of complex real life components.  

• Simulation: As described in the report, the functional and cycle accurate simulators will be the 
same for a NISC processor. Therefore, it is important to have a fast simulator and further research 
will focus on developing high performance simulation techniques for NISC.  
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• Compilation: the NISC compiler must translate the operations of the application to a sequence 
of control words based on the model of data path (captured in the connectivity graph). This 
compiler may use techniques from both the traditional compilers and the synthesis tools. In long 
term, the following optimizations and techniques must be studied and implemented in the compiler: 

• Multi-cycle component support which will remove the upper bound on the clock cycle. 

• Better register allocation. Since there is more control over data path of NISC, the variables 
can be assigned to storages other than register file. For example, input/output registers of 
the components in the pipeline can be used to store the temporary values and improving the 
performance by chaining the operations. 

• Heterogeneous pipeline support to improve performance through better customization of 
data path. Heterogeneous pipelines require more complex algorithms mainly for handling 
the flow of the program, i.e. branch operations.  

• Speculative execution support to improve the utilization of resources and improving the 
performance. 

 The research on simulator and compiler will also help us verifying information and structure of the 
model and improving it, if necessary. 
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