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Abstract

Preemption threshold scheduling (PTS) enables designing scalable real-time systems. PTS not only
decreases the run-time overhead of the system, but can also be used to decreases the number of threads
and the memory requirements of the system. In this paper, we combine preemption threshold scheduling
with dynamic voltage scaling to enable energy efficient scheduling in real time systems. We consider
PTS with task priorities defined by the earliest deadline first policy. We present an algorithm to com-
pute threshold preemption levels for tasks with given static slowdown factors. The proposed algorithm
improves upon known algorithm in terms of time complexity. Using our approach, we show that PTS
can be used to substantially minimize the context switching overhead even in the presence of slowdown.
Experimental results show that preemption threshold scheduling reduces the context switches by50%-
90%. Further, we describe a dynamic slack reclamation technique that working in conjunction with PTS
and yields further energy gains from 10-50% depending upon availability of slack.
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1 Introduction

With increasing mobility and proliferation of embedded systems, low power consumption is an im-
portant aspect of embedded systems design. Generally speaking, the processor consumes a significant
portion of the total energy primarily due to increased computational demands and computing power in
these systems. Scaling the processor frequency and voltage based on the performance requirements can
lead to considerable energy gains. It is known that preemptability is a necessary requirement to achieve
higher processor utilization and optimal slowdown [2, 3]. However, preemptive scheduling has its addi-
tional costs as compared to non-preemptive scheduling. Though preemptive scheduling achieves higher
utilization, it is not always required to preempt a lower priority task.Preemption threshold scheduling
[28] [29] allows a task to disable preemptions from tasks up to a specified preemption threshold pri-
ority. Tasks with a priority greater than the preemption threshold priority are still allowed to preempt.
The preemption threshold scheduling model has been shown to reduce the run-time costs by eliminating
unnecessary task preemptions. Furthermore, PTS allows tasks to be partitioned into non-preemptive
groups to minimize the number of threads [29] and the stack memory requirement [8], thereby leading
to scalable real-time systems.

It is important to minimize context switching taking into account its associated overhead. Context
switching typically consists of saving the registers and updating the task control block (TCB) so as
to reflect the context switch. In addition, there is an associated overhead of computing the highest
priority task in the system and restoring its context when it resumes execution. This context switch
overhead is shown to be of the order of 2-30µsecfor Linux and Windows operating system on a personal
computer [5]. Though task preemption takes only a few microseconds, the effective time and energy
overhead of preemption is larger when considering the energy consumption of components like caches
and Translation Look-aside Buffers (TLBs) which rely on the locality of references. Since the execution
resumes at a new location on a context switch, it can lead to increased time and energy consumption
in these components. Further, if tasks use other resource such as floating point units (FPUs) and other
co-processors, the context of these resources must be saved as well.

Caches are an important source of variability in context switching overheads. Based on the processor
architecture, a cache miss can result in a delay between 4 to 50 processor cycles [22]. Mogulet al.
[23] show that the CPI (cycles per instruction) increases by 4%-6% over the 100;000 instructions after
a context switch. The effect of a context switch on cache performance has also been studied in the
last decade. Agarwalet al. [1] show that the cache miss rate increases with multi-tasking. Tagged
caches are used in multi-programming environments to avoid flushing the cache at every context switch.
Even with tagged caches, the cache miss rate increases by 30% to 40% due to multi-programming.
If the cache is flushed on every context switch, the miss rate increases up to 5 times. Furthermore,
when flushing a dirty data block, it needs to be written back to memory. Agarwalet al. also show
that 30%-50% of the data cache lines are dirty and need to be written back to the memory (or L2
cache). The important point to note is that the energy per memory access increases by 1 to 3 orders of
magnitude for each higher level of the memory hierarchy [7], [18]. Hence, cache misses result in a large
energy overhead in the memory subsystem, in addition to the time overhead. Filter caches, TCM (tightly
coupled memory) and dedicated buffers have been proposed for improved performance, which add to the
overhead due to context switching. Translation Lookaside Buffers (TLBs), used for translation of virtual
to physical address and Branch Target Buffers (BTBs), used in predicting the target addresses of branch
instructions also rely on locality of references, and add to the context switching overhead. Techniques
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like prefetching [35] and Hit-under-Miss [13] are useful in reducing the time overhead, however the
energy overhead does not decrease.

The context switch overhead further escalates as techniques such as Dynamic Voltage Scaling (DVS)
and Dynamic Cache Reconfiguration (DCR) are used to decrease the energy consumption. These two
techniques rely upon assignment of different slow down factor [2] and different cache configurations
[33] that leverage differences in task characteristics to minimize power consumption. This increases the
context switch overhead since tasks (applications) require architectural reconfigurations (fine tuning)
such as DVS, DCR etc. on a context switch. Thus in addition to the context switch overhead, tasks
can have an overhead of changing the processor speed and cache configuration. Though processors like
PowerPC 405LP [6] support a voltage change while executing a task, processors like Xscale [13] have an
overhead of 20µsecsto change the processor speed. Similarly cache reconfiguration has the overhead of
flushing the entire cache and beginning execution with an empty cache. As mentioned earlier, flushing
the cache at every context switch can increase the cache miss ratio by up to 5 times. More recently,
multi-core architectures [16] have been proposed for energy efficiency, where different cores provide
an energy efficient execution based on the time and energy budget. With tasks assigned to different
processing cores, the context switch overhead can be as large as a processor shutdown overhead. Thus
it is important that the context switches be reduced to the minimum.

Preemption threshold scheduling (PTS) eliminates unnecessary context switches, thereby saving en-
ergy. In this paper, we integrate processor slowdown with preemption threshold scheduling to enable
scalable and energy efficiency real-time systems. Given task with static slowdown factors, we propose
an algorithm to compute the preemption threshold levels for tasks that runs in timeO(n2). This improves
upon known algorithms that at best areO(n3). We show that PTS significantly reduces the number of
context switches. We also propose a dynamic slack reclamation scheme that works in conjunction with
PTS to minimize the system energy based on run-time conditions.

The rest of the paper is organized as follows: The related work is discussed in Section 2. In Section
3, we present an algorithm to compute the task preemption threshold levels under the EDF priority as-
signment. A dynamic slack reclamation algorithm that works in conjunction with preemption threshold
scheduling is discussed in Section 4. The experimental results are given in Section 5. Finally, Section 6
concludes the paper with future directions.

2 Related Work

Previous work on energy aware scheduling mainly focuses on preemptive scheduling, which is com-
monly used in processor scheduling. Among the earliest works, Yaoet al. [31] presented a optimal
off-line algorithm to schedule a given set of jobs with arrival times and deadlines. For a similar task
model, optimal algorithms have been proposed for fixed priority scheduling [25, 32] and scheduling
over a fixed number of voltage levels [17]. The problem of scheduling for real-time task sets for energy
efficiency has also been addressed. Real-time schedulability analysis has been used in previous works
to compute static slowdown factors for the tasks [27], [10]. Aydinet al. [2] address the problem of
minimizing energy, considering the task power characteristics. Dynamic slowdown techniques [24], [3],
[15] have been proposed to further increase the energy gains at run-time. The problem of maximizing
the system value for a specified energy budget, as opposed to minimizing the total energy, is addressed
in [26].
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Non-preemptive scheduling has been addressed in the context of multi-processor scheduling. Schedul-
ing periodic and aperiodic task graphs which capture the computation and communication in a system
is considered in [21],[11]. Zhanget al. [34] have given a framework for non-preemptive task schedul-
ing and voltage assignment for dependent tasks on a multi-processor system. They have formulated the
voltage scheduling problem as an integer programming problem. The problem of minimizing the energy
consumption by performing a slowdown tradeoff in the computation and communication subsystems is
addressed in [20], [19]. Previous work on energy aware scheduling considers either preemptive priority
scheduling or non-preemptive scheduling.

Preemption threshold scheduling (PTS) for fixed priority systems has been proposed by Wang and
Saksena [28], [29]. The authors show that this scheduling model improves schedulability, withholds
unnecessary preemptions and reduce the number of threads (processes) in the system thereby leading
to scalable system designs. Gaiet al. [8] extend this scheduling model to the EDF priority assignment
and show that it can reduce the memory requirements of the system. Recent works have extended this
model to consider scheduling in the presence of task synchronization [14]. Processor slowdown and
preemption threshold scheduling have not been addressed and we propose static and dynamic slowdown
algorithms that work in conjunction with preemption threshold scheduling.

3 EDF Preemption Threshold Scheduling

Earliest Deadline First (EDF) scheduling is the optimal scheduling policy and can achieve a processor
utilization of 1. In this section, we consider preemption threshold scheduling under the EDF priority
scheduling. The necessary and sufficient condition for the feasibility of a task set is that the processor
utilization be less than or equal to one,∑n

i=0
Ci
Ti
� 1. Considering task slowdown factors, the feasibility

condition is that the utilization under the given task slowdown factors be at most 1. Given a slowdown
factor ofηi for taskτi,

n

∑
i=0

1
ηi

Ci

Ti
� 1 (1)

is a necessary and sufficient feasibility test under EDF scheduling.

3.1 Preemption Threshold Scheduling

Preemption threshold scheduling has also been extended to EDF scheduling policy [8], and this anal-
ysis can be applied to other optimal dynamic priority scheduling policies. Similar to task priorities in
fixed priority systems, task preemption levels can be used for dynamic priority systems. Task preemp-
tion levels have been introduced by Baker [4], where apreemption level, π(τ), is associated with each
task in addition to the task priority. The essential property of the preemption level,π(τ), is that a taskτ0
is not allowed to preempt another taskτ unlessπ(τ0)> π(τ). The preemption level is statically assigned
to each job and applies to all execution requests of a job.

Similar to the preemption threshold priority, a threshold preemption levelγ(τi) is defined for each task.
When a task begins execution its preemption level is raised to its threshold preemption level. Under the
preemption threshold scheduling, a taskτ0 preempts a taskτ, if taskτ0 has a higher priority and a higher
preemption level than the taskτ. Since a task preemption level is raised to its threshold preemption level
γ(τ), if τ0 preemptsτ then.

P (τ0)> P (τ) andπ(τ0)> γ(τ) (2)
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When a higher priority task does not preempt a lower priority task, we say that the higher priority task
is blocked. Note that the feasibility of the task set is guaranteed in the presence of this blocking.

3.2 Feasibility Test

We discuss the feasibility of a task set with assigned preemption levels (π(τ)) and threshold preemp-
tion levels (γ(τ)). With the task preemption levels being inversely proportional to the task period, all
tasks satisfy the definition of preemption level [4]. Under preemption threshold scheduling, a task can
be blocked by lower preemption level tasks that have a higher or equal threshold preemption level and
the blocking time,Bi for a task is given by

Bi = maxj

�
Cj

η j
jπ(τi)> π(τ j) andπ(τi) � γ(τ j)

�
(3)

The computation ofBi for each task takes time linear in the number of task and computing theBi values
for all n tasks takesO(n2) time. A sufficient condition for the feasibility of a task set, proposed by Baker
[4] is given below.

8i
i = 1; :::;n

Bi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (4)

Given theBi values the feasibility of the task set can be computed in linear time. Since the computation
of Bi takesO(n2) time, the time required to test the feasibility of the task set isO(n2).

3.3 Computing Threshold Preemption Levels

Given the task preemption levels (priority) for a system with dynamic (fixed) priority assignment, the
computation of task threshold preemption levels (preemption threshold priority) is discussed in [28] [8].
A search space ofO(n2) is explored by the algorithms to compute the optimal threshold preemption
levels. The algorithms invoke a feasibility test for each of theO(n2) choices in the search space. The
feasibility test discussed above (Equation 4) requires timeO(n2), the worst case time complexity of the
algorithms isO(n4). Note that, based on the order in which the search space is traversed, theBi values
can be incrementally computed in linear time. Thus the feasibility at each element can be computed in
linear time, leading to a worst case computation time ofO(n3). We present a faster algorithm which runs
in a worst case time ofO(n2) to compute the same solution.

To have a faster algorithm, we compute a worst case blocking time,Yi, that each taskτi can tolerate
while ensuring all deadlines. The algorithm begins with the tasks sorted in non-decreasing order of their
relative deadline, withi < j implying Ti � Tj . The task set is feasible if the maximum blocking timeYi

for each taskτi satisfies the feasibility test given by Equation 4,

8i
i = 1; :::;n

Yi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (5)

We compute the threshold preemption levels using theYi values. The algorithm to compute the thresh-
old preemption levels is given in Figure 1. Using Equation 5, we can compute theYi values in linear time
as seen in the first four lines of the algorithm. A task does not block any other task with the threshold
preemption level of a task equal to its preemption level, and the threshold preemption level of each task
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Algorithm 1 Computation of Task Preemption Threshold Level,γ(τ)
1: for (i = 1,Ui = 0; i � n; i i +1) do

2: Ui =Ui +
1
ηi

Ci
Ti

;

3: Yi = (1�Ui) �Ti;

4: end forfEnd for loop (i);g

5: for (i = 1; i � n; i i +1) do

6: γ(τi) π(τi);

7: for (k= i�1; k> 0 and Yk�
Ci
ηi

; k k�1) do

8: γ(τi) π(τk);

9: end forfEnd for loop (k)g

10: end forfEnd for loop (i)g

is initialized to its preemption level (line 6). The threshold preemption level of the tasks are computed
one task at a time. In each step of the algorithm, the threshold preemption level of a taskτi is increased
to the next higher preemption level taskτk, if the feasible of the task set is maintained. We show that we
can incrementally test the feasibility of the task set in constant time. It is known that a task is blocked
by at most one task under preemption threshold scheduling [28]. Hence, ifYk is greater than or equal
to Ci=ηi , the execution time ofτi, then taskτk meets its deadline even if it is blocked by taskτi. Thus
raising the task threshold preemption level,γ(τi) to π(τk) maintaining the feasibility of the task set (line
8). Having computed theYi values for each task, the feasibility decision can be made in constant time
as shown in line 7 of the algorithm. Thus we can traverse the search space ofO(n2) with a constant
time feasibility check, leading to aO(n2) time algorithm. The threshold preemption level of each task
cannot be incremented beyond the threshold preemption level computed by the algorithm, since a fur-
ther increase in the threshold preemption level increases the blocking time and violates the conditions in
Equation 4.

4 Dynamic Slack Reclamation

A task usually completes its execution earlier than its worst case number of cycles, resulting in run-
time slack. This slack can be used to further reduce the processor speed to result in further energy gains.
In this section, we present a slack reclamation scheme for the PTS and is called the Preemption Threshold
Scheduling with Dynamic Reclamation (PTS-DR) algorithm. With preemption threshold scheduling,
higher priority tasks can be present in the ready queue during the execution of a job and we cannot use
traditional slack reclamation techniques. We show that tasks can reclaim slack generated by higher or
equal priority tasks than the highest priority task in the ready queue, with all tasks meeting the deadline.
This is achieved by priority inheritance, wherein if a higher priority task does not preempt the taskτc

being currently processed, the taskτc inherits the priority (deadline) of the highest priority task in the
ready queue. A task can reclaim run-time (slack) with priority higher than or equal to its current priority
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(based on priority inheritance), while ensuring all task deadlines.
We definerun-timeof a job as the time budget assigned to the job considering its slowdown factor.

The run-time of a job with a workload,e, and slowdownη, is e=η. Each run-time also has a priority
associated with it, which is set to the job priority. The PTS-DR algorithm is given in Figure 2. The
algorithm reserves a run-time for each job based on its static slowdown factor as shown in line 1 of
the algorithm. A job consumes run-time as it executes. The unused run-time of jobs is maintained in
a priority list called theFree Run Time list (FRT-list). The FRT-list is maintained sorted by priority of
the run-times, with the highest priority at the head of the list. Run-time is always consumed from the
head of the list. The slack arises due to the early completion of a task and its unused run-time is added
to the FRT-list with the same priority as the original priority with which it began execution. A job can
use its own run-time as well as the free run-time having a priority no smaller than its priority. If a higher
priority job does not preempt a task, then the task inherits the priority of the highest priority ready job.
Thus the free run-time that can be reclaimed has a priority no smaller than the jobs in the ready queue.

We use the following notation and definitions in the PTS-DR algorithm as explained below.

� Rr
i (t) : the available run-time of the current instance of taskτi at timet.

� RF
i (t) : the free run-time available to taskτi at timet. The run-time from the FRT-list with priority
� P (τi)

� Cr
i (t) : the residual workload of taskτi.

The dynamic slowdown factor is the ratio of the residual workload to the available run-time.
The following rules are used in PTS-DR algorithm in consuming the available run-time.

� As taskτi executes, it consumes run-time at the same speed as the wall clock (physical time). If
RF

i (t) > 0, the run-time is used from the FRT-list, elseRr
i (t) is used.

� When the system is idle, it uses the run-time from the FRT-list if the list is non-empty.

Note that the rules need to be applied only on the arrival of a task in the system and on task completion.
With the task deadline used as the priority of the run-time, we show that all tasks meet the deadlines.

Theorem 1 : All tasks meet the deadline when scheduled by the PTS-DR algorithm.

The proof is presented in the Appendix A.

4.1 Dynamic Slack Reclamation with Other Implementation Architectures

Preemption threshold scheduling has the advantages of minimizing context switches. In addition,
preemption threshold scheduling also enables partitioning the task sets into non-preemption sets. This
has shown to reduces the memory requirement in real-time systems [29, 8]. Given static slowdown
factors for the tasks, the same algorithm as in previous work can be used to partition the task sets.
Dynamic scheduling in the previous section (Section 4) only focused on minimizing context switches.
We show that dynamic slowdown can be easily extended to other known implemention archtectures
based on preemption threshold scheduling. Dynamic slowdown relies on priority inheritance, which we
show can be easily incorporated as described below.
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Algorithm 2 Preemption Threshold Scheduling with Dynamic Reclamation (PTS-DR)
1: fOn arrival of a new task τi :g

2: Let processor be executingτc;

3: Rr
i (t) 

Ci
ηi

;

4: Add task τi to Ready Queue;

5: if (τc = NULL) then

6: return

7: end if

8: if (P (τi) > P (τc) and πi > γc ) then

9: Preempt taskτc;

10: else

11: if (P (τi) > P (τc)) then

12: Inherit Priority( τc);

13: setSpeed( Er
c(t

Rr
c(t)+RF

c (t)
);

14: end if

15: end if

16: fOn execution of each taskτi :g

17: setSpeed( Er
i (t)

Rr
i (t)+RF

i (t)
);

18: fOn completion of taskτi :g

19: Restore priority (τi);

20: Add to FRT-list( Rr
i (t);P (τi));
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Gaiet al. [8] propose using shared virtual resources managed by the stack resource protocol (SRP) [4]
to enforce non-preemption among a set of tasks. Priority inheritance is implicit under SRP, since a task
needs all resources to be free before it begins execution. Explict priority inheritance can be implemented
where a blocking task inherits the priority of the highest priority blocked task. With priority inheritance,
tasks can reclaim run-time with a higher or equal priority, while ensuring all task deadlines.

Saksena and Wang [29] dicussed an implemention of preemption threshold scheduling where tasks are
mapped to thread to minimize the number of threads and the stack memory requirements. The authors
propose an event-based design model consisting of a set of event (types) with computations (actions)
associated with each event. Each task (τi) is associated with an eventEi and the action associated with
the event is the task execution. Each event has a priority, preemption level and a threshold preemption
level of the associated task. The assignment of tasks to theads is determined offline, and remains fixed
during run-time. Each thread has an associated priority and a preemption level that is used in scheduling
threads.

The implementation architecture uses preemptively scheduled threads, where each thread is imple-
mented as an event handler. A thread maintains an event queue where arriving events are queued. The
event queue for each thread is maintained as a priority queue, using event priorities. The queued events
are processed in a run-to-completion manner, that is, processing of an event is not preempted by the
arrival of another event on the thread’s event queue. Event processing is done by calling the code associ-
ated with the event (action). Whenever a thread selects the next event to process, it is always the highest
priority event in the thread event queue. Thread priorities are dynamically managed as follows:

� On task (event) arrival: When an eventEi is queued at a thread, then the thread priority is set to
the maximum of its current priority and the priority of the event being queued. This takes care of
priority inheritance.

� On beginning of task execution (action): When a thread removes an event from its event queue
to process, the thread priority is set to the event priority (the highest priority event in the thread)
and its preemption level is the maximum of its current thread preemption level and the threshold
preemption level of the event.

� On task (event) completion: When a thread finishes processing an event, it changes its priority to
the highest priority pending event in its event queue. The thread preemption level is also set to the
preemption level of this highest priority pending event.

With the thread priority and preemption level managed as above, each thread can reclaim run-time
with a higher priority than its current priority, while meeting all task (event) deadlines.

5 Experimental Setup

To evaluate the effectiveness of preemptive threshold scheduling algorithms, we consider several task
sets with varying number of synthetically generated tasks. Task periods are generated uniformly in the
range [100,1000]. An initial utilizationui of each task was uniformly assigned in the range [0.05, 0.5].
The Worst Case Execution Times (WCET) for each task was set toui �Ti at the maximum processor
speed. The task execution times were scaled to ensure a processor utilization less than one, thereby
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making the task set feasible. Experiments were performed on various task sets and the average results
are presented.

We use the power model for dynamic power consumption of CMOS circuits [30]. The dynamic power
consumption,P, depends on the operating voltage and frequency of the processor and is given by:

P=Ce f f �V
2
dd � f (6)

whereCe f f is the effective switching capacitance,Vdd is the supply voltage andf is the operating fre-
quency. Equation 6 shows the quadratic relationship between power and voltage. However, the transistor
gate delay (and hence frequency) depends on the voltage and a decrease in voltage has to be accompa-
nied by a decrease in processor frequency. There is a linear dependence between the frequency and
voltage [30], resulting in a linear increases in the execution time of a task. Due to the quadratic de-
crease in power with voltage, and only a linear decrease in frequency, the energy consumption per unit
work decreases with voltage at the cost of increased execution time. The operating voltage range for
the processor is 0:6V and 1:8V, which is the trend in current embedded processors [12, 13]. We have
normalized the operating speed and support discrete slowdown factors in steps of 0:1 in the normalized
range.

5.1 Static Slowdown Factors

Processor slowdown based on static slowdown factors is well studied and known to have significant
energy savings. Given a feasible task set with static slowdown factors, we compute threshold preemption
levels for the tasks. We assume that the processor utilization of the task-set under maximum speed is
used as the static slowdown factor. We compare the scheduling overheads of the following techniques:

� Preemptive Scheduling (PS)

� Preemption Threshold Scheduling (PTS)

Since the same static slowdown factors are used with both preemptive scheduling and preemptive
threshold scheduling, the processor energy consumption is the same if the context switch overhead
is ignored. Context switching results in additional time and energy overhead and it is beneficial to
minimize this overhead. Figure 1 compares the number of context switches under preemption threshold
scheduling normalized to the preemptive scheduling policy. The context switches for the various task-
sets are shown with the number of tasks along the X-axis and the normalized context switches along the
Y-axis. The execution time for each task is its WCET at maximum speed. It is seen that PTS decreases
the context switching considerably, with the context switching dropping to 50% for smaller number of
tasks and to less than 10% as the number of tasks increase. With smaller number of tasks, there are
inherently few context switches and the relative decrease is comparatively low. As the number of tasks
increases, we have more tasks with smaller execution times for each task. Such task sets approach
closer to non-preemptive scheduling and require very few context switches under preemption threshold
scheduling. Under preemptive scheduling, the context switching increases with the number of tasks and
PTS performance improves.

We note that context switching results in excess energy consumption especially in the cache and
memory subsystem. However, a change in the locality of references is observed not only on a context
switch but also when a task resumes execution on completion of another task. A change in the execution
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Figure 1. Number of context switches under preemption threshold scheduling normalized to preemptive scheduling.

context is a cause of overhead, and is referred to as aneffective context switch. Though the overhead
of beginning a task execution is comparatively smaller than a context switch, a percentage decrease in
the effective context switching gives a good measure of the gains achieved by preemption threshold
scheduling. As shown by Agarwalet al. [1], the cache performance degrades with multi-tasking with
an average cache miss ratio increasing by 30%-40%. These extra cache misses result in more external
memory references and an increase in energy consumption. Averaging the cache miss ratio over all
effective context switches, a proportionate decrease in the memory energy consumption will be seen.
Figure 2 shows the normalized effective context switching between the two scheduling techniques. The
graph has a similar pattern as the context switch reducions seen in Figure 1, however note that the
context switches reduce by up to 90% whereas the effective context switches reduce by only 25%. We
see on an average 25% decrease in the effective context switching which translates to a 25% reduction
in the memory subsystem energy consumption. With the processor and memory subsystems consuming
comparable energy, this leads to additional energy savings. Preemptive scheduling also has an additional
overhead due to the intermittent memory accesses, which reduce the chances of switching the memory to
a low power mode. Note that the energy contribution due to context switching is increasing with the fine
tuning of application where a context switch can require a voltage change, cache reconfiguration, core
reconfiguration and similar architectural reconfigurations which further increase the energy overhead.
Thus we see that preemptive threshold scheduling is increasingly important for energy efficient execution
of real-time systems.
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Figure 2. Reduction in the effective context switches under preemption threshold scheduling normalized to preemptive

scheduling. Effective context switches reduction is a measure of the energy savings achieved by preemption threshold

scheduling (PTS).

5.2 Dynamic Slack Reclamation

We present the energy gains achieved by dynamic slack reclamation. To generate varying execution
times, we vary thebest case execution time (BCET)of a task as a percentage of its WCET. The execu-
tion times are generated by a Gaussian distribution with mean,µ= (WCET+BCET)/2 and a standard
deviation,σ = (WCET-BCET)/6. The BCET of the task is varied from 100% to 10% in steps of 10%.
Experiments were performed on task sets with varying number of tasks (n) per task-set. Figure 3 shows
the energy gains for different values of BCET with the number of tasks beingn= 5 andn= 25. Sim-
ilar results are seen for different values ofn. We compare the energy consumption of the following
techniques :

� Preemptive Scheduling with Dynamic Reclamation (PS-DR)

� Preemption Threshold Scheduling with Dynamic Reclamation (PTS-DR)

Since task slowdown factors are mapped to discrete voltage levels, there can be dynamic slack in the
system even at worst case execution times. Thus dynamic slack reclamation results in energy gains even
at BCET of 100%. A steady decrease in the processor energy consumption is seen with a decrease in
the BCET. As the task execution time is decreased, there is more slack which results in decreasing the
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Figure 3. Energy Consumption and reduction in effective context switching with Dynamic Slack Reclamation for (a) number

of tasks,n= 5 and (b) number of tasks,n= 25.

energy consumption by operating at lower voltages. Figure 3 compares the processor energy consump-
tion with PS-DR and PTS-DR. It is seen that the energy consumption with PS-DR and PTS-DR is very
close, however the PTS-DR scheme can comsume more processor energy while minimizing the context
switches. The energy consumption is similar up to BCET of 60%. With a further reduction in BCET,
PTS-DR leads to 4%-8% higher energy consumption than PS-DR. This is due to the fact that PS-DR
can reclaim all the higher priority slack at all times. On the other hand, a task inherits the priority when
a higher priority task is blocked for its completion, thereby reducing the slack that can be reclaimed.
Furthermore, all lower priority task are always preempted under PS-DR, and the preempted task can
reclaim the slack generated by the earlier completion of the preempting higher priority task. However,
the context switching overhead is very high under preemptive scheduling. Figure 3 also shows the re-
duction in the effective context switches. PTS-DR gains around 15%-25% reduction in effective context
switching, which can directly map to a reduction in the energy consumption of the memory sub-system.

Figure 3 shows the energy consumption for task sets with 5 and 25 tasks. With fewer tasks, it is
seen that the difference in the processor energy consumption of PTS-DR and PS-DR is less than 3%.
However a reduction in 15% effective context switches is observed. Forn = 25, PTS-DR leads to
processor energy increase of 4%-8%, however reduces the context switching by 25%. Furthermore, the
time delay incurred due to excess cache misses in PS-DR will reduce the dynamic slack generated in
PS-DR and the energy gains. Gopalakrishnan [9] show that the processor utilization drops as much as
8% with execessive context switching. This will take away the gains achieved by a PR-DR and thus it is
important to minimize the context swithces. PTS-DR reduces the overheads and the energy consumption
of the memory subsystem. With the memory subsystem consumption is a significant portion of the
total energy, these savings will lead to energy gains over PS-DR. With the increasing time and energy
overhead associated with an effective context switch, the total energy gains will keep increasing.

6 Summary and Future Work

We have presented algorithms that help integrate task slowdown and preemption threshold scheduling.
Preemption threshold scheduling is important in reducing the context switching among tasks as well as
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memory requirements of a system. We enable scalable energy efficient real-time systems by integrating
preemption threshold scheduling with static and dynamic slowdown. Slowdown decreases the energy
consumption of the system and preemption threshold scheduling further reduces the time and energy
overheads associated with context switching.

We propose a faster algorithm to compute threshold preemption levels of tasks. Experimental results
show on an average 50%-90% decrease in the context switching overhead due to preemption threshold
scheduling. We also present a dynamic slack reclamation algorithm that works in conjunction with
preemption threshold scheduling. Dynamic slack reclamation can result in 10%-50% further decrease in
the energy consumption. These techniques are energy efficient and easy to implement in real systems.
These scheduling techniques will increase the energy efficient of systems and will have a great impact on
the energy utilization of portable devices. We plan to extend these scheduling techniques with detailed
knowledge of task context switching overhead so as to further minimize this overhead.
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A Proofs

Lemma 1: The run-time of every task instance is depleted at or before its deadline.
Proof: Suppose the claim is false. Lett be the first time that a run-time of a job or that in a

FRT-list is not depleted by its deadline. Lett 0 be the the latest time beforet such that the following two
conditions are satisfied: (1) there are no pending jobs with arrival times beforet 0 and deadlines less than
or equal tot. (2) The FRT-list does not contain any run-time with deadline less than or equal tot. Since
no requests can arrive before system start time(time= 0), t 0 is well defined. By definition oft 0, a jobτh

with deadline less than or equal tot arrives at timet 0 when the system is either idle or executing a job,
τb, with deadline greater thant. We consider the following two cases depending on whetherτh begins
execution at timet 0:

� Case I, whereτh begins execution at timet 0. This occurs if the system is either idle before timet 0

or γ(τb)< π(τh), which allows taskτh to preempt taskτb. In this case, the only run time consumed
in the interval[t 0; t] is that generated by the jobs arriving in the interval[t 0; t] with deadlines less
than or equal tot. Let us denote this run-time byA. Let X = t� t 0, then the tasks contributing to
the run-time inA are a sub-set of the task setfτ1; :::τig wherei is the maximum task index such
thatTi � X. Thus the run-time generated in the interval[t 0; t], which is denoted byA, is bounded
by ∑i

k=1b
X
Tk
cCk

ηk
.

� Case II, where taskτh is blocked at timet 0 due to preempting threshold scheduling. Note that if the
preemption threshold level ofτb is greater than or equal to preemption level ofτh (γ(τb)� π(τh)),
then taskτb is not preempted. In this case, run-time apart fromA can be consumed. Let the
run-time with a deadline greater thant be denoted byB. By definition, it can be seen that the
run-times inA and B are disjoint. Note that the run-time inB is only consumed during the
execution ofτb. After the completion of taskτb, run-time with deadline� t is always present
for the remaining duration up to interval[t 0; t] and only the run-time inA is consumed. Thus the
run-time inB is bounded by the execution time of taskτb, that isCb

ηb
. Since Algorithm 1 assigns

taskτb a preemption threshold level greater than the preemption level of taskτh (γ(τb) � π(τh)),
it must he true that8h�k<b : Cb

ηb
�Yk. Sinceh� i < b, it is true thatCb

ηb
�Yi. Thus the run-time in

B, consumed by taskτb, is bounded byYi.

In either case, the maximum run-time that can be consumed in[t 0; t] is bounded by the sum of the
run-times inA andB. Since the run-time is not depleted at timet, the sum of the run-time inA andB
must be greater than the run-time consumed in the interval[t 0; t], which isX.

Therefore,

Yi +
i

∑
k=1
b

X
Tk
c
Ck

ηk
> X

SinceX
Tk
� b X

Tk
c, we have

Yi

X
+

i

∑
k=1

1
ηk

Ck

Tk
> 1
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Since all jobs that contribute to the run-time inA have their arrival time and deadline in the interval
[t 0; t], we haveTi � X, and

Yi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
> 1

which contradicts with Equation 5. Thus the run-time of every task instance is depleted by its deadline.

Theorem 2: All tasks meet the deadline when scheduled by the PTS-DR algorithm.
Proof: Since the task deadlines and the run-time deadlines are the same, the claim follows directly

from Lemma 1. Thus all tasks meet the deadline by the PTS-DR algorithm.
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