
Energy Aware Non-preemptive Scheduling for Hard Real-Time
Systems

Ravindra Jejurikar Rajesh K. Gupta

Center for Embedded Computer Systems,
Department of Information and Computer Science,

University of California at Irvine,
Irvine, CA 92697

E-mail: jezz@ics.uci.edu, gupta@cs.ucsd.edu

CECS Technical Report #04-01

Jan 04, 2004

Abstract

Techniques like dynamic voltage scaling (DVS) and modulation scaling provide the ability to perform
an energy-delay tradeoff in the computation and communications subsystems. Slowdown based on per-
formance requirements has shown to be energy efficient while meeting timing requirements. We address
the problem of computing slowdown factors for a non-preemptive task system based on the Earliest
Deadline First scheduling policy. We present astack based slowdownalgorithm based on the optimal
feasibility test for non-preemptive systems. We also propose a dynamic slack reclamation policy to fur-
ther enhance the energy savings. The algorithms are practically fast, and have the same time complexity
as the feasibility test for non-preemptive systems. The simulation results for our test examples show on
an average15% energy gains using static slowdown factors and20% gains with dynamic slowdown
over the known slowdown techniques.

1

Contents

1 Introduction 1

2 Related Work 2

3 Static Slowdown Factors 3
3.1 Constant Static Slowdown . 3
3.2 Dynamic Slowdown . 4
3.3 Stack Based Slowdown (SBS) Algorithm . 5

4 Dynamic Slack Reclamation 7
4.1 Stack Based Slowdown with Dynamic Reclamation (SBS-DR) 9

5 Experimental Setup 12
5.1 Slowdown with no slack reclamation . 12
5.2 Dynamic slack reclamation . 14

6 Conclusions and Future Work 14

2

List of Figures

1 Stack Based Algorithm for non-preemptive scheduling 6
2 (a) Task arrival times and deadlines (NOT a task schedule). (b) Feasible schedule, even

if task τ3 arrives just before other tasks and blocks the higher priority tasks. 8
3 Stack Based Dynamic Reclamation Algorithm for non-preemptive scheduling 11
4 Energy comparison of the static slowdown algorithms as a function of the task gain

factor(Gf). 13
5 Energy Consumption with Dynamic Slack Reclamation, for gain factors,Gf = 0:1 and

Gf = 0:4. 15

List of Tables

3

1 Introduction

The concept of a task that is invoked periodically is central to a real time system. Based on the task
characteristics, priorities are assigned to tasks, which drive the scheduling decisions. Task scheduling
can be classified into two broad categories :preemptivescheduling andnon-preemptivescheduling. In
preemptive scheduling, the currently running task is preempted on the arrival of a higher priority task,
whereas in non-preemptive scheduling, a new task is scheduled only on the completion of the current
task execution. Though preemptive scheduling can guarantee a higher system utilization, there are sce-
narios where the properties of the device hardware and software make preemption either impossible
or prohibitively expensive. For example, in packet-switched communication systems, a preemption re-
quires the retransmission of the preempted packet. Non-preemptive scheduling is employed in such
packet-switched networks, both wired [10, 11, 40] and wireless [30]. Scheduling over a shared media
such as LAN, WLAN and buses is inherently non-preemptive, because each node in the network has to
ensure that the shared channel is free before it can begin transmission. To further underline the impor-
tance of non-preemptive systems, scheduling of information flow for process control systems [2], [7],
known as Fieldbuses [9], and automotive industry communication standards such as CAN [6], are based
on non-preemptive scheduling. Along with its extensive use in communications system, non-preemptive
processor scheduling is also used in light weight multi-tasking kernels and beneficial in multimedia ap-
plications [8]. Non-preemptive scheduling for real-time embedded systems has its benefits of accurate
response time analysis, ease of implementation, no synchronization overhead and reduced stack memory
requirements.

With the increase in computation and communication in portable devices, that operate on a limited
battery supply, power is an increasingly important aspect in the design and operation of a system. Energy
efficient scheduling techniques have shown to minimize the run-time energy consumption of the system
[32], [4], [38], [31], [30]. To explain how energy efficiency can be achieved, we consider the example
of a processor and then generalize it to other resources. The dynamic power consumption,P, for CMOS
circuits [35], depends on the operating voltage and frequency of the processor and is given by:

P=Ce f f �V
2
dd � f (1)

whereCe f f is the effective switching capacitance,Vdd is the supply voltage andf is the operating fre-
quency. Equation 1 shows the quadratic relationship between power and voltage. Thus a decrease in the
supply voltage decreases the power consumption of the processor. However, the transistor gate delay
(and hence frequency) depends on the voltage and a decrease in voltage has to be accompanied by a
decrease in processor frequency. There is a linear dependence between the frequency and voltage [35],
resulting in a linear increases in the execution time of a task. Due to the quadratic decrease in power
with voltage, and only a linear decrease in frequency, the energy consumption per unit work decreases
with voltage at the cost of increased execution time. This technique of lowering the operating voltage,
termed asDynamic Voltage Scaling (DVS), can be used to exploit energy-delay tradeoff for energy min-
imization. Recent processors such as the Intel XScale [14] and Transmeta Crusoe [33] support variable
frequency and voltage levels, which can be varied at run-time.

Similar to DVS of a processor, wired communication links also support DVS which enables a energy-
delay tradeoff in communications system.DVS capabilityhas been shown for both serial I/O com-
munication [17] and parallel I/O communication [34]. A lower voltage and frequency decreases the
energy per bit at the cost of lowering the data throughput. Energy minimization using DVS techniques

1

over communication links has been shown in the context of interconnect networks [31]. For the wireless
communication systems,modulation scalinghas been proposed by Schurgerset al. [29] which enables a
similar energy-delay tradeoff. Modulation schemes are used in wireless communication where symbols
are transmitted at a particular rate and each symbol encodes a particular number of bits,b. Decreasing
the number the bits per symbol, decreases the transmission power per symbol at the cost of transmit-
ting more symbols to send the same amount of data. This enables saving energy while increasing the
data transmission time. Modulation scaling techniques have also been shown to minimize the run-time
energy of communication systems [30].

In this paper, we focus on operating system level scheduling of non-preemptive tasks for hard real
time systems with the goal of minimizing the energy consumption while meeting all task deadlines. In
real-time systems, timing guarantees are of foremost importance and all timing requirements have to be
ensured while performing a energy-delay tradeoff. Thus we have to judiciously decide the extent of slow-
down while achieving our goal of minimizing energy. We propose a stack based slowdown algorithm
to minimize the energy consumption, while guaranteeing all task deadlines. We also present a dynamic
slack reclamation policy that works in conjunction with the static slowdown for additional energy gains.
The scheduling techniques are general enough so that they can be used for non-preemptive scheduling
of any resource that has the capability of slowdown. In our system model, tasks arrive periodically and
have to complete by a specified deadline. Our scheduling policy is implemented as a centralized power
manager, which receives all task requests and schedules them in a non-preemptive manner. Our sim-
ulation experiments show on an average 15% gains over the known slowdown technique, using static
slowdown factors and the dynamic reclamation increases the gains to 20%.

The rest of the paper is organized as follows: The related work and the problem formulation is dis-
cussed in Section 2 and Section??. In Section 3, we present algorithms to compute optimum static
slowdown factors for minimum energy consumption under the EDF scheduling policy. This is followed
by an algorithm for dynamic slack reclamation in Section 4. The experimental results are given in
Section 5. Finally, Section 6 concludes the paper with future directions.

2 Related Work

Previous work on energy aware scheduling mainly focuses on preemptive scheduling, which is com-
monly used in processor scheduling. Among the earliest works, Yaoet al. [36] presented a optimal
off-line algorithm to schedule a given set of jobs with arrival times and deadlines. For a similar task
model, optimal algorithms have been proposed for fixed priority scheduling [25, 37] and scheduling
over a fixed number of voltage levels [19]. The problem of scheduling for real-time task sets for energy
efficiency has also been addressed. Real-time schedulability analysis has been used in previous works
to compute static slowdown factors for the tasks [32], [12]. Aydinet al. [4] address the problem of min-
imizing energy, considering the task power characteristics. Dynamic slowdown techniques have been
proposed to further increase the energy gains achieved by static slowdown [24], [5], [18]. The problem
of maximizing the system value for a specified energy budget, as opposed to minimizing the total energy,
is addressed in [26, 27, 28], [1].

Non-preemptive scheduling has been addressed in the context of multi-processor scheduling. Schedul-
ing periodic and aperiodic task graphs which capture the computation and communication in a system
is considered in [23],[13]. Zhanget al. [39] have given a framework for non-preemptive task schedul-

2

ing and voltage assignment for dependent tasks on a multi-processor system. They have formulated the
voltage scheduling problem as an integer programming problem. The problem of minimizing the energy
consumption by performing a slowdown tradeoff in the computation and communication subsystems is
addressed in [21], [20].

Energy aware scheduling has not been addressed in the context of non-preemptive uniprocessor
scheduling. Prior work on scheduling with task synchronization [16] and non-preemptive sections [38]
can be extended to handle non-preemptive scheduling. Zhanget al. present a dual speed (DS) algorithm
[38] where the system executes at two speeds, a low speed,L, and a high speed,H. The authors also
propose a dual speed dynamic reclamation (DSDR) algorithm which reclaims the run-time slack for
further energy gains. The dual speed algorithm uses two speed to better exploit the slack based on run-
time conditions, however it has some limitations. The high speed,H, is computed based on a sufficient
feasibility test and is not optimal. This can result in using aH speed, greater than required and in certain
cases a feasible task set can be declared as infeasible. Also, the dual speed algorithm uses the high speed
whenever any task is blocked, which may not be needed during all task blockings. Feasibility condi-
tions for non-preemptive scheduling of real time task sets have been studied and optimal tests have been
proposed [15, 40]. However, using the constant speed computed by an optimal feasibility test, as the
high speed (H) in the dual speed algorithm, need not imply feasibility. To overcome these limitations,
we propose a static slowdown algorithm called thestack based slowdownalgorithm for energy efficient
scheduling of non-preemptive tasks. The algorithm can compute more than two speeds as opposed to the
dual speed algorithm. We show that dynamic slack reclamation techniques presented in previous work
[5, 38] cannot be used for scheduling of non-preemptive tasks. We enhance our stack based slowdown
algorithm with dynamic reclamation technique for added energy gains. We compare our slowdown al-
gorithm to the dual speed and DSDR algorithm, which are the best known slowdown algorithms that can
be applied to non-preemptive scheduling.

3 Static Slowdown Factors

In this section, we present the computation of static slowdown factors for tasks that are non-preemptively
scheduled by the earliest deadline first (EDF) scheduling policy.

3.1 Constant Static Slowdown

Feasibility condition for non-preemptive tasks are well studied [15]. Theoptimalfeasibility condition
for non-preemptive tasks, with no inserted idle intervals, is as given by Theorem 1.

Theorem 1 [15] A periodic task set sorted in non-decreasing order of the task period can be feasibly

scheduled under a non-preemptive EDF scheduling policy iff,

n

∑
i=0

Ci

Ti
� 1 (2)

8i;1< i � n;8t;T1� t � Ti : Ci +
i�1

∑
k=1
b

t
Tk
cCk� t (3)

3

Note that the feasibility need not be checked for all time instances up to a task deadline. It suffices to
check the feasibility at the scheduling points for each taskτi, which are given bySi = fkTj j j = 1; :::; i;k=
1; :::;b Ti

Tj
cg. The feasibility test leads to a constant static slowdown factor, which is given by Theorem 2.

Theorem 2 A periodic task set, sorted in non-decreasing order of their period, can be feasibly scheduled

under the non-preemptive EDF scheduling policy, at a constant slowdown ofη, if

1
η

n

∑
i=0

Ci

Ti
� 1 (4)

8i;1< i � n;Si j 2 Si :
1
η
(Ci +

i�1

∑
k=1
b
Si j

Tk
cCk)� Si j (5)

The correctness of the theorem follows directly from Theorem 1. Theorem 2 gives an algorithm to
compute a constant slowdown for all tasks in the system while maintaining feasibility.

Before we present the algorithm, we present the results for preemptive scheduling policy.

Theorem 3 For a preemptive task model based on EDF scheduling policy, a task set is feasible at a

slowdown ofη, if
1
η

n

∑
i=0

Ci

Ti
� 1 (6)

EDF scheduling is optimal, and as can be seen from Theorem 3, the system utilization is a lower bound
on the constant static slowdown.

3.2 Dynamic Slowdown

Theorem 2 computed a constant slowdown and the system can be under-utilized at this slowdown,
resulting in idle intervals. Based on the run time conditions, we can further exploit the idle intervals to
result in further energy gains. It is known that the preemptive EDF scheduling is the optimal scheduling
policy [22] and can lead to a higher system utilization. This is also evident from the fact that the
feasibility conditions for non-preemptive scheduling (Theorem 1) has additional constraints than that for
preemptive scheduling (Theorem 3). The additional constraints in non-preemptive scheduling can result
in a lower utilization (higher constant slowdown) than a preemptive system. A minimum slowdown
satisfying Theorem 3 is the optimal slowdown for preemptive task system [3] and is a lower bound on
the constant slowdown. In our dynamic slowdown algorithm, we set this slowdown as the base speed
and tasks do not execute at a speed lower than this speed (in the absence of dynamic slack reclamation).
We call this slowdown as thebase speed̄η and it satisfies the following constraint.

1
η̄

n

∑
k=1

Ck

Tk
� 1 (7)

If tasks do not block other higher priority tasks, they can execute at a slowdown equal to the base speed
without missing any deadlines. If a higher priority task is blocked due to the non-preemptive nature of

4

the system, the system speed is increased if necessary to ensure deadlines of all higher priority tasks in
the system. We calculate a speedηi for each taskτi which guarantees meeting all higher priority task
deadlines. For each task, a slowdownηi is computed which satisfies the following conditions.

8 jSi j 2 Si ;
1
ηi
(Ci +

i�1

∑
k=1
b
Si j

Tk
cCk)� Si j (8)

whereSi = fkTj j j = 1; :::; i;k= 1; :::;b Ti
Tj
cg is the set of scheduling points for taskτi . If a taskτi blocks

a higher priority task, the current system slowdown is compared toηi . If ηi is greater than the current
speed, then we set the processor speed toηi . All tasks with a priority higher than jobτi execute at a
speed of at leastηi. The system switches back to the original speed (that before the system speed was
increased toηi) on executing a task with lower priority than that ofτi or if the system becomes idle.
This resembles astackoperation and, indeed, we use a stack to implement the algorithm.

3.3 Stack Based Slowdown (SBS) Algorithm

The SBS algorithm makes use of variable processor speeds. The current processor speed is main-
tained in a stack,S. Each stack node,sn, has a slowdown(η) and a priority(P) associated with it and is
represented assn(η;P). We use the notationη(sn) andP (sn) to represent the slowdown and priority
of a stack node (sn) respectively. The algorithm is given in Figure 1. The stack is initialized with a
slowdown factor equal to thebase speed(η̄) and a priority lower that the lowest priority that any job
can achieve, which is represented by�∞. This node is called thebase nodeand is never popped off the
stack. The processor speed is always set to the slowdown factor at the top of the stack. Thus the system
begins executing jobs at the base speed, similar to a preemptive scheduling policy. At all times, letsnt

represent the node at the top of the stack and letτc be the current job executing in the system. While task
τc is executing, if a taskτi with a priority higher than that of taskτc arrives, the higher priority taskτi

is blocked due to non-preemption. If a current task is blocking a higher priority task and the slowdown
factorηc is greater than the stack top slowdown factorη(snt), then a new node is pushed on the stack
with a slowdown and priority that of jobτc. In that case, a nodesn(ηc;P (τc)) is pushed on the stack.
All jobs with priority lower than that ofτc are executed at a minimum slowdown ofηc to guarantee the
feasibility of higher priority tasks. A stack top node (snt) is popped off the stack when a job with a
priority lower that the stack top priority (P(snt)) is executed. Since the the stack is initialized with a base
node with priority�∞ (equivalent to an infinitely large task deadline), the base node is never popped
off the stack. If the system becomes idle, all nodes except the base node are popped from the stack. We
prove that the stack based slowdown algorithm ensures all task deadlines.

Theorem 4 A task set, sorted in non-decreasing order of the relative task period, can be feasibly sched-

uled by the stack based slowdown algorithm at a base speedη̄ and task slowdown factorsηi iff,

1
η̄
(

n

∑
k=1

Ck

Tk
)� 1 (9)

8 jSi j 2 Si ;
1
ηi
(Ci +

i�1

∑
k=1
b
Si j

Tk
cCk)� Si j (10)

where Si represents the set of scheduling points for taskτi .

5

Notation :

τc : the current task executing in the system

snt : the node at the top of the stack

Stack Initialization :

(1) Given an initially empty stack,

Push base node sn(η;�∞) on the stack;

On arrival of task τi in the system:

(1) if (processor NOT idle before task arrival and

P (τi) > P (τc) and ηc > η(snt))

(2) Push sn(ηc;P (τc)) on the stack;

(3) SetSpeed(ηc);

(4) endif

On execution of each taskτi :

(1) if (P (τi)< P (snt))

(2) while (P (τi) < P (snt))

(3) Pop snt from the stack; // Pop the stack top node;

(4) end // End while loop

(5) SetSpeed(η(snt));

(6) endif

On system idle:

(1) Pop all nodes from stack, except base node;

Figure 1. Stack Based Algorithm for non-preemptive scheduling

6

Proof: Suppose the claim is false and a task instance misses its deadline. Lett be the first time
that a job misses its deadline. Lett 0 be the the latest time beforet such that there are no pending jobs
with arrival times beforet 0 and deadlines less than or equal tot. Since no requests can arrive before
system start time(time= 0), t 0 is well defined. LetA be the set of jobs that arrive no earlier thant 0

and have deadlines at or beforet. By choice oft 0, the system is either idle beforet 0 or executing a job
with a deadline greater thant. We consider both these cases separately. Note that by the EDF priority
assignment, the only jobs that are allowed tostart execution in[t 0; t] are inA. Also, there are pending
requests of jobs inA at all times during the interval[t 0; t] and the system in never idle in the interval.

Case I: If the system were idle at timet 0, then only the jobs inA execute in the interval[t 0; t]. Let
X = t� t0. Since all the jobs are periodic in nature and the jobs inA arrive no earlier thant 0, the number
of executions of each taskτi in A in the intervalX is bounded bybX

Ti
c. By the stack based slowdown

algorithm, the base node is never popped during the entire execution. Nodes pushed on the stack have a
speed higher than the base speed, and all tasks execute at a speed greater than or equal to the base speed
η̄. Thus the execution time of each job is bounded byCi=η̄. Since a task misses its deadline at timet,
the execution time for the jobs inA exceeds the interval lengthX .
Therefore,

n

∑
i=1
b

X
Ti
cCi

1
η̄
> X

which implies
1
η̄

n

∑
i=1

Ci

Ti
> 1

which contradicts Equation 9.
Case II: Let Jb be the job executing at timet 0 with a deadline greater thant, that blocks a job inA.

SinceJb is executing at timet 0, with a deadline greater thatt, X < Tb andA � fτ1; :::τkg, whereDk < X
andk< b. Only the taskJb and the tasks inA execute in the interval[t 0; t]. When the taskτb blocks
another task, if the stack top slowdown is smaller thanηb, thenηb is pushed on the stack. Since this
stack node is not popped until all jobs with priority greater thanτb execute, the speed of all jobs in this
interval is at leastηb (Note that blocking of other jobs in the interval can only increase the speed to
greater thanηb). Thus, the total execution time of these jobs is bounded by1

ηb
(Cb+∑k

i=1b
X
Ti
cCi). Since

a task misses its deadline at timet, the execution time for the jobs inA and that of jobJb exceedsX , the
length of the interval. Therefore,

1
ηk

(Ck+
k

∑
i=1
b

X
Ti
cCi)> X

SinceX < Tb, this contradicts Equation 10.

4 Dynamic Slack Reclamation

Dynamic slack arises due to early task completions and due to execution intervals at speed higher
than the base speed. This slack can be reclaimed to further reduce the processor speed, resulting in
increased energy gains. In this section, we present a dynamic slack reclamation scheme that that works
in conjunction with the stack based slowdown algorithm and is referred to as the Stack Based Slowdown

7

with Dynamic Reclamation (SBS-DR) algorithm. Before we describe our algorithm, we show that
traditional dynamic slack reclamation approaches cannot ensure meeting all deadlines.

In traditional dynamic slack reclamation techniques, reclaiming the unused time budget (slack) of the
higher priority tasks, ensures task deadlines. However, we show that performing the same with the stack
based slowdown algorithm for non-preemptive task scheduling, can result in deadline miss. To illustrate
this, we consider the same task set as shown in Section??, with tasksτ1 = f1;2;2g;τ2 = f1;3;3g and
τ3 = f1;15;15g. As described in Section 3, the computed task slowdown factors areη1 = 0:5, η2 = 1:0
andη3 = 1:0, with the base speed,̄η = 0:9. The time budget for each task is 1:11 at a slowdownη = 0:9
and at a slowdownη = 1:0 the time budget is 1.

0 1 2 3 4 5 6 7 8 9 10

s ’s’ is the speed
for the job

τ1

2τ

τ3

1

0 1 2 3 4 5 6 7 8 9 10

s ’s’ is the speed
for the job

1 1 1 1 1τ1

2τ

τ3

1 1 1

time

task

(b) Deadline miss due to salck reclamation

0.9

Task deadline

1

time

task

Task set description: Task arrival times and WCET at maximum speeed(a)

Deadline miss

Task arrival

Figure 2. (a) Task arrival times and deadlines (NOT a task schedule). (b) Feasible schedule, even if taskτ3 arrives just before

other tasks and blocks the higher priority tasks.

We consider the case where taskτ1 andτ3 arrive at timet = 0 and taskτ2 arriving at timet = 0:1. The
task arrivals times are shown in Figure 2(a). The system begins execution at the base speed,η̄ = 0:9 and
a budget of 1:11 is assigned to taskτ1. Taskτ1 completes in almost negligible time, att = 0:05, leaving
a free budget of 1:06. Sinceτ3 is the only ready task, it begins execution. If tasks are allowed to reclaim
the higher priority task budgets, thenτ3 reclaims the slack ofτ1. Taskτ2 arrives immediately whenτ3
begins execution, say at timet = 0:06, and has a deadline oft = 3:06. Since taskτ2 is blocked,η3 = 1:0
is pushed on the stack and the budget of taskτ3 is set to 1:0. However, by reclaiming the free budget of
taskτ1 along with its own budget,τ3 completes at timet = 1:11+1= 2:11. Taskτ2 executes at a speed
of η = 1, using its own budget of 1 time unit, and finishes at time 3:11. However it has already missed its
deadline oft = 3:06. Thus, we see that slack reclamation techniques from previous work cannot be used
with the stack based slowdown for non-preemptive scheduling. We present slack reclamation techniques
that work with the stack based slowdown algorithm.

8

4.1 Stack Based Slowdown with Dynamic Reclamation (SBS-DR)

The possible speeds (slowdown factors) of the nodes on the stack are the task slowdown factors
greater than the base speed,fηijηi > η̄g. This is because a slowdown factor smaller than the base speed
is never pushed on the stack. We say nodesmi dominatessmj if η(smi) > η(smj) or equivalentlysmj

is dominated bysmi . Since only higher slowdown factors are pushed on the stack, a node dominates
all nodes below it in the stack. The slowdown factor of the node on the stack top determines the time
budget for each task execution and hence the processor slowdown. We definerun timeof a job as the
time budget assigned to the job considering the slowdown of the stack top node. The run time of a job
with a workloadC and slowdownη, is C=η. Each run time has a time value and a priority associated
with it, and is represented by a pair(t;P). The priority of a run time associated with a job is the same
as the job priority. A job consumes run time as it executes. The unused run time of jobs is maintained
in a priority list called theFree Run Time list (FRT-list)[38]. All FRT-lists are maintained sorted by
priority of the run-times, with the highest priority at the head of the list and the lowest priority at the tail.
Run-time is always consumed from the head of the list.

The dynamic slowdown works in conjunction with the stack based slowdown algorithm explained in
the Section 3. For dynamic slack reclamation, in addition to a slowdown and a priority, each stack node
also has a FRT-list associated with it, and a stack nodesn is represented as (η;P , FRT-list). FRT-list(sn)
is used to reference the FRT-list of the stack nodesn. The dynamic slack arises from two sources: (1)
If a job executes when the slowdown of the stack top node (snt) is greater than the base node slowdown
factor, the job is assigned a budget ofCi

η(snt)
. The remaining time budget that would be assigned if the task

were executing at the base speed, is distributed among the nodes that are dominated bysnt (stack nodes
having a smaller slowdown thansnt). (2) On job completion, its unused run time is added to theFRT-list
of stack top node (snt) with the same priority as the job priority. The SBS-DR algorithm is given in
Figure 3. Before the execution of a job, the algorithm reserves a run-time for the job based on the stack
top slowdown factor when it begins execution. As shown in line(5) an instance of taskτi is assigned
a run-time ofCi=η(snt), wheresnt is the stack top node. Furthermore, if the current node dominates
other nodes in the stack, then for each dominated nodesnd, the difference in the budget arising from a
slowdown ofη(snd) and the (adjacent) immediate dominating node slowdownη(snD), is added to the
FRT-list of nodesnd as shown in line 6 of the algorithm. A job can use its own run time as well as the
free run-time from the stack top FRT-list, with a priority (the priority of the run-time) no smaller than
the task priority. We prove that tasks can use this slack while guaranteeing all deadlines. The available
budget for a task decides the processor speed.

While executing a taskτc, if a new task arrives, with a higher priority than the current job andηc is
greater than the stack top slowdown, the speed is increased toηc and the job completes execution at
this speed. When a node (η;P , FRT-list) is pushed on the stack, the FRT-list of this newly added node
is initially empty. This stack node is popped from the stack on the execution of a job whose priority is
lower than that of taskτc. When a stack node is popped, the FRT-list of this popped node is concatenated
to the FRT-list of the new (current) stack top node. When a job completes execution, the unused slack
(run-time) of the task is added to the FRT-list of the current node at the stack top . If the system becomes
idle, all nodes except the base node are popped and the FRT-lists of all the popped nodes are added to
the FRT-list of the base node.

We use similar notation and definitions used in [38, 16] to explain our algorithm.

� Ji : the current job of taskτi .

9

� Rr
i (t) : the available run time of jobJi at timet.

� RF
i (t) : the free run time available for JobJi. The run time from the FRT-list with priority� P (Ji)

� Cr
i (t) : the residual workload of jobJi.

� RM
i (d) : The difference in run-time between nodesmd and itsimmediately dominating(adjacent)

node,smD, on a stack. IfηD andηd be the slowdown in modessmD andsmd respectively (ηD >
ηd), thenRM

i (d) = (Ci
ηd
� Ci

ηD
), is the difference in run time between the two modes.

The dynamic slowdown factor is the ratio of the residual workload to the available runtime.
The following rules are used in SBS-DR algorithm.

� As job Ji executes, it consumes run time at the same speed as the wall clock (physical time) [38].
If RF

i (t) > 0, the run time is used from the stack top FRT-list, elseRr
i (t) is used.

� When the system is idle, it uses the run time from the base node FRT-list if the list is non-empty.

Note that the rules need to be applied only on the arrival of a task in the system and on task completion.

Theorem 5 A task set, sorted in non-decreasing order of the relative task period, can be feasibly sched-

uled by the stack based slowdown with dynamic reclamation (SBS-DR) algorithm at a base speedη̄ and

task slowdown factorsηi iff,
1
η̄
(

n

∑
k=1

Ck

Tk
)� 1 (11)

8 jSi j 2 Si ;
1
ηi
(Ci +

i�1

∑
k=1

b
Si j

Tk
cCk)� Si j (12)

where Si represents the set of scheduling points for taskτi .

Proof: Suppose the claim is false and a task instance misses its deadline. Lett be the first time
that a job misses its deadline andsnc be the operating mode at timet. Let t 0 be the the latest time before
t such that (1) there are no pending jobs with arrival times beforet 0 and deadlines less than or equal to
t, (2) the system is operating in modesnc at timet 0, and (3) modesnc slack is zero at timet 0. Note that,
t 0 is well defined since at system start(time= 0), there are no job requests, the operating mode with
η(sn) = η̄ and all slack lists are empty. LetA be the set of jobs that arrive in[t 0; t] and have deadlines in
[t 0; t]. Two cases arrive based on whether the system is operating in (1) the base mode with a slowdown
of η̄, or (2) a mode dominating the base mode at timet. We consider both cases separately.

Case I: The operating mode at timet is the base modesnb with a slowdown ofη(snb) = η̄. Let
Y = t� t0. By definition oft 0, slack consumed during the intervalY is generated in this interval. The
slack generated in the intervalY with deadline less than or equal tot is bounded by∑n

i=1b
Y
Ti
cCi

η̄ . The
slack consumed is bounded byY . Since the task misses its deadline, the budget generated is greater
than that consumed in the intervalY . Hence,

n

∑
i=1
b

Y
Ti
c
Ci

η̄
> Y

10

Stack Initialization :

(1) Initialize stack with a base node (U;�∞, FRT-list)

On arrival of task τi in the system:

(1) if (processor NOT idle before task arrival and

P (τi)> P (τc) and ηc > η(snt))

(2) Push sn(ηc;P (τc), FRT-list) on the stack;

(3) SetSpeed(ηc);

(4) endif

On execution of each taskτi :

(1) while (P (τi) < P (snt))

(2) old snt Pop the stack top node;

(3) Concatenate FRT-list(old snt) to the FRT-list(snt)

(4) end

(5) Rr
i (t) =Ci=η(snt);

(6) For each dominated mode snd on the stack :

Add RM
i (d) to FRT-list(snd);

(7) setSpeed(
Cr

i (t)
Rr

i (t)+RF
i (t)

);

On Completion of τi:

(1) Add run-time (Rr
i (t);P (τi)) to FRT-list(snt);

On System Idle:

(1) while (stack:size> 1) // Pop all nodes except base node

(2) Concatenate FRT-list (snt) to base node FRT-list;

(3) Pop Stack Top;

(4) end

Figure 3. Stack Based Dynamic Reclamation Algorithm for non-preemptive scheduling
11

which implies
1
η̄

n

∑
i=1

Ci

Ti
> 1

which contradicts Equation 11
Case II: The system is operating in a modesnc that dominates the base mode (η(snc)> η̄). Consider

the latest time beforet when the system enter this mode. When the system enters the modesnc, it is
executing a job with deadline greater thant. Furthermore, on entering the modesnc, the slack in the
mode is zero. Hence all three properties are satisfied when the system enters modesmc, after which
requests of jobs with deadline less thant are always pending and sot 0 is the time when the system enter
the mode. The system is in a modesnc or a dominating mode, for the entire duration[t 0; t]. Let Jb be the
job executing at timet 0 with a deadline greater thant. This job blocks the higher priority job that arrives
at timet 0. LetY = t0�t. Jb executes at timet 0 with deadline greater thant andY <Db. If A �fτ1; :::τkg,
thenDk < Y andk< b. The number of cycles of execution of jobJb in [t 0; t] is bounded by its execution
time Ci. Since the current job slowdown is pushed on the stack on blocking,η(snc) = ηb. Job Jb

consumes a lower mode slack and this slack is bounded byCb
ηb

. Since onlysnc and higher mode slack
is consumed during the entire interval, the totalsnc or higher mode budget generated in the intervalY
is bounded by∑i�1

k=1b
Y
Ti
cCk

ηb
. The budget available to be consumed is bounded by1

ηb
(Cb+∑i�1

k=1(b
Y
Tk
c)Ck.

The budget consumed during this time period isY . Since a task misses its deadline at timet, the budget
generated aftert 0 for the jobs inA and that of jobJb exceedsY , the length of the interval. Therefore,

1
ηb

(Cb+
i�1

∑
k=1
b

Y
Ti
cCi > Y

SinceY < Tb, this contradicts Equation 12. Hence all tasks meet the deadline.

5 Experimental Setup

To evaluate the effectiveness of our energy aware non-preemptive scheduling algorithms, we consider
several task sets with randomly generated tasks. A mixed workload with task periods belonging to one
of the two period ranges [1000,2000] and [4000,5000]. The Worst Case Execution Times (WCET) for
the corresponding period ranges were [200,400] and [200,800]. The tasks were uniformly distributed in
these categories with the period and WCET of a task randomly selected within the corresponding range.

Note that our scheduling techniques can be applied to both real-time computation as well as commu-
nication systems [40, 30]. For experimental purposes, we consider the case of processor scheduling. We
use the power model for CMOS circuits as given in Equation 1. The details of the power model are given
in [35]. The operating voltage range for the processor is 0:6V and 1:8V, which is the trend in current
embedded processors. We have normalized the operating speed and support discrete slowdown factors
in steps of 0:05 in the normalized range.

5.1 Slowdown with no slack reclamation

We compare the energy gains of the following techniques:

� Optimal Constant Slowdown (OCS) algorithm (Theorem 2)

12

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

00.050.10.150.20.250.30.350.40.45

no
rm

al
iz

ed
 E

ne
rg

y

Gain factor G_f

Energy consumption normalized to OCS

Optimal Constant Slowdown (OCS)
Dual Speed (DS)

Stack Based Slowdown (SBS)

Figure 4. Energy comparison of the static slowdown algorithms as a function of the task gain factor(Gf).

� Dual Speed (DS) algorithm [38]

� Stack Based Slowdown (SBS) algorithm, proposed here.

Note that, with no dynamic slack reclamation, the base speed (equal to the system utilization U),
η̄ =U , is the lower bound on the task slowdown factor. The slowdown computed by the OCS algorithm,
sayηmax, guarantees feasibility and this is the upper bound on the task slowdown factor. SBS algorithm
uses the optimal feasibility test and ensures that the slowdown is always less than or equal toηmax.
The difference in the speeds betweenη̄ and ηmax is the reason for the energy gains in DS and SBS,
compared to OCS algorithm. To capture this relationship, we define thegain factor (Gf) of a task set as
the difference between the ratio of the lower (η̄) and upper (ηmax) bounds on the constant slowdown and
unity, Gf = 1� η̄

ηmax
. The lower the ratio of lower and upper bounds, higher is the gain factor which is a

representative of the energy gains. The gain factor represents a fraction by which the energy consumption
can be lowered. Figure 4 compares the energy consumption of the DS and the SBS methods, normalized
to the OCS algorithm. The execution time for each task is its WCET at maximum speed. The energy
gains for the various task-sets are shown with the gain factor along the X-axis and the normalized energy
consumption along the Y-axis. It is seen that the energy gains of DS and SBS is proportional to the gain
factor. Since the gains are proportional to the gain factor, we have averaged the energy gains over task-
sets with a gain factor within a range of 0.05. The larger the gain factor, the larger is the difference in the
base speed and the maximum speed, and the energy gains by executing a task at the base speed (η̄) are
larger. The energy consumption decreases steadily as the gain factor increases, with both DS and SBS
having increased energy gains over the OCS algorithm.

For gain factors close to 0, it is seen that the DS algorithm consumes more energy than OCS. Since
the DS algorithm does not use the optimal feasibility test, theH speed in the dual speed algorithm can
be greater thanηmax. This result in more energy consumption as opposed to the the savings achieved

13

by using a lower speed (base speed) during certain time intervals. The SBS algorithm uses the optimal
feasibility test and always consumes less energy than the OCS algorithm. Since SBS uses the optimal
feasibility test and only switches to higher speeds when needed, it results in energy gains over the DS
algorithm. It is seen that the SBS algorithm on an average has 15% energy gains over the DS algorithm.

5.2 Dynamic slack reclamation

We now compare the added energy gains that are achieved by dynamic slack reclamation techniques.
The dynamic slack reclamation techniques compared are as follows:

� Optimal Constant Slowdown with Dynamic Reclamation (OCS-DR) algorithm, where we use the
same the dynamic slack reclamation technique discussed in Section 4, over the slowdown factors
computed by the OCS algorithm.

� Dual Speed Dynamic Reclamation (DSDR) algorithm [38]

� Stack Based Slowdown with Dynamic Reclamation (SBS-DR) algorithm, proposed here.

To generate varying execution times, we vary thebest case execution time (BCET)of a task as a
percentage of its WCET. The execution times are generated by a Gaussian distribution with mean,
µ= (WCET+BCET)=2 and a standard deviation,σ = (WCET�BCET)=6. The BCET of the task
is varied from 100% to 10% in steps of 10%. Experiments were performed on various task sets and
Figure 5 shows the energy gains as BCET is varied, at two gain factors,Gf = 0:1 andGf = 0:4.

Dynamic reclamation leads to energy gains even at worst case execution times, or BCET of 100%.
This is because the slack arising due to executing at speeds higher than the base speed are reclaimed
during reclamation techniques. Secondly, mapping tasks to discrete voltage levels also adds to the system
slack, resulting in energy gains even at BCET of 100%. A steady decrease in the energy consumption
is seen with a decrease in the BCET. As the task execution time is decreased, there is shorter blocking
intervals and fewer transitions to higher speeds, leading in increased energy gains compared to OCS-
DR. The DSDR and SBS-DR follow the same trend with the variation of BCET. However, SBS-DR
uses better static slowdown factors by using a optimal feasibility test and results in more energy savings.
SBS-DR results on an average 20% energy gains over the DSDR algorithm. The same is true in both
graphs in Figure 5. Comparing the energy savings atGf = 0:1 andGf = 0:4, it is seen that the larger
the gain factor, the higher are the energy gains. This is because the slack reclamation techniques also
reclaim the slack that arises by the tasks execution in a higher speed than the base speed. The energy
consumption is seen to decrease up to 65% forGf = 0:1 and as low as 58% forGf = 0:4.

6 Conclusions and Future Work

We have presented energy aware scheduling techniques for non-preemptive task sets. These task sets
are important in systems where task preemption is impossible (e.g., modulation scaling applied to wire-
less communications) or prohibitively expensive (such as ultra-low power sensor network nodes). We
propose the stack based slowdown algorithm based on the optimal feasibility test and present a dynamic
slack reclamation algorithm that works in conjunction with it. We see that designing slowdown algo-
rithms based on optimal feasibility tests results in higher energy efficiency. Experimental results show on

14

0.6

0.7

0.8

0.9

1

1.1

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 E

ne
rg

y

% variation of BCET

Energy consumption normalized to OCS-DR (G_f = 0.1)

Optimal Constant Slowdown with Dynamic Reclamation (OCS-DR)
Dual Speed Dynamic Reclamatioin (DSDR)

Stack Based Slowdown with Dynamic Reclamatioin (SBS-DR)

0.6

0.7

0.8

0.9

1

1.1

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 E

ne
rg

y

% variation of BCET

Energy consumption normalized to OCS-DR (G_f = 0.4)

Optimal Constant Slowdown with Dynamic Reclamation (OCS-DR)
Dual Speed Dynamic Reclamatioin (DSDR)

Stack Based Slowdown with Dynamic Reclamatioin (SBS-DR)

Figure 5. Energy Consumption with Dynamic Slack Reclamation, for gain factors,Gf = 0:1 andGf = 0:4.

an average 15% gains when scheduling with static slowdown factors and 20% gains with dynamic slack
reclamation. These techniques are energy efficient and can be applied to energy efficient scheduling of
communications systems as well. This will lead to energy efficient computation and communication
systems and will have a great impact on the energy utilization of portable devices.

Our algorithm is based on a centralized scheduling policy. We plan to extend it to a distributed
scheduling policy which will extend the applicability to more systems.

References

[1] T. A. AlEnawy and H. Aydin. Energy-constrained performance optimizations for real-time operat-
ing systems. InProceedings of the Workshop on Compilers and Operating System for Low Power,
2003.

[2] L. Almeida and J. A. Fonseca. Analysis of a simple model for non-preemptive blocking-free
scheduling. InEuroMicro Conference on Real-Time Systems, pages 233–, 2001.

[3] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Determining optimal processor speeds for
periodic real-time tasks with different power characteristics. InReal-Time Systems Symposium,
Phoenix, AZ, Dec 1999.

15

[4] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Determining optimal processor speeds for
periodic real-time tasks with different power characteristics. InEuroMicro Conference on Real-
Time Systems, 2001.

[5] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. InReal-Time Systems Symposium, December 2001.

[6] CAN-CIA. CAN specification 2.0 Part B, 1992. http://www.can-
cia.org/downloads/ciaspecifications.

[7] S. Cavalieri, A. Corsaro, O. Mirabella, and G. Scapellato. Scheduling periodic information flow
in fieldbus and multi-fieldbus environments. InThe International Conference on Automation 1998
Proceeding, Milano, Italy, 1998.

[8] S. Dolev and A. Keizelman. Non-preemptive real-time scheduling of multimedia tasks.Real-Time
Systems, 17(1):23–39, 1999.

[9] EN 50170. General purpose field communication system. InEuropean Standard, CENELEC, July
1996.

[10] D. Ferrari and D. Verma. Real-time communication in a packet-switching network. InProc. Second
IFIP WG6.1/WG6.4 Intl. Workshop on Protocols for High-Speed Networks, Palo Alto, Calif., 1990.

[11] D. Ferrari and D. C. Verma. A scheme for real-time channel establishment in wide-area networks.
IEEE Journal on Selected Areas in Communications, 8(3):368–379, 1990.

[12] F. Gruian. Hard real-time scheduling for low-energy using stochastic data and dvs processors. In
International Symposium on Low Power Electronics and Design, pages 46–51, 2001.

[13] F. Gruian and K. Kuchcinski. Lenes: task scheduling for low-energy systems using variable supply
voltage processors. InProceedings of the Asia South Pacific Design Automation Conference, 2001.

[14] Intel XScale Processor. Intel inc.(http://developer.intel.com/design/intelxscale).

[15] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of periodic and sporadic
tasks. InReal-Time Systems Symposium, pages 129–139, 1991.

[16] R. Jejurikar and R. Gupta. Dual mode algorithm for energy aware fixed priority scheduling with
task synchronization. InProceedings of the Workshop on Compilers and Operating System for Low
Power, 2003.

[17] J. Kim and M. Horowitz. Adaptive supply serial links with sub-1v operation and per-pin clock
recovery. InProceedings of International Solid-State Circuits Conference, Feb 2002.

[18] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling algorithm for dynamic-priority hard
real-time systems using slack time analysis. InDATE, 2002.

[19] W. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically variable voltage
processors. InProceedings of the 40th conference on Design automation, pages 125–130, 2003.

16

[20] J. Liu and P. H. Chou. Energy optimization of distributed embedded processors by combined data
compression and functional partitioning. InInternational Conference on Computer Aided Design,
Nov. 2003.

[21] J. Liu, P. H. Chou, and N. Bagherzadeh. Communication speed selection for embedded systems
with networked voltage-scalable processors. InInternational Symposium on Hardware/Software
Codesign, Nov. 2002.

[22] J. W. S. Liu.Real-Time Systems. Prentice-Hall, 2000.

[23] J. Luo and N. Jha. Power-conscious joint scheduling of periodic task graphs and a periodic tasks in
distributed real-time embedded systems. InInternational Conference on Computer Aided Design,
2000.

[24] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating
systems. InProceedings of 18th Symposium on Operating Systems Principles, 2001.

[25] G. Quan and X. Hu. Minimum energy fixed-priority scheduling for variable voltage processors. In
Design Automation and Test in Europe, pages 782–787, March 2002.

[26] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying time and energy
constraints. InReal-Time Systems Symposium, 2002.

[27] C. Rusu, R. Melhem, and D. Mosse. Multi-version scheduling in rechargeable energy-aware real-
time systems. InEuroMicro Conference on Real-Time Systems, 2003.

[28] C. Rusu, R. Melhem, and D. Mosse. Maximizing rewards for real-time applications with energy
constraints. InACM Transactions on Embedded Computer Systems, accepted.

[29] C. Schurgers, O. Aberthorne, and M. B. Srivastava. Modulation scaling for energy aware com-
munication systems. InInternational Symposium on Low Power Electronics and Design, pages
96–99, August 6-7, 2001.

[30] C. Schurgers, V. Raghunathan, and M. B. Srivastava. Modulation scaling for real-time energy
aware packet scheduling. InGlobal Communications Conference (GlobeCom’01), San Antonio,
Texas, pages 3653–3657, November 25-29, 2001.

[31] L. Shang, L. S. Peh, and N. K. Jha. Dynamic voltage scaling with links for power optimiza-
tion of interconnection networks. InProceedings of the IEEE International Symposium on High-
Performance Computer Architecture (HPCA), January 2003.

[32] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems on variable
speed processors. InInternational Conference on Computer Aided Design, pages 365–368, 2000.

[33] Transmeta Crusoe Processor. Transmeta inc.(http://www.transmeta.com/technology).

[34] G. Wei, J. Kim, D. Liu, and M. Horowitz. A variable frequency parallel io interface with vari-
able frequency parallel i/o interface with adaptive power-supply regulation.Journal of Solid-State
Circuits, 35(11):1600–1610, Nov 2000.

17

[35] N. Weste and K. Eshraghian.Principles of CMOS VLSI Design. Addison Wesley, 1993.

[36] F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy. InProceedings
of the Foundations of Computer Science, pages 374–382, 1995.

[37] H. Yun and J. Kim. On energy-optimal voltage scheduling for fixed-priority hard real-time systems.
Trans. on Embedded Computing Sys., 2(3):393–430, 2003.

[38] F. Zhang and S. T. Chanson. Processor voltage scheduling for real-time tasks with non-preemptible
sections. InReal-Time Systems Symposium, 2002.

[39] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy minimization.
In Proceedings of the Design Automation Conference, 2002.

[40] Q. Zheng and K. G. Shin. On the ability of establishing real-time channels in point-to-point packet-
switched networks.IEEE Transactions on Communications, 42(2/3/4):1096–1105, Feb/Mar/Apr.
1994.

18

