
 1

Petri Net-based Thread Composition for Improved System
Level Simulation

Nick Savoiu
UC Irvine

savoiu@ics.uci.edu

Sandeep K. Shukla
Virginia Tech
shukla@vt.edu

Rajesh K. Gupta
UC San Diego

gupta@cs.ucsd.edu

Center for Embedded Computer Systems
University of California, Irvine, CA, USA

http://www.cecs.uci.edu/

Technical Report #03-39
Dept. of Information and Computer Science

University of California, Irvine, CA 92697, USA
Dec 19, 2003

ABSTRACT

Shrinking time-to-market requirements and growing system complexity place an ever-increasing
pressure on design teams to deliver quality products on time. As simulation often accounts for a
considerable amount of the development cycle time reducing it can either allow more time for design
improvements or directly reduce the time-to-market. We have shown that the implicit concurrency in a
hardware model can be used to improve its simulation performance if we transform the threading model
from that imposed by the hardware model structure to one more suitable for efficient simulation.
However, as these transformations tend to be nontrivial changes to the structure of a simulation model,
it is important to have a rigorous way of applying them. In this paper, we present a Petri net(PN)-based
methodology for the application of such transformations using a set of structural reduction rules. The
PNs are annotated with code from the system model and transformed as to extract complete code cycles
from them. These cycles have better simulation performance due to lower simulation overheads and can
also be mapped to threads for further simulation runtime improvements as shown by our experiments.

 2

TABLE OF CONTENTS
1. INTRODUCTION.. 3
2. PETRI NETS BACKGROUND... 4
3. DESIGN ANALYSIS... 5

3.1 Process Analysis ... 6
4. CONVERSION TO PETRI NETS... 7

4.1 Free Choice and Well-formed-ness... 9
4.2 Reduction rules ... 10

5. EXPERIMENTS .. 16
6. CONCLUSIONS AND FUTURE WORK... 16
7. REFERENCES .. 17
8. ANNEX – Complete Reduction... 18

LIST OF FIGURES
Figure 1. A Petri net (a) before and (b) after t1 fires. .. 4
Figure 2. Example FFT SystemC description ... 6
Figure 3. Transformation of process source ... 7
Figure 4. APU Graphs for FFT Example .. 8
Figure 5. Basic Petri net building blocks.. 9
Figure 6. Mapping APU to Petri net fragment.. 10
Figure 7. Petri net for FFT Processes ... 11
Figure 8. Applying reduction FA.. 12
Figure 9. Applying reduction FS .. 13
Figure 10. Applying reduction FT .. 14
Figure 11. Reduction of FFT example.. 15

 3

1. INTRODUCTION
C++-based high-level modeling frameworks (such as SystemC[14]) are increasing in acceptance for
system level modeling.

As designers progress towards using system level models they seek behavioral tools that allow them to
simulate and also synthesize hardware from the same models[15] so as to further reduce the time and
effort required by modeling. However, developing a model that is efficient for both synthesis and
simulation is rather difficult given the different target requirements. These conflicting requirements must
be satisfied without altering the modeling style that hardware designers are accustomed to meaning that
the software model of a hardware design must be transparently transformed in order to improve its
simulation performance. In [12] it was shown that the concurrency in such a model can be exploited to
reduce simulation time by using a multiprocessor simulation platform. That was based on observations
made in [4] about the efficiency of using user- and kernel-level threads when simulating a model
coupled with work in [11] on what modeling paradigm (i.e. task- or message-based) is most efficient in
exploiting kernel-level threads.

However, improving simulation performance in this way required a change from user-level to kernel-
level multithreading in the simulation engine kernel which brought on the need for transformations of
the simulation model that would alleviate the increased overhead[4] of the kernel-level threads. These
transformations utilize inter-process communication analysis to restructure the model description from
that imposed by the envisioned hardware units (i.e. a task-based paradigm where each task is specialized
for a particular function) to a new structure more suitable for the new threading model (i.e. a message-
based paradigm where each task performs all or most of processing required).

Experiments with these transformations have shown improvements in simulation performance and their
correctness was verified through bisimulation the original and the transformed designs. However, it is
desirable to have a more formal approach to the transformations being applied. To that end, in this paper
we describe a PN-based approach to applying these transformations that results in the extraction
complete code cycles from systems of concurrent processes.

PNs are a well-known formal model for concurrent process systems and have been extensively used both
for theoretical and practical purposes in a variety of fields. One such use of PNs has been in software
synthesis where Sgroi[13] used a modified coverability result from [6] to enumerate a set of finite,
complete cycles for an equal choice PN given an initial marking M0. Such a set was deemed a valid
schedule once the executability of each cycle was verified through simulation. Similarly in [7], Lin
presents another software synthesis technique based on the expansion of a safe free choice PN from an
initial marking M0 until a cycle is encountered. The resulting unrolling is scheduled to obtain a C
representation of the original net’s functionality.

Our approach is to use a similar PN cycle extraction idea to build a restructured representation of the
code but we target improving the simulation of software models of hardware designs. Rather than
obtaining a cover or unrolling of the PN we apply a set of reduction rules to a code-labeled PN until we
reduce it to an atomic PN. We do this by first obtaining a PN from the original system description where
transitions are annotated with specific code fragments as dictated by the simulation semantics. We then
use a version of the reduction rules in [2] that were augmented to manipulate the code-labeled transitions
so as to maintain simulation semantics. The structural nature of the transformations means that we need
not rely on an initial marking or on having to verify the executability of each extracted cycle.

 4

The rest of the paper is organized as follows. In Section 2 we give a brief introduction to general PN
concepts used in the rest of the paper. We continue with Section 3 presenting the model transformations
using a simple example. We introduce our reduction-based methodology in Section 4 then present our
experimental setup and results in Section 5. Finally, observations, conclusions and future directions for
improving our work are presented in Section 6.

2. PETRI NETS BACKGROUND
PNs originated in C.A. Petri’s work[10] and are a well-known mathematical model for describing
concurrent systems. We briefly describe just the PN concepts needed to understand our approach to
thread composition while referring the reader to [1] and [8] for a more detailed treatise of PNs.

Figure 1. A Petri net (a) before and (b) after t1 fires.

A net N=(S,T,F) is a directed, bipartite graph where S is a set of places (represented as circles and
denoted as si) and T is a set of transitions (represented as bars and denoted as tk). F is a set of arcs
between either places and transitions or transitions and places. We assume, without loss of generality,
that S, T and F are nonempty and N is connected in order to eliminate trivial nets.

Definition 2-1. The pre-set of a node x is the set •x such that if y∈•x then (y,x)∈F. Similarly the post-set
of a node x is defined as the set x• of nodes such that if y∈x• then (x,y)∈F.
Related to pre- and post-sets is the notion of cluster.

Definition 2-2. The cluster of node x is defined as the set [x] such that x∈[x]. Additionally if place s∈[x]
then s•∈[x] and if transition t∈[x] then •t∈[x]. We also define CN={[x]|x∈S∪T} as the cluster cover of a
net N=(S,T,F).

A Petri net is the tuple (N,M0) composed of a net N and an marking M0 also known as the initial
marking. A marking is an assignment of nonnegative integer numbers of tokens to each place in the net.
A PN is a dynamic entity with additional properties determined by the flow of tokens generated by the
firing of enabled transitions. A transition is enabled if each of its input places is marked with at least one
token. Firing a transition removes one token from each of its input places and places one token in each
of its output places. In Figure 1(a) transition t1 is enabled and fired resulting in the net in Figure 1(b).

Two dynamic properties of interest are liveness and boundedness.

Definition 2-3. A net is live if, for every reachable marking M and every transition t, there exists a
marking M’ from the set markings reachable from M such that t is enabled.

 5

Definition 2-4. A net is bounded if for every place s there is a natural number n such that the number of
tokens placed in s by any reachable marking is always less than or equal to n.

The flow of tokens through a net can be succinctly captured using an incidence matrix.

Definition 2-5. The incidence matrix of a net N=(S,T,F) is a matrix with |S| rows and |T| columns defined
as I:(S×T)�{-1,0,1} such that

�
�

�

�
�

�

�

∈∧∉
∉∧∉

∨∈∧∈
∉∧∈−

=

FstFts

FstFts

FstFts

FstFts

tsI

),(),(if1
))),(),(
)),(),((if0

),(),(if1

),(

The net in Figure 1(a) has the following incidence matrix:

11
01
01

3

2

1

21

−
−
−

=

s

s

s

tt

I

Each entry I(si,tj) represents how firing a transition tj will affect the marking of a place si. For example,
in the incidence matrix above, we can see that firing transition t1 will remove one token from place s1
since I(s1,t1)=-1.

Despite their dynamic nature, PNs can nonetheless exhibit certain properties that are true at every
reachable state. Two such invariant properties are referred to as S-invariants and T-invariants.

Definition 2-6. An S-invariant of a net is a solution of the system of equations X�I=0. Similarly, a T-
invariant of a net is a solution to the system of equations I�X=0. An invariant is a called positive if each
of it elements is greater than zero.

General PNs have considerable expressive power but their properties are in general either not decidable
or computationally too high. Therefore, we will have to restrict our PNs such their algorithms are
suitable for practical applications. State machines and marked graphs are two such restricted PN classes
but they lack the ability to model both conflict and synchronization – concepts almost always required by
hardware designs. A class of PNs that does satisfy this requirement while maintaining low computational
complexity is the class of free choice PNs(FCPN). The term free choice results from the restriction that
choices in a conflict be local (i.e. not influenced by synchronization). This translates into requiring that
the underlying net satisfy if there exists an arc from s to t then there must also exist an arc from any input
place of t to any output transition of s.

3. DESIGN ANALYSIS
In Error! Reference source not found. we have shown that we can improve the simulation
performance of a hardware system description if we change the threading model employed during
simulation. We will outline some of those steps to give context to the work being presented here with the
help of an FFT example from the SystemC 2.0 distribution[14]. Its simplified pseudo-SystemC
description (concurrent processes source, ftt, and sink) is given in Figure 2.

 6

Figure 2. Example FFT SystemC description

3.1 Process Analysis
We start by creating a hierarchical task graph[5] for each process in the hardware design’s SystemC
description. HTGs allow us to abstract complex, nested constructs (e.g. if and loop statements) into
single graph nodes for easier high level code analysis.

Process restructuring is driven by the observation that if we perform the inter-process communication
analysis at a finer level (i.e. less than process level) we can use this information to obtain fewer, larger
sections of code that can be simulated relatively independently of each other. This, as we will see later
on, will be beneficial twofold. First, it will reduce the computational overhead due to the scheduler
having to do bookkeeping for inter-process signal updates during simulation. Second, it will enable us to
potentially execute the newly grouped sections of code as kernel-level threads thus allowing for further
simulation speed increases through multiprocessing. Therefore an important piece to our process
restructuring is the division of each process HTG into so called Atomic Process Units (APU). An APU is
defined as the section of an HTG containing the statements that a process may execute (upon invocation
by SystemC kernel scheduler[14]) but before relinquishing control to another process.

We assume that each process starts with an initialization step followed by the actual process
functionality encapsulated in an infinite loop. This is typical of hardware systems that start by initializing
themselves only to then settle in a steady state of waiting for stimuli, processing them and returning to
the waiting state.

Since the initialization part is executed only once, we can, without loss of generality, remove it from the
process description, as shown in Figure 3(b) for the source process, and assume that it will be performed
at the beginning of the simulation.

 7

Figure 3. Transformation of process source

The APUs are generated from the HTG graph by computing a transitive closure for each synchronization
point (e.g. a wait() call in SystemC) where encountering any other synchronization point will block
transitive propagation. The highlighted sections of the HTG graphs in Figure 3(c) and Figure 3(d) show
the sections that make up the APUs for each of the two synchronization points in the HTG graph of
process source (i.e. the entry point and the wait() call). The APUs are then interconnected using the
existing HTG control flow arcs as shown in Figure 3(e).

Last, but not least, each process is analyzed to determine how it communicates with other processes.
This is done by way of determining the synchronization and event generation points present in the source
code of the process. The sets of events that an APU is sensitive to (i.e. input events) and that it generates
(i.e. output events) are stored with the APU.

By repeating these steps for the fft and sink processes we obtain the three APU graphs in Figure 4.

4. CONVERSION TO PETRI NETS
Mapping the APU graphs to PNs is a constructive process based on the “basic” building blocks
presented in Figure 5(a)-(c).

First each APU is replaced by the building block in Figure 5(a). Note that, while it has only one entry
point, it can have multiple exit points (i.e. a conflict or choice point). The reason for this is illustrated in
Figure 6 where, starting from the code in Figure 6(a), we derive the HTG graph fragment in Figure 6(b).
The APU generation step will assign the outlined HTG fragment to just one APU (given that we
generate APUs using wait() synchronization points as boundaries). The PN fragment in Figure 6(c) is the
end result with one exit point for each of the possible choices in the source code.

 8

Figure 4. APU Graphs for FFT Example

Transition t1 in Figure 5(a) serves as a point where any synchronization required for the APU can be
performed. For example, the code in Figure 6(a) must synchronize with event e1. This can be
accomplished by introducing a new input place for transition t1 that will later be connected to the net
fragment(s) that produce event e1 (see Figure 5(d)). The new input place for t1 ensures that t1 will not be
enabled to fire until both the control flow state and the event state are marked thus achieving the desired
synchronization.

As a last step in mapping an APU to the net fragment in Figure 5(a) its transitions are “labeled” with the
corresponding HTG graph paths. Transition t1 is present solely for synchronization purposes and, as
such, will not be labeled unlike transitions t2 through tn with the respective paths. For example, t2 will
be associated with the path from wait(e1) to, but not including, wait(e4).

After the APUs are mapped to PN fragments we must also connect them in such a way as to account for
the event flow in the system. This is done by using the previously computed lists of input (i.e. triggers)
and output (i.e. triggered) events for each APU.

The input events of an APU were determined by analyzing the type and sensitivity of the process that the
APU was generated from as well as the source code that composes the APU. Our current input language,

 9

Figure 5. Basic Petri net building blocks

SystemC, allows two such types: an or-type (i.e. wait(event1 or ... or eventn)) and an and-type (i.e.
wait(event1 and … and eventn)). If or-type sensitivity is used then the APU is activated whenever at least
one of the input events occurs and this is modeled by the PN fragment in Figure 5(b). As soon as any of
the input transitions of place s fires it places a token on place s thus enabling the output transition of s.
Similarly, for and-type sensitivity all the input events must occur before the APU is activated. This is
modeled in Figure 5(c) by transition t requiring that all its input places be marked before it can fire and
mark its output place.

The output events of an APU are determined by identifying any calls to event producing statements (e.g.
notify() for SystemC) in the APU code.

The APU in Figure 6(b) has event e1 in its input list and event e5 in its output list while Figure 5(d)
presents a contrived, but nonetheless valid, way of connecting the input and output events of a PN
fragment.

Returning to our FFT example, Figure 7 shows a simplified (for clarity and brevity) overall PN obtained
after all the APUs have been mapped to PNs and have been interconnected.

4.1 Free Choice and Well-formed-ness
While we have taken care that our building blocks respect the FCPN tenet of keeping places with
multiple output transitions isolated from transitions with multiple input places, we do not yet have a
formal proof that the PNs we generate are always free choice. Therefore an extra step is needed in our
current methodology to check that the resulting net is free choice. This can be performed in O(|S|+|T|)
time using the definition given in Section 2. Another requirement that we place on our PNs is that their
underlying nets be well-formed.

Definition 4-1. A net N is well-formed if there exists an initial marking M0 such that (N,M0) is live and
bounded.

 10

More so, every live and bounded net also has the property that there exists a reachable marking M and an
occurrence sequence σ such that:

MMtTt →∧∈∈∀ σσ

This property provided the key insight into the existence of a cycle through a well-formed FCPN that
will exercise all its transitions while returning it to the initial state. We will see in Section 4.2 that such a
cycle can be obtained by using an augmented set of reduction rules.

Figure 6. Mapping APU to Petri net fragment

Requiring that a PN be well-formed might seem restrictive but the fact that a well-formed PN is
guaranteed to be live and bounded is a desirable trait for reactive concurrent systems. Hardware designs
often require that they be deadlock-free and process all the tokens generated within.

Theorem 3.1 Let N=(S,T,F) be a free choice net such that |S|�1, |T|�1. N is well-formed if and only if N
is connected, has a positive S- and positive T-invariant and the rank of its incidence matrix is
Rank(I)=|CN|-1.

This theorem allows us to efficiently (polynomial-time complexity algorithm[3]) determine if a FCPN is
well-formed.

4.2 Reduction rules
Once well-formed-ness is established can we finally apply a sequence of reductions from a complete set
of reduction rules with the guarantee that they will reduce the initial PN to an atomic PN.

Definition 4.1 A net is called atomic if it is isomorphic to the net N=(S,T,F) where S={s}, T={t}, and
F={(s,t), (t,s)).

 11

Figure 7. Petri net for FFT Processes

An atomic net has the minimum number of places and transitions required for it to still be live and
bounded. The last net in the sequence of reduction steps in Figure 11 is atomic.

Definition 4.2 A set of reductions is complete if it can reduce any well-formed net to an atomic net.

Several such sets of reductions have been presented in the PN literature -- most notably the ones in [9]
and [2]. We will favor the latter as it can be applied to a more general class of well-formed FCPNs. The
set is composed of the following three reductions: φA, φS, and φT. The first reduction deals with places
and transitions that are uniquely connected.

 12

Reduction φφφφA Given a well-formed FCPN N=(S,T,F) where

∅=•×•
=•∧∅≠•∈∃
=•∧∅≠•∈∃

Fts
stttsTt

tsstsSs

�)(
}{..
}{..

then there exists a net N'=(S',T',F') such that

t•)(•sS')))T')U(T'((S'(FF'

tTT

sSS

×××=
=
=

��

}{\'
}{\'

A graphical representation of this reduction rules is presented in Figure 8.

Figure 8. Applying reduction FA

Our augmentation to the original rule is based on the observation that once the highlighted place is
marked the highlighted transition is bound to occur. More so, once transitions labeled B and C occur,
transition D is also sure to occur. Therefore, when applying φA, the associated code labels are
transformed as follows:

)(),'()'(' tttst ΛΛ=Λ•∈∀

Here, �(t) represents the code associated with transition t while ‘,’ represents the concatenation operator.
For the example in Figure 8(a) the result of applying φA is to append the code label D to the code labels
of each of the input transitions for place s.

The second rule in the complete set of reductions deals with removing “redundant” places and states the
following:

Reduction φφφφS Given a well-formed FCPN N=(S,T,F) where

Øs••s

placedependentlinearlyenonnegativSs

S

≠
∈∃
>

�

2||

 13

then there exists a net N'=(S',T',F') such that

S'))(T'T')((S'FF'

TT

sSS

××=
=
=

��

'
]{\'

A graphical representation of this rule is presented in Figure 9. Note that, since only a place (i.e. no code
associated with it) is removed, there are no changes to the code associated with the transitions in the net.

Figure 9. Applying reduction FS

Lastly, the third reduction rule removes “redundant” transitions.

Reduction φφφφT Given a well-formed FCPN N=(S,T,F) where

Øt••t

transitiondependentlinearlyenonnegativTt

T

≠
∈∃
>

�

2||

then there exists a net N'=(S',T',F') such that

S'))(T'T')((S'F'F

tTT

SS

××=
=
=

��

}{\'
'

Intuitively, the transition being removed does not contribute any tokens to the net that are not already
contributed by other transitions (due to the linear dependence requirement).

This reduction removes a transition and does therefore require changes in the code associated with the
remaining transitions. Recall that conflict nodes have conditions associated with them. We can now use
these conditions to generate the new code associated with the removal of t

()()() ()()))(|,(,(,))((ttsPsGtsPts Λ•Λ=•Λ••∈∀

In other words, the remaining paths from the predecessors of t to the successor of t will have as
associated code the code from both the path and t guarded by the condition governing t.

 14

A graphical representation is given in Figure 10. Note that one more application of φA would result in an
atomic net with the associated code A,cond((B,D),(C,D)) which describes a complete cycle through the
initial net.

Figure 10. Applying reduction FT

Let us apply the above rules to the sample FFT system. We start with the PN from Figure 11 and present,
for simplicity, just the first few reduction steps to be applied to it in order to reach the atomic net. We
direct the reader to the Annex for a complete reduction. We first apply φS to remove the linearly
dependent transition highlighted in the initial net. Next we apply φS once more to remove the place
highlighted in the next net. In the third step we apply φA resulting in the removal of the highlighted place
and transition. The code associated with the removed transition is appended to the predecessor transition
of the removed place. We can continue applying the appropriate reduction rule until we arrive at the
atomic net (i.e. the last net in the chain in Figure 11). The code label associated with the remaining
transition will have accumulated a cyclic code path through the initial concurrent processes FFT system.

 15

Figure 11. Reduction of FFT example

 16

5. EXPERIMENTS
We have implemented a system that performs the PN conversion, the reduction steps and generates
pseudo-SystemC code for the extracted cycles. We then used it to restructure a few of the designs
included with the SystemC 2.0 distribution. For comparison we simulated three versions of these
systems. First we simulated the original SystemC implementation. We then simulated the generated
cycle code where SystemC ports and signals were replaced with our own “light” versions that merely
forward the values to the proper process. This was enabled by the restructuring achieved by our
transformations that obviate the need to perform signal update computations. Finally, we manually
mapped the code from the previous experiment onto threads in a dual processor machine. All
simulations were run on a dual PII 300MHz machine running Windows 2000. For single the threaded
simulations we have set process affinity to a particular processor so as to avoid any processor switching
overhead.

Table 1. Experimental results

Benchmark Original
Time

Rethreaded
Time

Multi-Rethreaded
Time

FFT 43.22 28.02 14.46

FIR 12.34 2.37 1.67

PKT_SWITCH 38.30 21.65 13.89

RISC_CPU 25.68 19.26 12.32

The columns in Table 1 represent the run times in seconds for each of the three different simulations
described above. We can see that significant simulation time improvements are obtained from both
reducing the communication bookkeeping overhead as well as from scheduling the extracted cycles as
concurrent threads on different processors.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a methodology for extracting complete cycles from code-labeled well-
formed FCPNs. This was achieved by applying a sequence of reductions from an augmented set of
reduction rules. The extracted cycles were shown to generate simulation models that had lower
simulation overhead and can also be simulated as kernel-level threads on multiprocessor machines for
added simulation improvement. Our approach is structural by design and therefore did not depend on
initial markings or needing to verify that the resulting system’s executability. We are currently
investigating heuristics to relax the well-formed requirement. We are also in the process of finalizing the
implementation of a Verilog front end that would give us access to much larger input designs for more
experimental data. Furthermore we are working on a formal proof that our transformations preserve the
simulation semantics.

 17

7. REFERENCES
[1] J. Desel, J. Esparza, “Free choice Petri Nets”, Cambridge Tracts in Theoretical Computer Science, Volume 40, Cambridge University

Press, 1995.

[2] J. Esparza, “Reduction and Synthesis of Live and Bounded Free Choice Petri Nets”, Information and Computation, 1991.

[3] J. Esparza, M. Silva, “A Polynomial-Time Algorithm to Prove Liveness of Bounded Free Choice Nets”, Theoretical Computer
Science vol. 102, 1992.

[4] P. Garg, S. Shukla, R. Gupta, “Efficient Usage of Concurrency Models in an Object-oriented Co-design Framework”. In Design
Automation and Test in Europe, Designers Forum, 2001.

[5] M. Girkar, C.D. Polychronopoulos, “The Hierarchical Task Graph as a Universal Intermediate Representation”, International Journal
of Parallel Programming, vol. 22, no. 5, October 1994.

[6] M. Hack, "Analysis of production schemata by Petri nets", M.S. Thesis, MIT, February 1972.

[7] B. Lin, “Software Synthesis of Process Based Concurrent Programs”, In Proceedings of the 35th Design Automation Conference,
1998.

[8] T. Murata, “Petri nets: Properties, Analysis and Applications”, Proceedings of IEEE, 77(4):541–580, April 1989.

[9] A.V. Kovalyov, “On Complete Reducibility of Some Classes of Petri Nets”, 11th International Conference on Application and Theory
of Petri Nets, 1990.

[10] C. A. Petri, “Communications with Automata”, Griffiths Air Force Base Technical Report RADC-TR-65-377, 1966.

[11] D. C. Schmidt, T. Suda, “The Performance of Alternative Threading Architectures for Parallel Communication Subsystems”, Journal
of Parallel and Distributed Computing, submitted 1996.

[12] N. Savoiu, S.K. Shukla, R.K. Gupta, "Efficient Simulation of Synthesis-Oriented System Level Designs", ISSS ’02, October 2002.

[13] M. Sgroi, et al., “Quasi-static Scheduling of Embedded Software Using Equal Conflict Nets”, International Conference on
Application and Theory of Petri Nets. ICATPN '99, June 1999.

[14] SystemC, http://www.systemc.org.

[15] F. Thoen, F. Catthoor, “Modeling, Verification and Exploration of Task-Level Concurrency in Real-Time Embedded Systems. Kluwer
Academic Publishers, 2000.

 18

8. ANNEX – Complete Reduction

 19

 20

 21

