System-on-Chip Environment (SCE Version 2.2.0
Beta): Manual

Lukai Cai
Andreas Gerstlauer
Samar Abdi
Jerry Peng
Dongwan Shin
Haobo Yu
Rainer Domer
Daniel D. Gajski

Technical Report CECS-TR-03-45
December 2003

System-on-Chip Environment (SCE Version 2.2.0
Beta): Manual

Lukai Cai
Andreas Gerstlauer
Samar Abdi
Jerry Peng
Dongwan Shin
Haobo Yu
Rainer Domer
Daniel D. Gajski

Technical Report CECS-TR-03-45
December, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

+1 (949) 824-8919

http://www.cecs.uci.edu

Contents

\1 Introduction

2 Overview

21

Modules e
211 MainWindow e
212 InputDialogs
213 Display Windows

2.3.1 InternalInterfaces,
232 External INterfaceso
\2.4 Performance
3 Windows/GUI
\3.1 MenuBar e
311 FileMeNU . . . o oot
312 EditMeNnU . . . oo
313 ViewMenu
3.1.4 Project MENU © o v oot e
3.15 SynthesisMenu.,
3.1.6 Validation Menu\
347 WINAOWS .« . o oot e e
\3.2 Project WindoM
321 ModelsTab
322 ImportsTab
323 SOUCESTAD . « o o o v ot
3.3 DesignWINdOW o o v oo
331 HierarchyTab.
3.32 BehaviorsTab
333 ChannelsTab
3.34 ViewPane
3.4 OutputWindow e
35 WOrksSpace o
\3.6 Message BOXES
3.6.1 ErrorDialogs
3.6.2 InformationDialogs

4 FunctionaliM

4.0 APPlICALON . . o v e
4.1.1 Preferences Editing\
4.2 Project Handling o oo e
421 ProjectCreation
422 ProjectOpening
423 ProjectSaving e
4.2.4 Project Settings Editing L
425 DesignAdding e
426 DesignOpening
427 DesignDeletion
428 DesignRenaming e
4.2.9 Description Changing\
4210 ProjectClosingo
43 FileHandling oo
431 FileOpening
432 FileSaving
433 FileClosing e
434 Filelmport
43.5 DesignProperty Viewing
436 SCEEXting e
\4.4 Design-Entity Handling\
4.4.1 Entity Renaming\
442 ENtty REYPING . « « o o o o oo e
443 EntityDeletion
4.4.4 Hierarchy Displaying
45 Synthesis e
4.5.1 Architecture Synthesis
452 Communication Synthesis
45.3 DecisionlImport e
4.6 Window Management
References

\A Manual Pages

Al scc- SpecC Compiler

List of Figures

1 System-on-Chip Environment. oo 2
2 Overview of the software architecture of SCE. 3
3 Modulediagram of SCE. 5
4 MainWindow of SCE. 10
5 Project Window (Modelstab). 15
6 Project Window (Importstab). 17
7 Project Window (Sourcestab) 18
8 Design Window (Hierarchytab). 19
9 Design Window (Behaviors tab)\ 21
10 Design Window (Channelstab). 22
11 OutputWindow 22
12 Errordialog e 24
13 Informationdialog 24
14 Edit Preferences dialog (Compiler tab). oo 27
15 Edit Preferences dialog (Database tab).\ 29
16 Database Selectiondialog. 29
17 ProjectOpendialog. 32
18 ProjectSavedialog. 33
19 Project Settingsdialog. 34
20 FileOpendialog. 37
21 FileSavedialog. 38
22 File Importingdialog. L. 40
23 Design Propertydialog. 41
24 PE Allocation dialog. oo 46
25 PE Selectiondialog. 48
26 Architecture Refinementdialog. 51
27 _Bus Allocationdialog. 54
28 Bus Selection dialog.\ 56
29 Communication Refinementdialog. 58
30 Import Decisions dialog.\ 61

System-on-Chip Environment (SCE Version 2.2.0 Beta): Manual

L. Cai, A. Gerstlauer, S. Abdi, J. Peng, D. Shin, H. Yu, R. Démer, D. Gajski
Center for Embedded Computer Systems
University of California, Irvine

Technical Report CECS-TR-03-45
December, 2003

1 Introduction

The SCE provides an environment for modeling, synthesis and validation. It includes a
graphical user interface (GUI) and a set of tools to facilitate the design flow and perform
the aforementioned refinement steps. The two major components of the GUI are the Re-
finement User Interface (RUI) on the left and the Validation User Interface (VUI) on the
right as shown in Figure 1. The RUI allows designers to make and input design decisions,
such as component allocation, specification mapping. With design decisions made, refine-
ment tools can be invoked inside RUI to refine models. The VUI allows the simulation of
all models to validate the design at each stage of the design flow. Each of the boxes cor-
responds to a tool which performs a specific task automatically. A profiling tool is used to
obtain the characteristics of the initial specification, which serves as the basis for architec-
ture synthesis. The refinement tool set automatically transforms models based on relevant
design decisions. The estimation tool set produces quality metrics for each intermediate
models, which can be evaluated by designers. With the assistance of the GUI and tool
set, it is relatively easy for designer to step through the design process. With the editing,
browsing and algorithm selection capability provided by RUI, a specification model can be
efficiently captured by designers. Based on the information profiled on the specification, de-
signers input architectural decisions and apply the architecture refinement tool to derive the
architecture model. If the estimated metrics are satisfactory, designers can focus on com-
munication issues, such as protocol selection and channel partitioning.With communication
decisions made, the communication refinement tool is used to generate the communication
model. Finally, the implementation model is produced in the similar fashion. The imple-
mentation model is ready for RTL synthesis. We are currently in the process of developing
tools for automating the synthesis tasks for system level design shown in the exploration
engine. The manual concentrates on automatic synthesis process.

Refinement
User Interface (RUI)

Alg. selection

Browsing

Spec. optimization

Capture

———
—o——

Profiling
weights
L LES

Specification model

Profiling

Allocation

Beh. partitioning

SW Scheduling /
RTOS

Profiling data
v 9

P ——

Comp. / IP

attributes

Arch. synthesis

Design ¢ decisions)
Arch. refinement

Architecture model

Comp. / IP
models

Protocol selection

Channel partitioning

Arbitration

Estimation results

Comm. synthesis

Design g decisions

Protocol
attributes
Protocol

models

Comm. refinement

Communication model

Cycle scheduling

Estimation results

HW/SW synthesis

RTL Units /
Compilers

Protocol scheduling

Design g decisions

SW assembly

N HW/SW refinement

RTL Models
/1S

f—

cle -accurate model

ion results

Figure 1: System-on-Chip Environment.

Validation
User Interface (VUI)

Simulate

Verify

Simulate

Verify

Simulate

Verify

Simulate

Verify

l GUI
Model
Input Model SIR <«
Decisions

— ' 3 \4

Database i FM
Component import parameters

5
L Q.
£
Intermediate SIR N o
3
- Cmd. Line
| Model refinement FW
A\ 4
Output Model SIR
A

Project
File

Figure 2: Overview of the software architecture of SCE.

2 Overview

Figure |2 shows an overview of the software architecture of each synthesis step of SCE.
Each step requires an input model of the intended design in the form of valid SpecC code
[1]. For example, the input model is the specification model for the architecture refinement,
the architecture model for communication refinement.

Architecture synthesis reads information about available components from a database
of processing elements (PEs). Communication synthesis reads information about available
components from databases of buses. The database is read in binary form as a file in SpecC
Internal Representation (SIR) format. Through SCE’s graphical user interface (GUI), the
user can browse the specification/architecture/communication model and PE/bus database,
and the user is provided with a GUI to enter design decisions to come up with different
design decisions. For architecture synthesis, the decisions are computation architectures
and mappings of the specification onto those architectures. For communication synthesis,

the decisions are communication architecture and mappings of the channels to buses.

For each candidate design decision as determined by the user, each step automatically
generates an output model that exactly reflects the design decisions made. The output model
is the architecture model for architecture synthesis, and the communication model for com-
munication synthesis.

Information about design models and their relationships are tracked by the SCE and
can be stored in project files that can be read and written by SCE in a custom XML for-
mat. Generated architecture models along with the corresponding project file(s) can then
be passed to the following tools in the SCE design flow.

Internally, the SCE consists of separate components for component import, architec-
ture/communication refinement, and graphical user interface (GUI). The main SCE appli-
cation is the SCE GUI which in turn calls import and refinement components as needed.
Component import and refinement are command line tools that are called and executed by
the GUI where the GUI supplies the correct command line parameters, captures the output
and handles (normal or abnormal) results. The GUI reads and displays design models, lets
the user browse the database, and provides facilities to enter design decisions. Design de-
cisions are stored by the GUI as annotations in the input design model. For generation of
output design models, the GUI first passes the annotated design to the component import
tool which, as requested by the GUI, imports the necessary component models out of the
database into the design and writes an intermediate design model. The GUI then calls the
refinement tool on the intermediate design model. The refinement tool in turn generates the
final output architecture model which can be read, displayed and browsed through the GUI.

The run time of automatic model generation is in the order of minutes. Therefore with
SCE, users can rapidly experiment with dozens, even hundreds of alternative design deci-
sions to make the optimal design decisions.

2.1 Modules

The block diagram and flow chart of the SCE is displayed in Figure (3. The blocks represent
SCE modules where each block is associated with one or more GUI elements. GUI elements
and hence SCE blocks can be further classified into three types: the Main Window, input
dialogs and display windows.

Besides above three types of windows, there are two types of arrows in Figure|3: solid
arrows and dashed arrows. Solid arrows represent the pop-up relations. The window at the
arrow head will be triggered by clicking a button or selecting a menu item in the window at
the arrow tail. For example, by clicking Open button in File column in the menu of window
Main Window, users will trigger File Open dialog. The text that appears on some arrows
represents the arrow’s task name. On the other hand, dashed arrows represent information
updates. The data in the window at the arrow head will be updated by clicking a button
in the window at the arrow tail. In order to simplify Figure (3, the arrows for error and

File Deleting

/;D File Renaming
l————

RSB - ——————-
! g3 53
| SE | g -
| a3 ! (o3 | | |
|
| |
| | |
| | | .
| T
! ! R | | [
| | ! 1 | ! !
| g | | ! | [
| S o |
! 2£ | ﬂ W I [T , P
| © O
& | | | | | | .
| O
| 55 . | | ! | ! -
! Q0 y I I H I I | !
! S b
| e [
| o °
= | w o [N |
| ~ o - =) c o 2 s o |
i g 2 g2 28 26 s £ g2 52 85 P
W o8 Sz £ Egs 28 o o= s 8 P
[S) ao 5 & Sec gE T h i SR Es Lo
| z = [-
| | |
! I
|
! I
|
| T T T 5 |
! I
|
! I
|
! I
|
! I
|
! I
| [
! JuawabeUBN MOPUIM ! !
! X3 3y Pl
| 18502 9|4 .
W g § — L
! £ g > 5 Do
, 2 S - | = 2 !
! s s W - I —m 2 -t - £ | !
! S MNeae---- - ____ | | i} = | |
! 5 s W H ! ! = | W
| | —p E
! = a8 I ! | | ’ P
! 5 | ! | ___ | | |
! 5 2 ! ! [[
2 55 | | !
! 82 | S [[
I saf I | [I !
! zs2 | | [[
| 278 TTTTT I ITTTTT T | Lo
| s u ! | | | [
| S ! | | |
| | ! | |
|
| v 1 Y ' -
|
| = o | !
, g 3 o o=l g 2 E * £ | I
! c =3 c 2 < 2 e Gl = T =] | |
! @ o £ (SR =] x ©F S 3 157 D |
= =) £ O <) Q |
e » & T a9] cEo o 3 S o] [
S g £ =g 583 L Pa— 3 < 3 .
o n = £ T 2 « > n | |
= o = a < w w 3 > |
v o o @ @ A
|
T [
| [
% % ! % % % % % ! |
+ |
|
] [
I [
|
|

f SCE.

Module diagram o

Figure 3

information dialogs are not connected. They are popped up when the error or information
occurs, which will be described in Section[4.

2.1.1 Main Window

The main window (shown as 3-D block in Figure 3), is the default, top-level window of the
GUI and hence the SCE application. The main window contains a menu bar and a status bar
through which the application can be controlled by the user and through which feedback is
provided to the user about the state of the application.

2.1.2 Input Dialogs

Input dialogs (shown as regular blocks) allow users to input the design or project decisions
by selecting, editing, or typing the details. They are all pop-up dialogs. Users directly/indi-
rectly pop up all the input dialogs by clicking buttons or selecting menu items. Input dialogs
include:

(a) File Open dialog for selecting the design file which users want to open.
(b) File Save dialog for saving current file as a new file with the specified name.

(c) Design Property dialog for displaying the information related to the process of SCE,
such as command history and processing status of SCE.

(d) File Import dialog for selecting the design file which users want to import.
(e) PE Allocation dialog for adding PEs to and removing PEs from the design.

(f) PE Selection dialog for selecting PEs from the PE library (for input dialog PE Allo-
cating).

() Bus Allocation dialog for adding busses to and removing busses from the design.
(h) Bus Selecting dialog for selecting busses from the bus database.

(i) Error dialogs for displaying of error messages of design tasks.

(1) Information dialogs for providing informational feedback to the user.

(k) Project Open dialog for reading a new project from disk.

() Project Save dialog for saving current project as a new project on disk with the speci-
fied name.

(m) Architecture Refinement dialog for selecting sub-tasks for architecture refinement.

(n) Communication Refinement dialog for selecting sub-tasks for communication refine-
ment.

(o) Decision Import dialog for import the design decisions from other opened designs.
(p) Project Settings dialog for setting project preferences.
(g) Edit Preferences dialog for setting SCE preferences.

(r) Database Selection dialog for selecting the preferred database.

2.1.3 Display Windows

Display windows (shown as shaded windows in Figure[3) graphically display the informa-
tion of files, projects, and the process status of SCE. Display windows are sub-windows
under the main window. Display windows include:

(a) Design Window displays the contents and the attributes of the designs saved in the
opened files. The displayed information includes hierarchy of behaviors, execution
sequence of behaviors, and variable/port details of the selected behavior.

(b) Project Window displays the project information such as hierarchy of design models
and included source files.

(c) Output Window displays the captured output of the SCE command line tools called by
the GUI.

2.2 Requirements
The SCE requires a system with the following runtime platform:

Host machine Intel-compatible x86 PC, 500MHz or higher, recommended minimum
128MB of RAM, 200MB of free hard disk space.

Operating system RedHat Enterprise Linux WS, Version 3

In order to compile the source code of SCE, the following additional software packages
have to be installed (in binary form including necessary header files):

e SIR library, Version 2.2.x (UC Irvine)
e Qt library and toolkit, Version 3.3.x (Trolltech, Inc.)
e PyQt library, Version 3.11 or higher (Riverbank Computing, Ltd.)

Note that in order to redistribute the libraries together with the compiled SCE, commercial
licenses of the above tools have to be obtained as necessary.

2.3 Interfaces

SCE interfaces can be separated into internal interfaces for information exchange between
SCE components and external interfaces for information exchange with other tools both
within SCE and outside of SCE.

2.3.1 Internal Interfaces

Components inside SCE exchange information through design models, command line pa-
rameters, logging output, and exit codes.

Design models Design models are exchanged between SCE components in the form of
SpecC files stored on any file system supported by the underlying operating sys-
tem (Linux). In addition to the SpecC code for the design models themselves, SCE
components exchange information via annotations for design decisions and design
meta-information.

Command line parameters When calling command line tools, the SCE GUI will pass
information for controlling the tool in the form of command line parameters.

Logging output Command line tools will produce logging output during execution. This
logging output is captured by the GUI and displayed to the user in the GUI’s output
window.

Exit codes Command line tools signal status information (success or error codes in the
case of tool failure) to the GUI in the form of their exit codes. The GUI analyzes
command line tool exit codes and translates them into necessary information or error
messages.

2.3.2 External Interfaces

The SCE exchanges information with other tools and with the designer via design models,
databases, project files and via SCE’s graphical user interface:

Design models Design models are exchanged between SCE’s tools in the form of SpecC
source code stored as files in any file system supported by the underlying operating
system (Linux). SpecC source files are stored as text files in DOS or Unix end-of-line
format where SCE will be able to read both formats and to export files in DOS form.
Generally, SpecC source code is stored in plain ASCII format. However, SCE will
be able to transparently handle Kanji-encoded comments and strings.

SCE will generally be able to import any valid SpecC code that is parsable according
to the syntax and grammar of SpecC 2.0 (based on standard ANSI C) as defined in

the SpecC Language Reference Manual (LRM), Version 2.0 [1]. Note that inside
SCE no object code or executables are ever created and therefore models imported
into SCE can include foreign code that depends on libraries outside (i.e. does not
have to be linkable on) the underlying host platform (Linux). In contrast, since SCE
will preprocess the SpecC source files on the host platform and inline any included
code in its exported models, pre-prepared, clean header files with all specific code
to be included have to be supplied together with the SCE import SpecC models as
necessary for external tools.

In addition, individual models imported into SCE will have to conform to the specific
rules and guidelines defined in the specification documents for each type of model.

Databases Databases are generated by the library builder and stored as a collection of
binary SpecC Internal Representation (SIR) files managed via a specific file system
hierarchy on top of the general underlying file system. SCE components then read
component models from these SIR database files.

Project files Project files are stored as XML files in any file system supported by the un-
derlying operating system (Linux). Project XML files are text files using Unix text
file format. Project files use a custom XML format that is common to all tools in the
SCE environment, i.e. the project XML file format is shared among the SCE tools
and any SCE tool is able to read, write and modify project files generated by or used
as input to any other SCE tool.

User interface All user input is entered in SCE through a graphical user interface (GUI).
The SCE GUI is built on top of the X11 windowing system and as such can be run
on any local or remote X window server.

2.4 Performance

The SCE will guarantee that for a typical design with less than 10,000 lines of code, less
than 10 PEs, and less than 100 behaviors, variables and channels, automatic generation of
the refined model will take less than 5 minutes.

3 Windows/GUI

The primary GUI of SCE is the Main Window, which is displayed in Figure 4. The Main
Window consists of six parts:

(a) A Menu Bar that contains several columns of commands. Each column is a drop-down
menu (see Section|(3.1).

Design IDescnpﬁon

=l Compie | simutate | analyze | Refine | Syninesize | shel |

Ready

Figure 4: Main Window of SCE.

10

(b) A Tool Bar that contains a list of short-cut icons. Each icon represents a command in
the menu bar.

(c) A Project Window (see Section|3.2).

(d) A Workspace that contains a number of opened Design Windows (see Section|3.3).
(e) An Output Window (see Section|3.4).

(f) A Status Bar that displays the current status of SCE, such as “Loading...” or “Ready”.

In this section, we introduce organization-related and display-related details of Menu
Bar, Project Window, Display Windows, and Output Window. Some windows contain drop-
down menus or pop-up menus. The menus further contain design commands. The usage
and functionality behind the commands will be described later in Section 4.

3.1 Menu Bar

The Menu Bar contains seven main menu entries: File, Edit, View, Project, Synthesis, Vali-
dation, and Windows. Each main menu entry is a drop-down menu which contains a number
of commands. In general, unless otherwise noted, selecting a main menu entry will apply
the corresponding action to the currently active design, i.e. to the design window in the
workspace that currently has the input focus. If there is no currently active design window,
menu commands will silently fail (do nothing).

3.1.1 File Menu

The File menu contains eight commands:

Open Selecting Open will allow loading and opening of an existing design file (see Sec-

tion|4.3.1).
Close Selecting Close will close the currently active design (see Section[4.3.3).
Save Selecting Save will save the currently active design file (see Section 4.3.2).

Save As Selecting Save As will save the currently active design as a new file (see Sec-

tion|4.3.2).
Save All Selecting Save All will save all the opened files (see Section 4.3.2).

Import Selecting Import will import a design file into the currently active design (see Sec-

tion|4.3.4).

11

Properties Selecting Properties will display the properties of the currently active design
(see Section|4.3.5).

Exit Selecting Exit will exit from and quit SCE (see Section |4.3.6).

3.1.2 Edit Menu

The Edit menu contains six commands:

Undo Selecting Undo will undo the previous action.

Redo Selecting Redo will redo the previous action.

Cut Selecting Cut will cut the selected text and save it in the buffer.
Copy Selecting Copy will copy the selected text and save it in the buffer.

Paste Selecting Paste will paste the content in the buffer to the place where the mouse
points to.

Preferences Selecting Preferences will allow viewing and modifying of application pref-
erences (see Section 4.1.1).

3.1.3 View Menu

The View menu contains four commands:
Source Selecting Source will display the source file of the selected design.
Graph Selecting Graph will display profiling graphes of the selected design.

Connectivity Selecting Connectivity will display the connectivity of behaviors of the se-
lected design.

Hierarchy Selecting Hierarchy will display the behavior hierarchy graphically.

3.1.4 Project Menu

The Project menu contains seven commands:
New Selecting New will create a new project and open it (see Section|4.2.1).
Open Selecting Open will open an existing project file (see Section 4.2.2).

Close Selecting Close will close the current project (see Section 4.2.10).

12

Save Selecting Save will save the current project file (see Section 4.2.3).

Save As Selecting Save As will save the current project as a new project file (see Sec-
tion|4.2.3).

Add Design Selecting Add Design will add the current design into the project.

Settings Selecting Settings will allow viewing and modifying of project settings (see Sec-
tion|4.2.4).

3.1.5 Synthesis Menu

The Synthesis menu contains following commands:

Show Variables Selecting Show Variables will toggle displaying of variables in the cur-
rently active design window (see Section |4.4.4).

Show Channels Selecting Show Channels will toggle displaying of channels in the cur-
rently active design window. (see Section|4.4.4)

Allocate PE Selecting Allocate PE will allow allocation and selection of PEs/memories
from the PE database (see Section|4.5.1).

Allocate Busses Selecting Allocate Busses will allow users to allocate busses from the bus
database. (see Section|4.5.2).

Import Decisions Selecting Import Design will allow importing of design decisions from
another opened design (see Section|4.5.3).

Architecture Refinement Selecting Architecture Refinement will perform architecture re-
finement to generate the refined architecture model (see Section 4.5.1).

Communication Refinement Selecting Communication Refinement will perform commu-
nication refinement to generate the communication model (see Section|4.5.2).

3.1.6 Validation Menu

The Validation menu contains four commands:

Compile Selecting Compile will compile the current design.
Simulate Selecting Simulate will simulate the current design.
Profile Selecting Profile will profile the current design.

Estimate Selecting Estimate will estimate the current design.

13

3.1.7 Windows

The Windows menu contains six commands:
Close Selecting Close will close the currently active design window in the Workspace.
Close All Selecting Close All will close all design windows in the Workspace.

Next Selecting Next will switch focus to and raise the next design window in the
Workspace.

Previous Selecting Previous will switch focus to and raise the previous design window in
the Workspace.

Tile Selecting Tile will rearrange the design windows in the Workspace in a tiled style.

Cascade Selecting Cascade will rearrange the design windows in the Workspace in a cas-
caded style.

Project Manager Selecting/unselecting Project Manager will display or undisplay the
Project Window.

Output Window Selecting/unselecting Output Window will display or undisplay the Output
Window.

At the bottom of the Windows menu, the names of all opened design windows will be
listed. Selecting the name of a design will switch focus to and raise (bring to the front) the
corresponding design window.

Details about the usage and functionality of these commands are introduced in Sec-
tion|4.6.

3.2 Project Window

The Project Window is a sub-window of the Main Window, displaying project information.
In general, a project holds meta-information about a set of design files and their relationship,
e.g. a parent-child relationship in case a design was generated from another design through
refinement. Hence, each file represents a design of the project at one abstraction level. In
addition, the project can hold project-specific settings for the design environment, such as
the compiling and parsing environment (paths).

At any time, the SCE application can keep one project open and active in memory. The
name of this currently active project is displayed in the title bar of the Main Window. The
Project Window displays the hierarchical information of design files in the currently active
project. If there is no active project, the Project Window is disabled.

14

Description

w28 vocoderarch sir
FFESyocoderSched.sir
L2|2y acoderComm.sir

Models | Imports | SOUrces |

Figure 5: Project Window (Models tab).

15

The Project Window can be detached or docked. Users can drag the window (by its title
bar or handle) to the desired place. If the Project Window is detached, it can be floating and
displayed anywhere on the desktop. If the Project Window is docked, it has to be attached
to any of the borders of the Main Window.

The Project Window contains three tabs: Models, Imports, and Sources. By clicking
the tab at the bottom of the window, the corresponding tab will be activated and brought to
the front.

3.2.1 Models Tab

Figure|5 shows the screenshot of the Models tab. The Models tab contains two columns.
Column Design displays the name of each design file in the project. If one design is derived
or generated from another, the derived design is displayed as the child design of the previous
one. The derivation hierarchy is indicated through connecting lines of a tree structure.

Users can select a design by clicking the row in which the design is displayed. Double-
clicking on a row will open the corresponding design. If the design is currently opened and
loaded, double-clicking will activate (switch focus to and raise to the front) the correspond-
ing design window in the Workspace (see Section|3.5).

The Column Description shows an optional description of the design. By clicking into
the column, the user can edit the description text of the selected design directly in the
corresponding table cell.

Right-clicking on a row will open a context menu pop-up for the selected design. The
context menu contains four commands:

Open Selecting Open will open the selected file (see Section|4.3.1). If the selected design is
already opened, the corresponding design window in the workspace will be activated.

Delete Selecting Delete will remove the selected file from the project and optionally delete
the file on disk (see Section[4.2.7).

Rename Selecting Rename will rename the selected file (see Section|4.2.8).

Change Description Change Description will trigger editing of the description of the se-
lected file. (see Section|4.2.9)

Note that renaming and changing of description actions can also be triggered by clicking
into the corresponding column of the selected file.
3.2.2 Imports Tab

Figure[6 shows the screenshot of Imports tab. The Imports tab displays a lists of imported
design names. The list contains the union of all the sub-designs that have been imported
directly or indirectly into any of the design files that are part of the project.

16

Users can select an imported design by clicking the row in which the imported design
is displayed. Double-clicking on an imported design opens the corresponding design in the
workspace.

Right-clicking on an imported design opens a context-menu pop-up for the selected
design. The context menu contains one command:

Open Selecting Open will open the import design file (see Section 4.3.1).

Note that the opening action is equivalent to double-clicking on the imported design.

alu_3g

arg_handler

array_op

autocarr

az_lzp

hasic_func

basic_op
huild_chn_code
biild_code
c_double_handshake
closed_loop
ch_encoding
cod_12ke
code_10i40_35hits
codebook
codehoak_cn

coder Fi

‘Mndels | Imports | Sources |

Figure 6: Project Window (Imports tab).

3.2.3 Sources Tab

Figure[7 shows the screenshot of Sources tab. The Sources tab displays a lists of names of
source files. The list contains the union of all SpecC source files that are sources for the
design files that are part of the project.

The Sources tab does not allow any action on the files and is for informative purposes
only.

17

File

allocah

alu.sc

arg_handler.sc
array_op.sc

asserth

autocorr.sc

az_lsp.sc
hasic_func.sc
hasic_op.sc
build_cn_code.sc
huild_code sc
c_douhle_handshake sc
closed_loop.sc
ch_encoding.sc
cod_12ke.5c
code_10i40_35hits.sc
codebhook_cn.sc

Models | Imports | Sources |

Figure 7: Project Window (Sources tab)

18

3.3 Design Window

MNarme |T5.'pe IF'E IEus rJ Wi Type
mMain
& coder Coder O5F & Main
B ore_prscess Fre Frocess = g local_dt<_mode hool
- B coger TIRE Cingter TERE O dt<_mode c_double_handshe
= BOST_pProcess Fost_Frocess D serial_hits c_double_handshe
:g?g&t&; g{;jr:tlflirs i speech_samples c_double_handshs
1 = _ctrl c_double_handshz
& coder Coder
& maonitor Manitar
L & stimulus Stimulus
E =
Hierarchy | Behaviors | Channels | Raw | DSP | Hw |

Figure 8: Design Window (Hierarchy tab).

The Design Window displays the content and the attributes of an opened design, and
it allows browsing and navigation of the design hierarchy. The screenshot of the Design
Window is displayed in Figure8.

The Design Window consists of two parts: the side bar and the view pane. The side
bar displays the basic information for navigation of the structure of the design. It further
consists of three tabs: Hierarchy, Behaviors, and Channels. The view pane displays the
detailed information for the entity that has been selected in the side bar.

3.3.1 Hierarchy Tab

The Hierarchy tab in the side bar are illustrated in Figure [8. In the column Name, the
design hierarchy of behaviors, channels (optional) and variables (optional) is displayed in
a tree form. The hierarchy tree indicates the entity type (variable, channel or sequential,
parallel, FSM, or leaf behavior) visually through icons in the Name column. Entities are
sorted according to their calling order in the design, i.e. according to their execution order
in case of sequential or FSM behavior compositions. Displaying of channels and variables
in the Design Window Sidebar Hierarchy tab can be toggled via the View menu and the
toolbar (see Section 4.4.4).

19

At the root of the hierarchy tree in the Hierarchy tab, behavior (and optionally channel)
types/classes are listed. At lower levels of the hierarchy, sub-behavior (and optionally chan-
nel and/or variable) instances inside the respective parent behavior (or channel) are listed.
For any but the roots of the hierarchy tree, the column Name shows the name and the col-
umn Type shows the type of the respective design instances. For classes at the root of the
tree, the Name column shows the name of the respective class (i.e. the type) and the Type
column is empty.

For example (Figure [8), behavior class coder contains three child behavior instances
pre_process (of type Pre_Process), coder_12k2 (of type Coder_12k2), and post_process (of
type Post_Process), which are executed in the fsm style identified by the symbol which has
two balls connected by round arrows.

If PE allocation information is available, the Hierarchy tab contains a column PE which
shows the PE mapping information. If no PE allocation information is available, the PE
column is not shown. If the PE mapping is empty, this implies that the behavior in this row
is mapped to the same PE to which its parent is mapped.

Right-clicking on a design entity row in the Hierarchy tab opens a context menu pop-up
for the selected entity. The context menu contains four commands:

Rename Selecting Rename will rename the selected entity (see Section 4.4.1).
Delete Selecting Delete will delete the selected entity (see Section 4.4.3).

Change Type Selecting Change Type will allow plug-and-play to change the type of the
selected entity. Change Type is not shown for the roots of the hierarchy tree.

Set as Top Level Selecting Set as Top Level will set the selected behavior as the top level
design behavior (see Section 4.5.1).
3.3.2 Behaviors Tab

The Behaviors tab in the sidebar (Figure 9) lists all behavior types/classes in the design. The
name of each behavior type/class is shown in a column Name. Behavior types are sorted by
name and the sort order can be toggled by clicking into the Name column header.

Right-clicking on a behavior row in the Behaviors tab opens a context-menu pop-up
for the selected behavior class. The context menu of the Behaviors tab contains three com-
mands:

Rename Selecting Rename will rename the selected entity (see Section (4.4.1).
Delete Selecting Delete will delete the selected entity (see Section 4.4.3).

Set as Top Level Selecting Set as Top Level will set the selected behavior as the top level
design behavior (see Section 4.5.1).

20

Hame Type i Mame Type

[
— @ local_dt<_mode boal &Main
D dt_mode ¢_double_handshake — @ local_dt<_mode bool
T serial_hits ¢_double_handshake D dt<_mode c_double_handshz
b speech_samples ¢_double_handshake — TP serial_bits c_double_handshz
bt ctrl ¢_double_handshake D speech_samples c_double_handshz
—sicuder Coder D t<dt<_ctrl c_double_handshzs
— & monitor kAonitor — & coder Coder
—&stimulus Stimulusg —S?mnmtor kdonitor

& s utocarr L & stimulus Stimulus

—&ez_Lsp

— &5 Build_CMN_Code

— & Build_Code

B89 Closed_Laop

— & Closed_Loop_Seq

& Closed_Loop_Seq2 il P

Hietarchy | Behaviors | Channels | Raw [DsP [Hw |

Figure 9: Design Window (Behaviors tab)

3.3.3 Channels Tab

In the Channels tab (Figure 10), all the channel types/classes in the design are listed. The
name of each channel type/class is shown in a column Name. Channel types are sorted by
name and the sort order can be toggled by clicking into the Name column header.
Right-clicking on a channel row in the Channels tab opens a context-menu pop-up for
the selected channel class. The context menu of the Channels tab contains two commands:

Rename Selecting Rename will rename the selected entity (see Section 4.4.1).

Delete Selecting Delete will delete the selected entity (see Section|4.4.3).

3.3.4 View Pane

When clicking on a design entity row in any of the sidebar tabs, the corresponding row is
selected and details of the selected entity are displayed in the view pane. The details shown
are the contents of the respective entity and they include contained sub-entities including
ports, methods, and variable, channel and child behavior instances. Both the name and
the type of sub-entities are displayed in the Name and Type columns of the view pane,
respectively. Elements of the view pane list are sorted by class (port, variable, behavior,

21

I
Mame l — Tyne
L |
Lig im0 C_clouble_handshake
@ ack event pc_double_handshake
@ req event g ack event
@ impd const vaid * @ req event
& tmpl unsigned long int @ tmpd const void
oV hiool @ tmpl unsigned long int
oW hool oY hoaol
oW hoaol
| -
Hierarchy | Behaviors | Channels | Raw [DsP | Hw |

Figure 10: Design Window (Channels tab).

channel). Within each class and among classes, the sort order can be set by clicking on the
Name or Type column headers.

3.4 Output Window

ﬂ Compile | Simulate | Analyze | Refing | Synthesize | Shell |

Importing, ..
Input: "VocoderSpec.ins,.sir"
Output: <internal representation>

Translating. ..

<internal representation’
Output : "VocoderSpec.h"
Output: "VocoderSpec.cc"

Figure 11: Output Window

The Output Window displays the information related to the process of SCE, such as
logged status, diagnostic and error output of background commands. The screenshot of
Output Window is displayed in Figure'11. The Output Window contains six tabs: Compile,
Simulate, Analyze, Refine, Synthesize, and Shell. For example, the Compile tab displays the
log messages generated during preprocessing and parsing of SpecC code when opening,

22

loading and importing design files. The Refine tab displays the log messages generated by
the command line tools spawned by the main application GUI during design refinement.
The Output Window is for informational purposes only and doesn’t contain any button, box
or context menu that users can click or edit.

The Output Window can be detached or docked. Users can drag the window (by its title
bar or handle) to the desired place. If the Output Window is detached, it can be floating and
displayed anywhere on the desktop. If the Output Window is docked, it has to be attached
to any of the borders of the Main Window.

3.5 Workspace

In general, multiple designs can be open and loaded in the SCE application. The design
windows for all currently opened and loaded designs are shown in the Workspace. Within
the Workspace, design windows can be minimized, maximized, resized and closed freely
via their title bar, title bar icons and handles on their window frames. Closing a design
window closes the corresponding design (file).

At any time, there is exactly one active design window in the Workspace. The active
window is the one that has the input focus and it is visualized by highlighting its title bar.
Unless otherwise noted, all menu, toolbar or other commands apply to the currently active
design window. Clicking into a design window activates the corresponding window and
raises it to the front of the Workspace. A newly opened design windows automatically
becomes the active window.

3.6 Message Boxes

As a result of certain actions, the SCE application will pop up message box dialogs for
feedback to or input from the user about handling of special situations. Message boxes are
used to provide informative messages and to ask simple questions. In general, there are two
types of message boxes: error dialogs and information dialogs.

3.6.1 Error Dialogs

If the application encounters an abnormal error situation in which user notification about the
failure of the initiated action is required, an Error dialog will be popped up (Figure/12). The
Error dialog displays an error message at the top-half of the Error dialog. At the bottom-
half, an Error dialog contains one button: Ok. Clicking Ok will close the Error dialog and
original dialog (if any) that prompted the message. After clicking, the original action that
prompted the message is aborted and cancelled.

23

| S30C Environment

e Mo hardware PEs allocated!

Figure 12: Error dialog

3.6.2 Information Dialogs

If the application encounters an abnormal situation in which user notification is required
and the user is given several choices on how to continue, an Information dialog will be
popped up (Figure 13). An information message and associated question is displayed at
the top-half of the dialog. The bottom-half of the dialog contains three buttons: Yes, No,
and Cancel. Clicking Yes will accept the recommendation and do the corresponding action.
Clicking No will not accept the recommendation and will not do the corresponding action
but will continue the original action that prompted the message in the first place. Finally,
clicking Cancel will not do the recommended action and will also cancel the original action
that prompted the message. Clicking one of above three buttons will close the Information
dialog and original dialog (if any) that prompted the message.

| S0C Environment

The file fhomeworkocoderComm.ing. sir exists already.
Do you want to overstite ity

Yes | (! [u] Cancel |

Figure 13: Information dialog

4 Functionality

The functionality of SCE can be classified to six categories: application, project handling,
file handling, design-entity handling, synthesis, and window management.

24

In this section, sub-windows or sub-menus described in Section 3/are referred using the
following format: Win : Sub. Win refers to display windows:

e Main represents the Main Window.
e Project represents the Project Window.
e Design represents the Design Window.
Sub refers to drop-down menus or sub windows (tabs):

e For the Main Window, Sub is either File, View, Project, Synthesis, or Windows (drop-
down menus introduced in Section|3.1).

e For the Project Window, Sub is either Models, Imports, or Sources (tabs introduced
in Section|3.2).

e For the Design Window, Sub is either Hierarchy, Behaviors, or Channels (sidebar
tabs introduced in Section 3.3).

For example, Pro ject :: Models refers to the Models tab in the Project Window.

Main menu or context menu commands described in Section [3 are referred to using
the following format: Win :: Sub = Command where Command refers to a command. For
example, Main::File=-Open refers to the Open command in the File menu of the Main
Window menu bar. On the other hand, Project::Models=-Open refers to the Open command
in the context menu of the Project Window Models tab.

4.1 Application

The main application of SCE supports a set of persistent application settings. Application
settings are persistently stored across different invocations of the tool. In fact, application
settings are shared among all tools in the SCE environment, i.e. they are persistent across
invocation of different tools at different times.

Application settings are stored in both system-wide and user-specific locations. System-
wide application settings affect all users of SCE applications on the system. They are
stored in a file on disk in a location that is configurable during compile time of SCE. User-
specific application settings, on the other hand, are stored in a file in the user’s Linux home
directory. The application first reads the system-wide and then the user-specific settings,
i.e. user-specific settings can override (if given) system-wide settings and if no user-specific
settings are given, application settings default to the system-wide settings. If no system-
wide settings are available, compiled-in defaults are used.

Application settings in general provide the standard settings (paths, etc.) to use by
default for the different parts of SCE applications. Note that application settings can be

25

overwritten or extended by project-specific settings (see Section|4.2). Application settings
include:

Compiler settings A set of options for preprocessing and parsing SpecC source files.
When opening/loading or importing a design file, the SpecC compiler (‘scc’, see
Appendix|A.1) is used internally to compile the SpecC source file into SCE’s inter-
nal SpecC Internal Representation (SIR) [2] format. Via the compiler settings, the
options for preprocessing and parsing passed to the SpecC compiler are specified.
Specifically, compiler settings contain the following:

Standard include path An ordered list of directories in which to search for include
files during preprocessing.

Standard import path An ordered list of directories in which to search for imported
files during parsing.

Macro defines An ordered list of preprocessor macro definitions.
Macro undefines An ordered list of preprocessor macro undefines.

Compiler options Additional compiler switches passed literally to the SpecC com-
piler. Possible compiler switches are switches for setting warning and verbosity
levels.

Database paths Location of the database SIR files for the PE database, the CE database,
and the bus database.

All paths in the application settings are relative to the current working directory when start-
ing the application, i.e. relative paths in the settings are converted into absolute paths by
prepending the working directory during startup of the application.

In terms of application settings, SCE supports functions to view and edit application
settings/preferences.

4.1.1 Preferences Editing

Operation Preference editing allows viewing and setting of the application settings of
SCE. Users start editing the preferences of SCE by selecting Main :: Edit = Preference.
This will pop-up the Edit Preferences dialog, which allow users to browse and specify the
compiler and database settings. The Edit Preferences dialog is illustrated in Figure 14.

There are three tabs in the Edit Preferences dialog: Compiler, Database, and Plugins.
By clicking the tab at top-left corner of the window, users can select either of them for
viewing and editing.

(@) The Compiler tab allows viewing and editing of compiler settings. The screenshot
for Compiler tab is shown in Figure 14. The Compiler tab contains line edit boxes

26

H5PECC/InG

SFEPECCAimport
$SFECC/lib

-Ihit -1sitm -lNonglong -lgthread

Figure 14: Edit Preferences dialog (Compiler tab).

27

for all compiler settings. The text in the Include Path and Import Path lines defines
the directory lists (separated by colons) for the standard include and standard import
paths, respectively. The text in the Defines and Undefines lines define the list of macro
defines and undefines (separated by semicolons), respectively. Finally, the text in the
Options line defines the compiler options/switches.

(b) The Database tab allows for viewing and selecting of database file paths. The screen-
shot for Database tab is shown in Figure[15. Users can type in the file names and paths
of PE, Bus and RTL databases in PE Database, Bus Database, and RTL Database line
edit boxes. Besides typing in the databases file names, users can also select the names
by using Select buttons next to the edit boxes. Clicking Select button will pop up a
Database Selection dialog displayed in Figure|16

Database Selection dialog allows users to choose and select existing database files on
disk to use for each of the three databases.

In the Database Selection dialog, users should first specify the database directory in
Look-in box. The content of the directory will be automatically displayed in the dis-
play box in the center. The database type in the File type box defaults to SIR files for
databases but can be chosen by the user. All the database files with the specified type
will be displayed in the display box. Users further type in the database name in File
name box. Finally, by clicking Open button, the database with the specified name will
be selected. If users click Cancel button, then the action of database selection will be
cancelled. Either clicking Open or Cancel button will close the Database Selection
dialog.

Buttons Ok and Cancel appear at the bottom of the Edit Preference dialog. If users click
the Ok button, all the edited preferences are saved. If users click the Cancel button, all the
edited preferences are discarded. Either clicking Ok or Cancel button will close Preference
dialog.

4.2 Project Handling

Project handling deals with project issues. Project handling functionality is common and
shared across all SCE tools. It allows for tracking of design meta-data over the whole life-
time of a design. A project acts as a unified container that holds all information related
to a certain design at various levels of abstraction, i.e. it contains all the information that
describes the organization of design files that are part of the project. Furthermore, a project
contains project-specific settings that can override or extend application-specific settings
(see Section (4.1) for compiler paths, options, etc. Specifically, a project contains the fol-
lowing information:

28

Preferences

Compiler | | Plugins

—PE database:

Ic:pt-*sce—EDDSDESDfsharefsc:efdbfpmcessnrsfprou:essors.sir Select.

Edit...

—Bus database:

foptfsce-20030530/sharesscesdhb/bussesibusses.sir Select..

Edit...

—RTL database:

Foptfsce-20030330/haresscrl/db./l.sir Select...

Edit...

A

Help | (0],4 | Cancell

Z

Figure 15: Edit Preferences dialog (Database tab).

Look in: |3 /optfscessharesscesdbiprocessors!

..
_Jcontraller
Jdsp
_Igeneral
I hw

File type: SIR files (*.5in) _il Cancel |

File name: |pmcessnrs.sir | Open |

7|

Figure 16: Database Selection dialog.

29

Design models A tree of design files and their relationship. If a design has been generated
from another design through refinement, it is a child of the source design in the tree.
For each model, the tree stores the design name, the location of the design’s files on
disk, the abstraction level, and the command used to generate the model.

Imports A list of imported design files. The list of imports contains the union of all (sub-
)designs imported by any of the models that are part of the project.

Sources A list of source files. The list of sources contains the union of all SpecC source
files from which the models that are part of the project have been compiled. For each
source file, the location (path) of the file on disk is stored in the project.

Compiler settings A set of project-specific options for preprocessing and parsing SpecC
source files. Compiler settings contain include paths, import paths, compiler options,
and macro defines and undefines. Project-specific compiler settings generally over-
write or extend the corresponding application-specific settings. In the case of paths,
project paths are prepended to the standard paths defined in the application settings
(i.e. they are prepended to the directory search list). In all other cases, options or
macro defines/undefined are appended to the compiler command line after the stan-
dard options and macros defined in the application settings.

All paths in the project settings are defined to be relative to the location of the project file,
i.e. relative paths in a project file are converted into absolute paths by appending the project
file’s directory during loading/opening of a project file. During saving/writing of project
files, absolute paths are in turn converted back to relative paths if they point to a location
below the target project file directory.

Projects are stored as text files on disk in a custom XML format. The project file format
is the same for all tools in the SCE environment, i.e. a project file can be read, modified and
written by any SCE tool.

Projects can be read from and saved as project files at any time in the SCE application.
At any time, however, at maximum only one project can be open and loaded. While a
certain project is open and loaded, its settings apply to all actions performed during that
time. In addition, certain actions will automatically update and add data in the currently
opened and loaded project.

In order to deal with management of projects, SCE supports a set of project handling
functions. Specifically, project handling consists of the following functions:

(a) Project Creation to create a new projects (see Section |4.2.1).

(b) Project Opening to open and load existing projects from project files on disk (see
Section|4.2.2).

(c) Project Saving to save the current project into a project file (see Section|4.2.3).

30

(d) Project Settings to edit the settings of the opened project (see Section 4.2.4).
(e) Design Adding to adds new design files into the opened project (see Section|4.2.5).

(f) Design Opening to open a design model or import that is part of the project (see Sec-
tion 4.2.6).

(o) Design Deletion to delete a design model file from the project and optionally the disk
(see Section4.2.7).

(h) Design Renaming to rename a design model and design file in the project and on disk
(see Section|4.2.8).

(i) Description Changing to change the description of a design model in the opened
project (see Section|4.2.9).

(i) Project Closing to close the current project (see Section (4.2.10).

4.2.1 Project Creation

Operation Users can create a new project by selecting Main :: Pro ject = New.

Error/Information Messages Assuming before project creation, users have opened an-
other project in SCE, the currently opened project has been modified and the opened project
is not saved yet. When users select Main :: Project = New, an Information dialog will be
popped up querying the user whether he wants to save the current project first before cre-
ating a new one. If the user accepts the recommendation, a Project Saving action (see
Section|4.2.3) is performed first.

4.2.2 Project Opening

Operation Users open an existing project by selecting Main :: Project = Open. The
selection will pop-up the Project Open dialog in which the user can choose and select an
existing project file on disk to open and load. The screenshot of Project Open dialog is
shown in Figure(17.

Users should first specify the project directory in Look-in box. The content of the
directory will be automatically displayed in the display box in the center. The file type
defaults to project files (with a “.sce’ suffix) but users can specify any file type in the File
type box. All the project files with the specified type will be displayed in the display box.
Users further select the project name in the File name box. Finally, by clicking Open
button, the project with the specified name will be opened. If users click the Cancel button,
the action of project opening will be cancelled. Either clicking Open or Cancel button will
close the Project Open dialog.

31

| Open

Loak in: | A shomeduseriwarks

1.

_1IF

el SCE_Tutorial

_1src

B vocodersce

File name: |vacnder.sce | Open |

File type: SCE Project Files (“.sce) _i| Cancel |
|

Figure 17: Project Open dialog.

Error/Information Messages If the specified project doesn’t exist before clicking Open
button, then clicking Open button has no effect.

In case of errors reading the project file from disk (file errors, wrong file format), an
error dialog with a corresponding error message is popped up. Upon confirming the error,
the Project Opening action is cancelled.

Assuming before project opening, users have opened another project in SCE, the opened
project is modified and the opened project is not saved yet. When users open a different
project, the Information dialog will be popped up to recommend users to save the previ-
ous project first and, if the recommendation is accepted, a Project Saving action will be
performed. This is the same as the case in task Figure 4.2.1|

4.2.3 Project Saving

Operation Users can save the current project by one of the following two methods:

(a) Selecting Main :: Project = Save. The project will be saved using the current project
name.

If the saved project is unnamed (a new project created by task Project Creating),
then selecting Main :: Project = Save will do the same action as selecting Main ::
Project = Save As (see below).

(b) Users can save the current project under any (new) name by selecting Main ::
Project = Save As. The selection will pop-up the Project Save dialog in which user
can choose the directory and file name to save the project under. The screenshot of the
Project Save dialog is displayed in Figure 18,

32

Loak in: | A shomeduseriwarks

..

_aIF

el SCE_Tutorial

_dsrc

B vocodersce

File name: |vacnder.sce | Save |

File type: SCE Project Files (“.sce) _i| Cancel |
|

Figure 18: Project Save dialog.

In the Project Save dialog, users should first specify the project directory in Look-in
box. The content of the directory will be automatically displayed in the display box
in the center. The file type defaults to project files (*.sce’ suffix) but users can specify
any file type in the File type box. All the project files with the specified type will be
displayed in the display box. Users then select the project name in File name box.
Finally, by clicking the Save button, the current project will be saved in a project file
with the specified name. If users click Cancel button, then the action of project saving
will be cancelled. Either clicking Save or Cancel button will close the Project Save
dialog.

Error/Information Messages When selecting Main :: Pro ject = Save As and specifying
the file name of an existing file on disk, an Information dialog will pop up asking the user
whether he wants to overwrite the existing file. If the user declines this, the Project Saving
action will be cancelled.

When selecting Main :: Pro ject = Save or Main :: Pro ject = Save As, errors may occur
(file errors, e.g. if no space is available on the hard disk). In this case, an Error dialog as
shown in Figure[12 will be popped up, corresponding error messages will be displayed, and
the Project Saving action will be cancelled.

4.2.4 Project Settings Editing

Operation Project setting allows users to edit project settings. Unlike application prefer-
ences editing in Section 4.1.1, project setting apply only to the current project. Users start
project settings editing by selecting Main :: Project = Setting. The selection will pop up

33

the Project Settings dialog, which is displayed in Figure 19! In the Project Settings dialog,
user can view and edit the compiler and simulator settings stored in the project. For ex-
mample, The dialog for compiler setting contains line edit boxes for all compiler settings.
The text in the Include path and Import path lines defines the directory lists (separated
by colons) for the project-specific include and import paths, respectively. The text in the
Defines and Undefines lines define the list of macro defines and undefines (separated by
semicolons), respectively. Finally, the text in the Options line defines the project’s compiler
options/switches.

| Project Settings

Campiler | Simulatar |

Include path: |src:a‘|:nmmcun

Import path: IIUDp:src:fc:lnsed_lncup:sru:a’u:cudebcu:k:srcfupdate:sru:a’prnc:essing:.

Library path: |

Libraries:

Defines:

CQiptions:

|

|
Undefines: |

|—v

Help | Ok I Cancel'

2

Figure 19: Project Settings dialog.

4.2.5 Design Adding

Operation Users can add any currently opened design file to the project. In order to do
that, users select Main :: Pro ject = Add Design. After clicking, the design corresponding
to the currently active design window will be added to the project. The design will be added
to the project as a new root in the forest of design model trees. In addition, any imported
designs and source files of the new design will be merged into the list of imports and sources
that are part of the project.

34

Error/Information Messages If users try to add a file which is already in the current
project, an error dialog with a corresponding error message will be popped up (as illustrated
in Figure[12).

4.2.6 Design Opening

Operation Double-clicking on a design model in the Project Window models or import
tabs (Project :: Models or Project :: Imports), a File Opening action on the given design
file will be performed (see Section|4.3.1 for details, including error/information messages),
i.e. a corresponding design window will be opened in the workspace. If the selected design
is already opened in the workspace, its design window will be raised to the top and made
active. The Design Opening action can also be triggered via corresponding context menu
entries in the model and import tabs (selecting Project :: Models = Open or Project ::
Imports = Open).

4.2.7 Design Deletion

Operation Users can delete files from the current project and optionally from disk. Se-
lecting the corresponding entry in the context menu of a design model in the Project Win-
dow models tab (Project :: Models = Delete) will delete the selected design from the
project and optionally from disk. In case of a model with children in the model tree, the
user will also be given the option to recursively delete all the model’s children.

Error/Information Messages After selecting Project :: Models = Delete, an Informa-
tion dialog will be popped up to query to user whether he wants to also delete the corre-
sponding model’s files on disk. If the selected file has children, then another Information
dialog querying the user whether he wants to also recursively delete all children and chil-
dren’s children of the selected model. If the selects recursive deletion, an Information dialog
similar to the initial Information dialog to query about deletion of corresponding files on
disk will pop up for each child model.

If file deletion on disk is selected, an error dialog may pop up in case of disk/file errors.
Upon confirmation of the error, the Project Deletion action will be aborted.

4.2.8 Design Renaming

Operation By selecting Project :: Models = Rename or by clicking into the Design col-
umn of the Project Window models tab, users can rename the file name displayed in the
Design column. Renaming is performed in place inside the column cell itself by opening a
corresponding text edit box. Renaming can be aborted by pressing the Esc key. Pressing En-
ter accepts the newly entered name and renames the design both in the project and on disk.

35

If the design is loaded and opened, the corresponding design window in the Workspace will
also be automatically renamed.

Error/Information Messages If the new design name entered by the user is the name of
a design already existing in the project, an Error dialog with a corresponding error message
will pop up and, after confirmation, the Design Renaming action will be aborted.

If renaming the file on disk results in an error (file error), a corresponding Error dialog
will be popped up and the Design Renaming will be aborted.

4.2.9 Description Changing

Operation Users can change the file description displayed in the Description column of
Project :: Models tab by selecting the Project :: Models = Change Description context
menu entry or by clicking into the corresponding Description column in the row represent-
ing the selected file. After clicking, the corresponding cell in the Description column of
Project :: Models is editable in place. Editing can be aborted with Esc and is accepted by
pressing Enter.

4.2.10 Project Closing

Operation Users can close the current project by selecting Main :: Pro ject = Close.

Error/Information Messages If the current project is modified and not yet saved, select-
ing Close will pop up an Information dialog which recommends to save the current project
first. If the user accepts the recommendation, a Project Saving action (Section [4.2.3) is
performed before closing the project.

4.3 FileHandling

File handling deals with issues relating to manipulation of design files within SCE. File
handling includes opening, saving, and closing of actual design model files on disk. File
handling is closely related to Design Windows (Section 3.3) and Design Window Manage-
ment (Section 4.6). In general, there is a one-to-one association between design models,
design files on disk and design windows in the Workspace. Each Design Window repre-
sents a view onto one loaded design file which in turn stores the data of one design model,
and vice versa. For example, both File Closing (Section 4.3.3) and Window Closing (Sec-
tion|4.6) will close the design file and the design window and unload the design from SCE’s
memory. Specifically, File Handling consists of the following tasks:

(a) File Opening to open and load existing design files from disk (see Section 4.3.1).

36

(b)
(©
(d)

©
(f)

File Saving to save a design into a design file on disk (see Section 4.3.2).
File Closing to close a design file (see Section|4.3.3).

File Import to import an existing design file from disk into a currently opened design
(see Section|4.3.4).

Design Property to display the current design file’s properties (see Section|4.3.5).
SCE Exiting to exit the SCE application (see Section 4.3.6).

4.3.1 File Opening

| Open

Loak in: |_qfhnmefuserfwurkf ﬂ gll_é_

.. [vaocoderarchsched tmpsir [YocoderFsmd.c.in.sir [
IR B ocoderarch.sir [vocoderFsmd.comm.in.sir [
(B SCE_Tutorial [vocoderComm.c.in.sir [vocoderFsmd.ins.sir]
Cdsrc [vocoderComm.in.sir [7 vocoderFsmd.sir N
[wocoderarchinsir] YocoderComm.ins sir [} wocodersched.in.sir O
[vocoderarch.ins.siv] YocoderCamm.sir [7 vocodersched.ins.sir [
] | -
File name: |Vncnder.-‘-\rch.sir |ﬂ|
File type: SR files {(*.sir) = | Cancel |
4

Figure 20: File Open dialog.

Operation Users can open an existing design file on disk in different ways:

(@)

Selecting Main :: File = Open will pop up the File Open dialog in which the user can
choose and select an existing file on disk to open and load. The File Open dialog is
illustrated in Figure|20.

Users should first specify the directory of the file in Look-in box. The content of the
directory will be automatically displayed in the display box in the center. The file type
defaults to SpecC source files (“.sc” suffix) but user can specify any file type in the
File type box. All the files with the specified type will be displayed in the display box.
Users then further select the file name in the File name box. Finally, by clicking the
Open button, the file with the specified name will be open. If users click the Cancel

37

button, the action of file opening will be cancelled. Either clicking Open or Cancel
button will close the File Open dialog.

(b) Double-clicking on a design in the Project Window models or imports tabs (Pro ject ::
Models or Project :: Imports) or selecting the corresponding context-menu entries
(Project :: Models = Open or Project :: Imports = Open) will open and load the
design file for the selected design model.

Opening and loading a design file in either way will result in a corresponding new Design
Window popping up in the Workspace. The new Design Window will automatically be
made the active one and raised to the front of the Workspace.

If the selected design file is already opened and loaded, it will not be loaded again from
disk and File Opening will only result in activating and raising the corresponding Design
Window in the Workspace.

Error/Information Messages In the case of selecting from disk, if the specified file
doesn’t exist before clicking the Open button, then clicking Open has no effect.

In case of errors reading the design file from disk (file errors, wrong file format), an
error dialog with a corresponding error message is popped up. Upon confirming the error,
the File Opening action is cancelled.

4.3.2 File Saving

Look in: |3 /homeiusertyorks

] e e

7] [vocoderarch.sched.tmpsir [YocoderFsmd.c.in.sir

[vocoderarch.in sir

_1IP B ocoderarch.sir D VocoderFsmd.comm.in sir
& SCE_Tutorial [vocoderComm.c.in.sir [vocoderFemd.ins.sir
s D WocoderComm.in.sir D WocoderFsmd.sir

[vocoderComm.ins sir

[vocoderarch.ins.siv] YocoderCamm.sir

[vocodersched.in.sir
[7 vocodersched.ins.sir

% [) I

-

File type:

File name: |Vncnder.ﬂ.rch.sir

SIR files (*.5ir)

|
Save |

_i| Cancel |

T

7|

Figure 21: File Save dialog.

38

Operation Users can save opened and loaded design files (Design Windows in the
Workspace) by one of the following three methods:

(a) Selecting Main :: File = Save will save the file of the currently active Design Window
using its current name.

(b) Users can save the file of the currently active Design Window under any (new) name
by selecting Main :: File = Save As. The selection will pop up the File Save dia-
log in which user can choose the directory and file name to save the design under.
The screenshot of the File Save dialog is shown in Figure 21. The solid rectangular
represents the edit box.

In the File Save dialog, users should first specify the directory of the file in Look-in
box. The content of directory will be automatically displayed in the display box in the
center. The file type defaults to SpecC source files (“.sc” suffix) but users can specify
any file type in the File type box. All the files with the specified type will be displayed
in the display box. Users then further select the file name in File name box. Finally, by
clicking Save button, the current opened file will be saved as the file with the specified
name. If users click Cancel button, then the action of File Saving will be cancelled.
Either clicking Save or Cancel button will close the File Save dialog.

(c) Selecting Main :: File = Save All will save the files of all currently opened Design
Windows in the Workspace using their current names.

Error/Recommendation Messages. When selecting Main :: File = Save As and speci-
fying the file name of an existing file on disk, an Information dialog will pop up asking the
user whether he wants to overwrite the existing file. If the user declines this, the File Saving
action will be cancelled.

When selecting Main :: File = Save, Main :: File = Save As, or Main :: File = Save
All, errors may occur (file errors, e.g. if no space is available on the disk). In this case, an
Error dialog as shown in Figure 12 will be popped up, corresponding error messages will
be displayed, and the File Saving action will be cancelled.

4.3.3 File Closing

Operation Users can close the file and window of the currently active Design Window
in the Workspace by selecting Main :: File = Close. Closing a file will unload the design
from memory and will close the corresponding Design Window in the Workspace.

Error/Information Messages If the current design is modified and not yet saved, select-
ing Close will pop up an Information dialog which recommends to save the current design

39

first. If the user accepts the recommendation, a File Saving action (Section 4.3.2) is per-
formed before closing the file.

4.3.4 File Import

Operation Users can import an existing design file on disk into a currently opened and
loaded design. Importing a design will merge the design’s contents into the currently opened
design (equivalent to a SpecC i nport statement). All the design entities in the imported
files can then be used in the current design. For example, in order to do plug-and-play of
behaviors, users can replace a behavior in a design with an imported compatible behavior
(see Section|4.4.2/for the Changing Type action).

In order to import a file users should first active the target Design Window in the
Workspace and then select Main :: File = Import. The selection will pop up File Im-
porting dialog in which users can select and choose an existing design file on disk to open
and import into the currently active Design Window. The File Importing dialog is shown
in Figure 22|

In the File Importing dialog, users should first specify the directory of the file in Look-
in box. The content of the directory will be automatically displayed in the display box in
the center. The file type defaults to SpecC source files (“.sc’ suffix) but users can specify
any file type in the File type box. All the files with the specified type will be displayed in
the display box. Users then further select the file name in the File name box. Finally, by
clicking the Open button, the file with the specified name will be imported. If users click
Cancel button, then the action of File Importing will be cancelled. Either clicking Open or
Cancel button will close the File Import dialog.

| Open

Loak in: | A shomeduseriwarks

3.

_1IF

el SCE_Tutorial
_dsrc

PE testhenchsc

File name: |testbench.sc | Open |

File type: SpecC files {".sc) = | Cancel |

|

Figure 22: File Importing dialog.

40

4.3.5 Design Property Viewing

| Design Properies

Desigh name: YocoderSpec

File name: shomesworkYocoderSpec.sir
Changelog:
DatesTime Command

Wed Aug 25 13:42:11 2004 sce
Wed Aug 25 09:55:21 2004 sce
Wed Aug 25 09:50:35 2004 sce
Wed Aug 25 09:35:49 2004 sce
Tue Aug 24 11:3040 2004 sce
Tue Aug 24 10:44:55 2004 scc testhench -scZsir -waw -y -1 -P -L - -» -Isrc/commaon -lfoptrsce

E =

x|

Figure 23: Design Property dialog.

Operation Users can display and view a design’s properties by selecting Main :: File =
Properties. The selection will pop up a Design Properties dialog which is illustrated in Fig-
ure 23.

In the Design Property dialog, the box Design Name displays the design name (Vocoder-
Spec in Figure [23), the Box File name displays the name of the design file (e.g. /home-
/work/VocoderSpec.sir), and the box Changelog displays the history of SCE refinement
commands applied to the design. The left part of the Changelog specifies the Date/Time
of the executed command. The right part of Changelog specifies the exact command lines
with parameters. Clicking button Ok will close Design Properties dialog .

4.3.6 SCE Exiting

Operation Selecting Main :: File = Exit will exit the SCE application and close the SCE
GULI.

The current project, if any, will be automatically saved by triggering a Project Saving
action (see Section|4.2.3). Note that this can result in a Project Save dialog popping up in

41

case the current project is unnamed and modified.

Error/Recommendation Messages. If there are any open Design Windows that are mod-
ified and not yet saved, an Information dialog will pop up for each window, querying the
user whether he wants to save the corresponding design. The user will be able to cancel the
whole Exit action via the corresponding dialog button. If the user accepts the recommen-
dation to save the file, a File Saving action will be triggered (see Section|4.3.2). Note that
the File Saving action can trigger additional Error dialogs which in turn canabort the whole
Exit operation in case of file errors during saving.

Automatic Project Saving can result in errors and corresponding Error dialogs popping
up. In turn, the whole EXit operation can be aborted in those cases.

4.4 Design-Entity Handling

Design-Entity Handling deals with manipulation of design entities such as behaviors, chan-
nels, variables, and channels. In general, Design entities are manipulated directly in the
currently active Design Window in the Workspace. Design-Entity Handling is part of the
refinement process and allows the user to perform some typical refinement tasks in a manual
fashion. Basically, Design-Entity Handling tasks are tasks that do not change the semantics
of the design. Rather, they are tasks to apply, for example, cosmetic or syntactic changes
like behavior renaming to the design. Specifically, Design-Entity Handling consists of the
following tasks:

(a) Entity Renaming to rename the selected entity (see Section(4.4.1).

(b) Entity Retyping to change the type of the selected entity (see Section|4.4.2).

(c) Entity Deletion to delete the selected entity from the design (see Section (4.4.3).

(d) Hierarchy Displaying to toggle between different modes for displaying of the design
hierarchy (see Section 4.4.4).

4.4.1 Entity Renaming

Operation The names of design entities including behaviors, behavior instances, chan-
nels, channel instances, variables, and ports are displayed in Name column of the De-
sign Window tabs. Users can change these names of entities. In order to do it, users
first select the corresponding row in Design :: Hierarchy, Design :: Behaviors or Design ::
Channels tabs. Selecting Design :: Hierarchy = Rename, Design :: Behaviors = Rename,
or Design :: Channels = Rename context-menu commands will then allow users to edit the
names directly in the cell by opening a corresponding text edit box in place. Renaming can

42

be aborted by pressing the Esc key. Pressing Enter accepts the newly entered name and
renames the entity in the design.

Error/Information Messages If renaming the entity in the design leads to an error (e.g.
if an entity with the same name already exists), an Error dialog with a corresponding error
message will pop up and subsequently the operation will be aborted.

4.4.2 Entity Retyping

Operation Users can change the type of design entity instances including variable, chan-
nel and behavior instances that are displayed in the Type column of Design Window hi-
erarchy tab. In order to do it, users first need to select the corresponding row in the
Design :: Hierarchy tab. Selecting the Design :: Hierarchy = Change Type context-menu
command will then allow users to chose a type for the instance entity from a list of com-
patible types directly in the cell by opening a drop-down combo box with entries for all
compatible types in place. Compatibility in SpecC is defined by a match in the list of port
types and the list of implemented interfaces, e.g. two behaviors are compatible if they have
the same list of ports in terms of order and type of ports. Users can choose any of the of-
fered types from the drop-down list. Selecting a new type will then change the type of the
instance entity in the design.

Error/Information Messages If retyping of the entity in the design leads to an error, an
Error dialog with a corresponding error message will pop up and subsequently the operation
will be aborted.

4.4.3 Entity Deletion

Operation Users can delete unused design entities from the design. In order to do it, users
first need to select the corresponding row in Design :: Hierarchy, Design :: Behaviors, or
Design :: Channels tabs. Selecting Design :: Hierarchy = Delete, Design :: Behaviors =
Delete or Design :: Channels = Delete context-menu commands will then delete the se-
lected entity from the design.

Error/Information Messages If deleting the entity in the design leads to an error (e.g. if
the entity is used by another entity, i.e. if some part of the design depends on that entity), an
Error dialog with a corresponding error message will pop up and subsequently the operation
will be aborted.

43

4.4.4 Hierarchy Displaying

Operation Users can toggle between different modes for displaying the design hierarchy
in the Design Window hierarchy tab. Selecting Main :: View = Hierarchy will open a
sub-menu pop-up containing for entries corresponding to the four different display modes:

Show All Displays a forest of instantiation hierarchy trees where all uninstantiated behav-
iors are roots and the complete instantiation tree for all of them is shown.

Show Testbench Displays the complete instantiation hierarchy tree for the Main behavior
class root only.

Show Design Displays the instantiation hierarchy tree only for the root class that is cur-
rently the top-level design behavior. This basically shows the current system being
designed.

Show Architecture Displays the current top-level behavior as the only root class and only
displays first-order (direct) children of (instances in) that behavior. This basically
shows only the top, system level of the current system being designed.

Display modes are mutually exclusive, i.e. selecting one display mode will turn off the
previous mode and switch to the new mode instead.

In addition to switching hierarchy display modes, users can toggle displaying of both
variables and channels in the hierarchy tree. Selecting Main :: View :: Show Variables
or Main :: View :: Show Channels toggles between display of variables and channels in
the hierarchy tab of the current Design Window. If channels are displayed, both channel
instances and uninstantiated channels are shown in the forest of instantiation hierarchy trees.
If variables are displayed, both global variables and variable instances inside behaviors (and
optionally channels) are shown in the forest of instantiation hierarchy trees.

45 Synthesis
4.5.1 Architecture Synthesis

Architecture Synthesis deals with the process of implementing a specification on a compu-
tation architecture consisting of PEs and memories in order to generate a respective archi-
tecture model for the design. Architecture synthesis therefore helps designers to allocate
PEs/memories, map design entities to the allocated PEs/memories and to generate the Ar-
chitecture Model. Specifically, Architecture Synthesis consists of four tasks:

(a) Top-Level Selection to select the behavior representing the top level of the system to
be designed (see Section|4.5.1).

44

(b) PE Allocation to allocate and select PEs/memories from the PE database in order to
assemble the system architecture (see Section|4.5.1).

(c) Mapping to map the design’s computation entities to the selected PEs/memories
(see Section|4.5.1).

(d) Architecture Refinement to automatically generate an Architecture Model from the
given Specification Model based on the decision made during PE Allocation and Map-
ping (see Section|4.5.1).

Top-Level Selection Users can select the top-level behavior which represents the system
design to be implemented. All the children of the top-level behavior are considered to
be part of the system design. On the other hand, All the parents/siblings of the top-level
behavior are considered to belong to the testbench outside of the actual design.

Operation Users first select the desired behavior by clicking its row in the Design ::
Hierarchy or Design :: Behaviors tabs. Then, users set the selected behavior as the top-
level behavior by selecting the Design :: Hierarchy = Set As Top — Level or Design ::
Behaviors = Set As Top — Level commands in the context-menu for the respective behavior.

After selection, the instantiation hierarchy tree with the current top-level behavior at its
root will be visually emphasized/highlighted in the Design Window’s hierarchy tab (through
use of an italic font for entity texts).

Error/Information Messages All allocation information is stored in the design as an-
notations at the top-level design behavior (see Section/4.5.1). When switching the top-level
from one behavior to another, if an allocation exists at the current behavior, an Information
dialog is popped up querying the user whether he wants to copy the existing allocation over
to the new top-level behavior. If the user accepts the recommendation and if then an allo-
cation already exists at the new top-level behavior, another Information dialog is popped
up querying the user whether he wants to overwrite the allocation information at the new
top-level behavior. If the user declines the recommendation, the previous allocation at the
new top-level behavior is kept.

PE Allocation Users can select PEs/memories out of the PE database in order to allocate
and assemble the system architecture. PE allocation information is stored in the design itself
as an allocation table that is annotated at the top-level design behavior (see Section 4.5.1).
As a consequence, different allocation tables at different top-level behaviors can exist in the
same design, reflecting the fact that incremental design will require changes in the allocation
as design progresses from one part of the system to another.

45

Mame |Type Clock Frogram Data Instruction

DsP Matorola_DSPSEE00 658 Mz 320kE B4.0kKB 24 b

Hw HW_Standard TG00 MHz MEOKE LGRS 126 b
1 | =

Help |

[ox]

Add...

Copy |
Remaove |

Parameters...l
Tahles... |

Cancel

Figure 24: PE Allocation dialog.

46

Operation In order to do PE Allocation, users first select Main :: Synthesis =
Allocate PEs. As a result, the current allocation is read from the design and a PE Allo-
cation dialog is popped up. In case of errors reading the allocation from the design (e.g.
wrong allocation table format), a new, empty allocation table is used in the dialog.

The screenshot of the PE Allocation dialog is shown in Figure 24! In the PE Allocation
dialog, the table shows the list of currently allocated PEs. The header of the table indicates
the meaning of each column, such as PE’s name and type. Each row in the table represents
an allocated PE/memory that is part of the current system target architecture. For each PE,
its name, its type, its attributes (ex. Clock, Program, Data, Instruction) are shown in the
respective columns of the table. The list of allocated PEs can be sorted by any column and
in ascending or descending order each by clicking into the corresponding column header.
By default, the list is sorted by ascending names.

In the PE Allocation dialog, users can perform the following actions:

PE Adding In order to add a PE into the design, users click the button Add to pop up the
PE Selection dialog which opens and loads the PE database and allows users to select
an additional PE out of the PE database. The screenshot of the PE Selection dialog is
shown in Figure 25.

At the left of the PE Selection dialog is a PE category table. Each row represents
one category of PEs in the database. For example, row Processor contains all the
general-purpose processors in the database.

By clicking and selecting one row in the table at left, users will be shown all the PEs
in the selected category in the table at the right. Each row of the table at the right
represents one type of PE in the database under the selected category. The name of
the PE type (Component column) and other attributes of the PE type are displayed in
separate columns. Users can select the desired PE type by clicking the corresponding
row.

There are two buttons at the bottom of the PE Selection dialog: Ok and Cancel.
By clicking the Ok button, an additional PE of the selected PE type and with an
automatically determined name is added into the design’s allocated architecture. In
addition, PEs can be allocated by double-clicking into the desired PE type row in the
PE Selection dialog (equivalent to selecting the row and pressing Ok). Clicking the
Cancel button aborts and cancels PE selection without changes to the PE allocation.
Either clicking Ok or Cancel button will close the PE Selection dialog and return to
the PE Allocation dialog.

PE Copying In order to duplicate an existing PE in the design’s PE allocation, users can
select a PE by clicking the corresponding row in the allocation table and click the
button Copy. Clicking Copy will add a new PE instance with an automatically de-

47

AD_Sharc_DSP 886 MHzZ . . 16 hits

Processar y 685 8 M=] 0k 3 5
femory _ S8 MHz . 16 hits
Custam Hardwal || 744.0 MHzZ . 16 hits
Contraller i 166,80 MiHz . 16 hits
3586 MHz . 16 hits
TEEG Az . 16 hits

Figure 25: PE Selection dialog.

48

termined name and with the same type, attributes and description as the currently
selected PE to the design’s allocation.

PE Deletion . In order to remove a PE from the design’s allocation, users can select the

target PE to be removed in the allocation table and click the Remove button. Clicking
Remove will remove the selected PE from the list of allocated PEs.

PE Editing Users can edit the PE name and PE description in the PE Allocation dialog by

clicking into the respective Name or Description column of the corresponding PE.
Clicking into any of these cells will allow editing of the respective text in the cell
by opening a text edit box in place. Pressing the Esc key during editing aborts the
edit operation. Pressing Enter accepts the entered text and changes the PE name or
description in the allocation accordingly.

Allocation Closing There are two buttons at the bottom of the PE Allocation dialog: Ok

(@)

(b)

(©

(d)

and Cancel. By clicking the Ok button, the allocation displayed in the PE Allocation
dialog’s allocation table is saved into the design. Clicking Cancel will abort and
cancel PE Allocation. When cancelling, all modifications made to the allocation
table will be lost and no data will be saved in the design. Either clicking Ok or
Cancel button will close PE Allocation dialog.

Error/Information Messages There are several possible errors during PE Allocation:

Before PE Allocation, selecting Main :: Synthesis = Allocate PEs if no top-level be-
havior is selected in the design will pop up an Error dialog to that effect and will abort
the PE Allocation operation.

During PE Editing, if users try to give PEs a nhame which is already used as the name
of another PE in the design, an Error dialog will be popped up, a corresponding error
message will be shown, and the editing operation will be aborted and cancelled.

During PE Adding, when clicking the Add button the PE database stored on disk will
be opened and loaded in order to read the list of available PEs from the database. In
case of errors during database opening (e.qg. file errors or wrong file format), an Error
dialog will be popped up and the PE Adding operation will be aborted.

Furthermore, when adding a PE to the allocation via the PE Selection dialog, the
selected PE type is read from the database. In case of database read errors (file errors,
database format errors) during this operation, an Error dialog will be popped up and
the PE Adding operation aborted.

During PE Allocation, clicking the Ok button in the PE Allocation dialog will write
the allocation table back to the design. In case of errors, an Error dialog is popped up
and PE Allocation is aborted completely.

49

Mapping In order to implement the computation in the specification model on the allo-
cated computation architecture consisting of PEs and memories, users have to be able to
map the behaviors and variales in the specification onto the allocated PEs. Hence, Mapping
consists of separate Behavior Mapping, Variable Mapping tasks:

Behavior Mapping Behavior Mapping allows for mapping of behavior types/classes in the
design onto allocated PEs, i.e. behavior mapping information is stored as annotations
at the behavior classes in the design. In order to be able to map a behavior onto a PE,
the PE out of the database must allow execution of arbitrary code on it. Users can
explicitly map every behavior type on a PE. Explicit mapping will map all instances
of that behavior onto the selected PE. If instances should be mapped to different PEs,
appropriate copies of the behavior have to be made outside of SCE first. If a behav-
ior is not mapped to any PE, all of its instances will be implicitly (and recursively)
mapped onto the same PE as the parent behavior class in which they are instantiated
in. If different instances are implicitly mapped to different PEs, appropriate copies of
the behavior in each PE will be automatically generated during refinement. Note that
user must map all the behaviors under the top-level behavior to PEs either implicitly
(by mapping the top-level behavior itself) or explicitly.

Variable Mapping Variable Mapping allows for mapping of variable instances in the de-
sign into local memories of allocated regular PEs or into allocated global, shared
memory PEs. Variable mapping information is stored as annotations attached to vari-
able definitions inside a behavior class. As a result, multiple incarnations of the same
variable in different instances of the parent behavior will all share the same mapping
information. If a variable is not explicitly mapped by the user, during refinement a lo-
cal copy of the variable will be created in each PE accessing the variable. Refinement
will also automatically insert necessary code (additional behaviors inside PEs and
channels between PEs) for synchronization and message passing to keep copies up-
dated and synchronized such that shared semantics are preserved. Implicit mapping
is not supported for variables that are shared among concurrent behaviors mapped to
different PEs. If a variable is explicitly mapped into local memory of a regular PE
or into a shared, global memory PE, all of its incarnations will be moved there and
other PEs will access the variable through a memory interface. Explicit mapping of
variables is only supported for target PEs out of the database that support external
accesses via a memory interface.

Operation Users can map behaviors, variables in the design to allocated regular or
memory PEs via the additional PE column in the Design Window hierarchy tab. Note that
the PE column is only shown if PE allocation information is available (see Section [4.5.1):
By default, the PE column shows the current mapping information for each entity in the

50

design. In case of errors reading the mapping information from the design (e.g. wrong
annotation format), an empty, implicit (i.e. lack of explicit) mapping will be assumed.

In order to explicitly map an entity, users should click into the PE column of the re-
spective entity in the Design :: Hierarchy tab. If the desired entities are not shown in
the hierarchy tab, users should first enable display of variables or channels by selecting
Main : Synthesis = Show Variables or Main : Synthesis = Show Channel.

Clicking into the PE column of the Design Window hierarchy tab will open a drop-
down combo box in place with entries for all possible target PEs in order allow users to
select a target PE to map the entity to directly in the cell. In the combo box, users will be
able to choose from all possible PEs that the specific entity can be mapped to (see above for
enforced restrictions). In addition, the combo box contains an empty entry to chose in order
to remove any existing explicit mapping and switch to implicit mapping for that entity.

Selecting an entry from the combo box will write the corresponding mapping into the
design. If there are multiple incarnations of an explicitly mapped entity (behavior class,
variable definition or channel instance), the hierarchy tab display will be updated after
changing the mapping to reflect the new mapping for all entity’s incarnations in the PE
column.

After mapping, the behaviors mapped to different PEs will be shown with different
colors.

Architecture Refinement Architecture Refinement executes the implementation deci-
sions made in the other Architecture Synthesis tasks by refining the current Specification
Model into an automatically generated Architecture Model based on and reflecting the de-
cision made during PE Allocation and Mapping.

| architecture Refinement

Tasks

[Behavior refinement |

I Insert avg. delays

F Wariable refinement

I Start I Cancel |

Figure 26: Architecture Refinement dialog.

%,

Operation In order to do refinement, users can select the Main :: Synthesis =
Architecture Refinement menu entry to pop up the Architecture Refinement dialog. The

51

screenshot of the Architecture Refinement dialog is shown in Figure 26.

In the Architecture Refinement dialog, users can select whether individual sub-tasks of
the architecture refinement process will be performed or not. By checking or unchecking
the check boxes tasks are turned on and off and partially or completely refined models
can be generated. By default, all tasks are turned on. The three sub-tasks of architecture
refinement are:

(a) Behavior Refinement which introduces PE behaviors from the database, groups the
original behaviors under the new PEs, and inserts synchronization and message pass-
ing to preserve execution semantics.

(b) Insert avg. delays which inserts the average delays generated by profiler to the system
behavior.

(c) Variable Refinement which (re-)distributes variables into PEs, generates necessary PE
memory interfaces, and updates accesses to shared variables inside leaf behaviors.

If Behavior Refinement is turned off, both Insert avg. delays and Variable Refinement are
turned off and can not be turned on. In this case, no output model is generated and only
input validation is performed. In other cases, exactly one output model is generated in
which optionally variables and channels are not refined but left untouched.

User can then start the architecture refinement process by clicking the Start button. If
users click the Cancel button, the Architecture Refinement operation will be aborted and
cancelled. Either clicking Start or Cancel buttons will close the Architecture Refinement
dialog.

After clicking the Start button, the architecture refinement command line components
will be executed in the background. Any diagnostic, status and informative output of the
architecture refinement tools will be shown in the Refinement tab of the Output Window
(Output :: Refine).

When the architecture refinement process is finished, the newly generated architecture
model is automatically opened and loaded, and a corresponding new Design Window is
created in the Workspace. The new Design Window is automatically activated and raised
to the front. In addition, the new architecture model is automatically added to the current
project (see Design Adding, Section 4.2.5) as a child of the specification model it was
generated from.

While the architecture refinement background tools are running, the majority of the
main SCE GUI is disabled. However, users can abort/kill execution of the background tools
by selecting Main :: Synthesis = Stop. After clicking, the current architecture refinement
background task is aborted.

Error/Information Messages If the architecture refinement background tools abort
with an error (e.g. unmapped behaviors in the design) or are killed via the Main ::

52

Synthesis = Stop menu entry, an Error dialog with a corresponding error message will pop
up. Specifically, the architecture refinement background tools check for and can produce
the following classes of errors:

e No top level behavior.

¢ No or invalid PE allocation.

e No or invalid PE models in the database.

e Unsupported (partitioned) behavior types in the specification.

e Unsupported (global or partitioned) shared variable and/or port types in the specifi-
cation.

o Invalid variable mapping or no mapping for variables shared between concurrent be-
haviors on different PEs.

Upon confirming the error, the remainder of the Architecture Refinement Operation will be
cancelled.

If the design the new model was generated from is not in the project, the new model is
not added to the project and an Error dialog to that effect will be popped up.

4.5.2 Communication Synthesis

Communication Synthesis refines the abstract communication between components in the
architecture model into an actual implementation over wires and protocols of system buses.
Specifically, Communication Synthesis consists of three tasks:

(&) Bus Allocation to allocate buses.
(b) Channel Mapping to map channels to the selected buses.

() Communication Refinement to automatically generate a Communication model from
the given Architecture Model based on the decisions made during Bus Allocation and
Channel Mapping.

Bus Allocation In order to define the system network topology, users can allocate buses
out of the bus databases. Bus allocation is stored in the design itself as allocation that are
annotated at the top-level design behavior (see Section|4.5.1). As a consequence, different
allocation tables at different top-level behaviors can exist in the same design, reflecting the
fact that incremental design will require changes in the topology as design progresses from
one part of the system to another.

53

AGP 10.0 Mhit's 64 hits 32 hits 2.0
SCT 10.0 Mhit's 32 hits 16 hits 0z
Motorola_DSPSEE00_Portd 0.3 Mhit's 16 hits 24 hits 1.0

Figure 27: Bus Allocation dialog.

54

Operation In order to do Bus Allocation, users first select Main :: Synthesis =
Allocate Buses. As a result, the current allocation is read from the design and a Bus Al-
location dialog is popped up. In case of errors reading the allocation from the design (e.g.
wrong allocation table format), new, empty allocation tables are used in the dialog.

The screenshot of the Bus Allocation dialog is shown in Figure 27!

A table with the list of currently allocated buses will be shown (Figure 27). The header
of the table indicates the meaning of each column, such as bus name and type. Each row in
the table represents an allocated bus that is part of the current system target architecture. For
each bus, its name, its type, its attributes are shown in the respective columns of the table.
The list of allocated buses can be sorted by any column and in ascending or descending
order each by clicking into the corresponding column header. By default, the list is sorted
by ascending names. Users can perform the following actions:

Bus Adding In order to add a bus to the design, users click the button Add to pop up the
Bus Selection dialog which opens and loads the bus database and allows users to
select an additional bus out of the bus database. The screenshot of the Bus Selection
dialog is shown in Figure 28.

At the left of the Bus Selection dialog is a bus category table. Each row represents
one category of buses in the database. For example, row Standard contains all the
standard buses in the database.

By clicking and selecting one row in the table at left, users will be shown all the
buses in the selected category in the table at the right. Each row of the table at
the right represents one type of bus in the database under the selected category. The
name of the bus type (Bus column) and other attributes of the bus type are displayed in
separate columns. Users can select the desired bus type by clicking the corresponding
row.

There are two buttons at the bottom of the Bus Selection dialog: Ok and Cancel. By
clicking the Ok button, an additional bus of the selected bus type and with an auto-
matically determined name is added into the design’s allocated network architecture.
In addition, buses can be allocated by double-clicking into the desired bus type row
in the Bus Selection dialog (equivalent to selecting the row and pressing Ok). Click-
ing the Cancel button aborts and cancels Bus selection without changes to the bus
allocation. Either clicking Ok or Cancel button will close the Bus Selection dialog
and return to the Network Allocation dialog.

Bus Copying In order to duplicate an existing bus in the design’s bus allocation, users
can select a bus by clicking the corresponding row in the allocation table and click
the button Copy. Clicking Copy will add a new bus instance with an automatically
determined name and with the same type, attributes and description as the currently
selected bus to the design’s allocation.

55

Bus Speed Adidrass Data. Description
bGP 10.0 Mhbitis B4 hits 32 hits Accelerated Graphics Port
AMBA 30.0 Mhbitis 32 hits 3z hits ARM on-chip bus
IDE 10.0 Mhbitis 16 hits 16 hits IDE
FCI 10.0 Mhbitis 32 hits 3z hits Peripheral Companent Interconnect
SCEN 10.0 Mhbitis 16 hits 16 hits Small Computer System Interface -1
SCEI2 10.0 Mhbitis 16 hits 3z hits Small Computer System Interface -2
YMEZe 10.0 Mhbitis 32 hits a2 hits 2-edge VME
YIME_BLT 10.0 Mhit/'s 37 hits 32 hits 32-hit block transfer an YME
YIME_MBLT 10.0 Mbit's 37 hits B4 hits fd-hit block transfer an YME

Figure 28: Bus Selection dialog.

Bus Deletion . In order to remove a bus from the design’s allocation, users can select
the target bus to be removed in the allocation table and click the Remove button.
Clicking Remove will remove the selected bus from the list of allocated buses. Buses
that currently have PEs or CEs connected to them will not be available for deletion
(the Remove button will be inactive and grayed out for them).

Bus Editing Users can edit the bus name and bus description in the bus allocation tab by
clicking into the respective Name or Description column of the corresponding bus.
Clicking into any of these cells will allow editing of the respective text in the cell
by opening a text edit box in place. Pressing the Esc key during editing aborts the
edit operation. Pressing Enter accepts the entered text and changes the bus name or
description in the allocation accordingly.

There are two buttons at the bottom of Bus Allocation dialog: Ok and Cancel. By
clicking the Ok button, the bus allocation is saved back into the design. If users click
the Cancel button, Bus Allocation will be cancelled and all modifications to the allocation
and connectivity are discarded. Either clicking Ok or Cancel button will close the Bus
Allocation dialog.

Error/Information Messages There are several possible errors during Bus Alloca-
tion in general: if no top-level behavior is selected in the design when selecting Main ::

56

Synthesis = Allocate Buses an Error dialog to that effect will be popped up and the Bus
Allocation operation will be aborted. Furthermore, clicking the Ok button in the Bus Allo-
cation dialog will write the allocation tables back to the design. In case of errors, an Error
dialog is popped up and Bus Allocation is aborted.

There are several errors that can happen specifically during bus allocation:

(a) During Bus Editing, if users try to give buses names which is already used as the name
of another bus in the design, an Error dialog will be popped up, a corresponding error
message will be shown, and the editing operation will be aborted and cancelled.

(b) During Bus Adding, when clicking the Add button the bus database stored on disk will
be opened and loaded in order to read the list of available buses from the database. In
case of errors during database opening (e.g. file errors or wrong file format), an Error
dialog will be popped up and the Bus Adding operation will be aborted.

Furthermore, when adding a bus to the allocation via the Bus Selection dialog, the
selected bus type is read from the database. In case of database read errors (file errors,
database format errors) during this operation, an Error dialog will be popped up and
the Bus Adding operation aborted.

Channel Mapping In order to implement the communication in the specification model
on the allocated communication architecture consisting of buses, users have to be able to
map the channels in the specification onto the allocated Buses. Channel Mapping allows
for mapping of channel instances in the design into buses. Channel mapping information
is stored as annotations attached to channel definitions inside a behavior class. As a result,
multiple incarnations of the same channel in different instances of the parent behavior will
all share the same mapping information. Users can also map behaviors to buses. 1f a channel
is not mapped to any bus, all of its instances will be implicitly (and recursively) mapped
onto the same bus as the parent behavior class in which they are instantiated in. Note that
user must map all the channels under the top-level behavior to buses either implicitly (by
mapping the top-level behavior itself) or explicitly.

Communication Refinement Communication Refinement executes the implementation
decisions made in the other Communication Synthesis tasks by refining the current Archi-
tecture Model into an automatically generated Communication Model based on and reflect-
ing the decision made during Bus Allocation.

Operation In order to do refinement, users can select the Main :: Synthesis =
Network Refinement menu entry to pop up the Communication Refinement dialog. The
screenshot of the Communication Refinement dialog is shown in Figure 29.

57

| Communication Refinemeant

Tazks

[F_cChannel refinement |

I Protocol insertion

I Inlining

| Start I Cancel |

Figure 29: Communication Refinement dialog.

2

In the Communication Refinement dialog, users can select whether individual sub-
tasks of the communication refinement process will be performed or not. By checking
or unchecking the check boxes tasks are turned on and off and partially or completely re-
fined models can be generated. By default, all tasks are turned on. The three sub-tasks of
network refinement are:

(a) Channel refinement which refines the architecture model to the communication model.
(b) Protocol insertion which generates implementations contains protocol layers.
(¢) Inlining which inline the protocol layers to PEs.

If all tasks are turned off, no output model is generated and only input validation is
performed. In other cases, exactly one output model at varying levels of refinement is
generated.

User can then start the communication refinement process by clicking the Start button.
If users click the Cancel button, the Communication Refinement operation will be aborted
and cancelled. Either clicking Start or Cancel buttons will close the Communication Re-
finement dialog.

After clicking the Start button, the communication refinement command line compo-
nents will be executed in the background. Any diagnostic, status and informative output of
the network refinement tools will be shown in the Refinement tab of the Output Window
(Output :: Refine).

When the communication refinement process is finished, the newly generated network
model is automatically opened and loaded, and a corresponding new Design Window is
created in the Workspace. The new Design Window is automatically activated and raised
to the front. In addition, the new communication model is automatically added to the cur-
rent project (see Design Adding, Section[4.2.5) as a child of the architecture model it was
generated from.

58

While the communication refinement background tools are running, the majority of the
main SCE GUI is disabled. However, users can abort/kill execution of the background
tools by selecting Main :: Synthesis = Stop. After clicking, the current communication
refinement background task is aborted.

Error/Information Messages If the communication refinement background tools
abort with an error or are killed via the Main :: Synthesis = Stop menu entry, an Error
dialog with a corresponding error message will pop up. Specifically, the communication
refinement background tools check for and can produce the following classes of errors:

e No top level behavior.
e No or invalid bus allocation information.

Upon confirming the error, the remainder of the Communication Refinement Operation will
be cancelled.

If the design the new model was generated from is not in the project, the new model is
not added to the project and an Error dialog to that effect will be popped up.

4.5.3 Decision Import

In order to take over implementation decisions from a previously done design into a new
design, SCE allows to import design decisions from one design into another. With this
functionality, previously made design decisions can easily be transfered to a new design as
a starting point for synthesis.

Operation Users can import design decisions from any currently opened and loaded
design into the currently active design by selecting the Main Menu command Main ::
Synthesis = Import Decisons. As a result, the Import Decisions dialog will be popped
up as shown in Figure(30. The solid rectangular with triangle symbol represents the drop-
down menu. The square with check mark represents a select box. The round rectangulars
represents buttons.

First, in order to select a design from which decisions are imported, users select the
name of the source design in the Source design drop-down box. The combo box contains
all the names of currently opened Design Windows except for the currently active one.
Users select one design from them as the source design.

Secondly, users can select decisions which will be imported to the current design. Users
do it by checking the selection items as follows:

PE Allocation Copies the allocated PEs/memories from the source design to the currently
active design. For all behaviors in the source design, PE allocation annotations are
copied to the behavior (if any) with the same name in the target design.

59

Behavior Mapping Copies behavior mapping information from the source design to the
currently active design. For all behaviors in the source design, PE mapping annota-
tions are copied to the behavior (if any) with the same name in the target design.

Variable Mapping Copies variable mapping information from the source design to the cur-
rently active design. For all variable definitions in all behaviors in the source design,
PE mapping annotations are copied to the variable (if any) with the same name in the
behavior (if any) with the same name in the target design.

Bus Allocation Copies the allocated busses from the source design to the currently active
design. For all behaviors in the source design, bus allocation annotations are copied
to the behavior (if any) with the same name in the target design.

Channel Mapping Copies the channels to buses mapping decision

The Import Decisions dialog includes an additional check item to select whether any
existing annotations in the target design should be overwritten or kept.

There are two buttons on the Import Decisions dialog: Import and Cancel. By clicking
the Import button, the design decisions of the selected items are imported to the selected
design from the source design. If users clicks the Cancel button, the action of Decision
Importing will be aborted and cancelled. Either clicking Import or Cancel button will close
the Import Decisions dialog.

Error/Information Messages Decision Importing requires reading and writing of an-
notations in the designs. In case of errors (e.g. wrong annotation format) upon pressing the
Import button, an Error dialog will be popped up and the Decision Importing operation will
be aborted.

4.6 Window Management

Window Management deals with the management of design windows in the Workspace.
Window Management allows for closing, resizing, and arranging of multiple simultane-
ously opened design windows within the Workspace. Specifically, the tasks for Window
Management are:

Window Closing Users can close the currently active design window in the Workspace by
selecting Main :: Window =- Close. In addition, any of the design windows can be
closed by clicking on a respective icon in the window’s title bar.

Users can close all the currently opened design windows in the Workspace by select-
ing Main :: Window =- Close All.

In all cases, closing a design window triggers a File Closing action for the corre-
sponding design file (see Section 4.3.3).

60

Import Decisions

Figure 30: Import Decisions dialog.

61

Window Arranging Users can automatically arrange design windows in the Workspace
in a variety of manners. Selecting Main :: Window =- Tile will rearrange the design
windows in the Workspace in a tiled fashion. Selecting Main :: Window = Cascade
will rearrange the design windows in the Workspace in a cascaded manner. Apart
from that, windows can be freely resized and moved within the Workspace by drag-
ging their title bar or borders. In addition, users can maximize and minimize design
windows by clicking on a respective icon on the window’s title bar.

Window Switching Selecting Main :: Window = Next or Main :: Window = Previous
will switch the focus to and activate the next/previous design window in the list of
opened windows. Using these actions, users can cycle through the list of windows.
Design windows are ordered in the window list according to the order in which they
were opened. In addition, users can activate and raise any of the opened design
windows by clicking into the window.

Finally, the bottom of the Main :: Window menu contains entries for all currently
opened design windows. Selecting any of these menu entries will activate and raise
the corresponding design window.

Window Toggling Selecting Main :: Window =- Pro ject Manager or Main :: Window =
Out put Window will toggle (turn on and off) displaying of Project and Output Win-
dows, respectively.

62

References

[1] R. Domer, A. Gerstlauer and D. D. Gajski. SpecC Language Reference Manual, Ver-
sion 2.0, SpecC Technology Open Consortium (STOC), Japan, December 2002.

[2] R. Domer. The SpecC Internal Representation (V2.0.3), Technical Report 03-21,
University of California, Irvine, January 1999.

[3] J. Peng, A. Gerstlauer, K. Ramineni, R. Domer and D. D. Gajski. System-On-Chip
Specification Style Guide, Technical Report CECS-TR-03-21, Center for Embedded
Computer Systems, University of California, Irvine, 2003.

63

A Manual Pages

This appendix contains the documentation in the form of manual pages for external, third-
party tools used by SCE.

64

A.1 scc - SpecC Compiler
NAME

scc — SpecC Compiler

SYNOPSIS

scc -h

scc design [command] [options]

DESCRIPTION

scc is the compiler for the SpecC language. The main purpose of scc is to compile
a SpecC source program into an executable program for simulation. Furthermore,
scc serves as a general tool to translate SpecC code from various input to various
output formats which include SpecC source text, SpecC binary files in SpecC
Internal Representation format, and other compiler intermediate files.

Using the first command syntax as shown in the synopsis above, a brief usage
information and the compiler version are printed to standard output and the pro-
gram exits. Using the second command syntax, the specified design is compiled.
By default, scc reads a SpecC source file, performs preprocessing and builds the
SpecC Internal Representation (SIR). Then, C++ code is generated, compiled and
linked into an executable file to be used for simulation. However, the subtasks
performed by scc are controlled by the given command so that, for example, only
partial compilation is performed with the specified design.

On successful completion, the exit value 0 is returned. In case of errors during
processing, an error code with a brief diagnostic message is written to standard
error and the program execution is aborted with the exit value 10.

For preprocessing and C++ compilation, scc relies on the availability of an exter-
nal C++ compiler which is used automatically in the background. By default, the
GNU compiler gcc/g++ is used.

ARGUMENTS

design specifies the name of the design; by default, this name is used as base
name for the input file and all output files;

65

COMMAND

The command has the format - suffix1 2 suffix2, where suffix1 and suffix2 specify
the format of the main input and output file, respectively. This command also
implies the compilation steps being performed. By default, the command —sc2out
is used which specifies reading a SpecC source file (e.g. design.sc) and generating
an executable file (e.g. a.out) for simulation. All necessary intermediate files (e.g.
design.cc, design.o) are generated automatically.

Legal command suffixes are:

sC SpecC source file (default: design.sc)

Si preprocessed SpecC source file (default: design.si)

sir binary SIR file in SpecC Internal Representation format (default: design.sir)

cc C++ simulation source file (default: design.cc)

h C++ simulation header file (default: design.h)

cch both, C++ simulation source file and C++ header file (default: design.cc and
design.h)

0 linker object file (default: design.o)

out executable file for simulation (default: design); however, with the —ip op-
tion, a shared library will be produced (default: libdesign.so)

OPTIONS
=V |-w | -vwv increase the verbosity level so that all tasks performed are

logged to standard error (default: be silent); at level 1, infor-
mative messages for each task performed are displayed; at level
2, additionally input and output file names are listed; at level 3,
very detailed information about each executed task is printed;

—w | -ww | -www increase the warning level so that warning messages are enabled

(default: warnings are disabled); four levels are supported rang-
ing from only important warnings (level 1) to pedantic warnings
(level 4); for most cases, warning level 2 is recommended (-
ww);

66

enable debugging of the generated simulation code (default: no
debugging code); this option disables optimization;

enable optimization of the generated simulation code (default:
no optimization); this option disables debugging;

enable intellectual property (IP) mode; when generating a SIR
binary or SpecC text file, only declarations of symbols marked
public will be included (the public interface of an IP is created);
when generating C++ code, non-public symbols will be output
so that they will be invisible outside the file scope; when com-
piling or linking, the compiler and linker are instructed to create
a shared library instead of an executable file (creation of an IP
simulation library);

suppress creation of new log information when generating the
output SIR file (default: update log information); see also sec-
tion ANNOTATIONS below;

suppress source line information (preprocessor directives) when
generating SpecC or C++ source code (default: include source
line directives);

suppress all annotations when generating SpecC source code
(default; include annotations);

—st tabulator stepping set the tabulator stepping for SpecC/C++ code generation;

this setting is used for code indentation; a value of 0 will disable
the indentation of the generated code (default: 4);

—sT system tabulator stepping set the system tabulator stepping (\t) for Spec-

C/C++ code generation; if set, tab characters will be used for
indentation; if a value of O is specified, only spaces will be used
for indentation (default: 8);

—sw line wrapping set the column for line wrapping; in code generation, any line

—i input file

longer than this value is subject to line wrapping; if a value of 0
is specified, no line wrapping will be performed (default: 70);

specify the name of the input file explicitly (default: de-
sign.suffix1); the name ’-’ can be used to specify reading from
standard input;

67

—0 output file

—Dmacrodef

-U

—Uundef

—Idir

—Ldir

specify the name of the final output file explicitly (default: de-
sign.suffix2); the name ’-” can be used to specify writing to stan-
dard output;

do not define any standard macros; by default, the macro
__SPECC__ is defined automatically (it is set to 1); furthermore,
implementation dependent macros may be defined; this option
suppresses the definition of all these macros;

define the preprocessor macro macrodef to be passed to the pre-
processor;

do not undefine any macros; by default, few macros are unde-
fined automatically (in order to allow C/C++ standard header
files to be used); this option is implementation dependent;

undefine the preprocessor macro undef which will be passed to
the preprocessor as being undefined; the macro undef will be
undefined after the definition of all command-line macros; this
allows to selectively suppress macros from being defined in the
preprocessing stage;

clear the standard include path; by default, the standard in-
clude path consists of the directory $SPECC/inc; this option
suppresses the default include path;

append dir to the include path (extend the list of directories to
be searched for including source files); include directories are
searched in the order of their specification; unless suppressed by
option —I, the standard include path is automatically appended
to this list; by default, only the standard include directories are
searched;

clear the standard library path; by default, the standard library
path consists of the directory $SPECC/Iib; this option sup-
presses the default library path;

append dir to the library path (extend the list of directories to be
searched for linker libraries); the library path is searched in the
specified order; unless suppressed by option —L, the standard
library path is automatically appended to this list; by default,
only the standard library path is searched;

68

—llib

—Pdir

when linking, do not use any standard libraries; the default li-
braries are displayed when calling the compiler with the —-h op-
tion; the —I option suppresses linking against theses standard li-
braries;

pass lib as a library to the linker so that the executable is linked
against lib; libraries are linked in the specified order; unless sup-
pressed by option —I, the standard libraries are automatically ap-
pended to this list; by default, only standard libraries are used,;

reset the import path; clear the list of directories to be searched
for importing files; by default, the current directory is searched
first, followed by the standard import directory $SPECC/import;
this option suppresses this standard import path;

append dir to the import path, extending the list of directories to
be searched for importing files; import directories are searched
in the order of their specification; unless suppressed by option
—P, the standard search path is automatically appended to this
list; by default, only the standard import path is searched,;

—xpp preprocessor _call redefine the command to be used for calling the C prepro-

cessor (default: ”g++ -E -x ¢ %p %i -0 %0”); the preprocessor
call must contain three markers %p, %i and %0, which indicate
the options and file names used in the call; in the specified string,
the %p marker will be replaced with the list of specified prepro-
cessor options; the %i and %0 markers will be replaced with the
actual input and output filenames, respectively;

—xcc compiler_call redefine the command to be used for calling the C/C++ com-

—xId linker_call

piler (default: ”g++ -c %c %i -0 %0”); the compiler call must
contain three markers %c, %i and %o, which indicate the op-
tions and file names used in the call; in the specified string, the
%c marker will be replaced with the list of specified compiler
options; the %i and %0 markers will be replaced with the actual
input and output filenames, respectively;

redefine the command to be used for calling the linker (default:
”g++ %i -0 %0 %I”); the linker call must contain three markers
%I, %i and %o, which indicate the options and file names used
in the call; in the specified string, the %I marker will be replaced
with the list of specified linker options; the %i and %0 markers

69

will be replaced with the actual input and output filenames, re-
spectively;

—Xp preprocessor_option pass an option directly to the C/C++ preprocessor (de-

fault: none);

—xc compiler_option pass an option directly to the C/C++ compiler (default: none);

—xI linker_option pass an option directly to the linker (default: none);

ENVIRONMENT

SPECC

is used to determine the installation directory of the SpecC environ-
ment where SpecC standard include files (directory $SPECC/inc),
SpecC standard import files (directory $SPECC/import), and SpecC
system libraries (directory $SPECC/lib) are located.

SPECC_LICENSE_FILE determines the license file (path and file name) to be used

ANNOTATIONS

by the SpecC environment; if undefined, the environment variable
SPECC is used as the path to the license file called "license.sce”; if nei-
ther SPECC_LICENSE_FILE nor SPECC exist, the file "license.sce” is
searched in the current directory;

The following SpecC annotations are recognized by the compiler:

_SCE_LOG

contains the log information of the SIR file; this global annotation
is created and maintained automatically by the SpecC compiler and
the SpecC tool set and can be used to determine the origin and the
operations performed on the design model; _SCE_LOG is a com-
posite annotation consisting of a list of log entries, ordered by time
of creation; each log entry consists of a time stamp, command line,
source file, version info, and an optional comment;

_SCC_RESERVED _SIZE for external behaviors and channels (IP components), this

indicates the size reserved in the C++ class for internal use; the
annotation type is unsigned int; if found at class definitions, this
annotation is checked automatically for reasonable values; for IP
declarations, the annotation can be created automatically with the
—ip option;

70

_SCC_PUBLIC for global symbols, this annotation indicates whether the symbol is
public and will be visible in a shared library; the annotation type is
bool; this annotation only is recognized with the —ip option;

VERSION

The SpecC compiler scc is version 2.2.0.

AUTHOR

Rainer Doemer <doemer@ics.uci.edu>

COPYRIGHT

(c) 1997-2004 CECS, University of California, Irvine

SEE ALSO

gcee(l), g++(1), sir_delete(l), sir_depend(l), sir_import(l), sir_isolate(l),
sir_list(l), sir_note(l), sir_rename(l), sir_strip(l), sir_tree(l), sir _wrap(l)

BUGS, LIMITATIONS

Variables of enumerator type cannot be initialized at the time of their declaration. The
SpecC compiler issues a (false) error message in this case. As a simple work-around, how-
ever, enumerator variables can be initialized by use of standard assignment statements at
the beginning of their lifetimes.

71

	1 Introduction
	2 Overview
	2.1 Modules
	2.1.1 Main Window
	2.1.2 Input Dialogs
	2.1.3 Display Windows

	2.2 Requirements
	2.3 Interfaces
	2.3.1 Internal Interfaces
	2.3.2 External Interfaces

	2.4 Performance

	3 Windows/GUI
	3.1 Menu Bar
	3.1.1 File Menu
	3.1.2 Edit Menu
	3.1.3 View Menu
	3.1.4 Project Menu
	3.1.5 Synthesis Menu
	3.1.6 Validation Menu
	3.1.7 Windows

	3.2 Project Window
	3.2.1 Models Tab
	3.2.2 Imports Tab
	3.2.3 Sources Tab

	3.3 Design Window
	3.3.1 Hierarchy Tab
	3.3.2 Behaviors Tab
	3.3.3 Channels Tab
	3.3.4 View Pane

	3.4 Output Window
	3.5 Workspace
	3.6 Message Boxes
	3.6.1 Error Dialogs
	3.6.2 Information Dialogs

	4 Functionality
	4.1 Application
	4.1.1 Preferences Editing

	4.2 Project Handling
	4.2.1 Project Creation
	4.2.2 Project Opening
	4.2.3 Project Saving
	4.2.4 Project Settings Editing
	4.2.5 Design Adding
	4.2.6 Design Opening
	4.2.7 Design Deletion
	4.2.8 Design Renaming
	4.2.9 Description Changing
	4.2.10 Project Closing

	4.3 File Handling
	4.3.1 File Opening
	4.3.2 File Saving
	4.3.3 File Closing
	4.3.4 File Import
	4.3.5 Design Property Viewing
	4.3.6 SCE Exiting

	4.4 Design-Entity Handling
	4.4.1 Entity Renaming
	4.4.2 Entity Retyping
	4.4.3 Entity Deletion
	4.4.4 Hierarchy Displaying

	4.5 Synthesis
	4.5.1 Architecture Synthesis
	4.5.2 Communication Synthesis
	4.5.3 Decision Import

	4.6 Window Management

	References
	A Manual Pages
	A.1 scc - SpecC Compiler

