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Abstract 

In a large class of embedded systems, dynamic multithreading using traditional OS 
techniques is infeasible due to memory and processing overheads or lack of operating 
systems (OS) availability for the target embedded processor. In this work, we propose a 
source-to-source translator that takes a POSIX compliant multithreaded C program as 
input and generates an equivalent, embedded processor independent, single threaded 
ANSI C program, to be compiled using the embedded processor-specific tool chain. The 
output of our tool is a highly tuned ANSI C program that embodies the application-
specific embedded scheduler and dynamic multithreading infrastructure along with the 
user code. In this work, we outline the implementation details of our source-to-source 
translator and show the feasibility of the proposed technique by comparing execution 
efficiency to approaches based on Java-VM and traditional UNIX based POSIX 
implementations. 
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1. Introduction 
Embedded software continues to play an ever increasing role in the design of complex 
embedded applications. In part, the elevated level of abstraction provided by a high-level 
programming paradigm immensely facilitates a short design cycle, fewer design errors, 
design portability, and Intellectual Property (IP) reuse. In particular, the concurrent 
programming paradigm is an ideal model of computation for design of embedded 
systems, which often encompass inherent concurrency. 

On the other hand, embedded systems often have stringent performance requirements 
(e.g., timing, energy, form-factor, etc.) and, consequently, require a carefully selected and 
performance tuned embedded processor to meet specified design constraints. In recent 
years, a plethora of highly customized embedded processors have become available. As 
an example, Tensilica [1] provides a large family of highly customized application-
specific embedded processors (a.k.a., the Xtensa). Likewise, ARM [2] and MIPS [3] 
provide several derivatives of their respective core processors, in an effort to provide 
their customers an application-specific solution. 

Such embedded processors ship with cross-compilers and the associated tool chain for 
application development. However, to support a multithreaded application development 
environment, there is a need for an operating system (OS) layer that can support thread 
creation, thread synchronization, and thread communication. 

Such OS support is seldom available for each and every variant of the base embedded 
processor. In part, this is due to the lack of system memory and/or sufficient processor 
performance (e.g., in the case of microcontrollers such as the Microchip PIC [4] and the 
Phillips 8051 [5]) coupled with the high performance penalty of having a full-fledged OS. 
Additionally, manually porting and verifying an OS to every embedded processor 
available is a high-cost job, in terms of time and money. 

Thus, there exists a gap in realizing a multithreaded application targeted at a particular 
embedded processor, as shown in Figure 1. 

In this work, we fill this gap by providing a fully automated source-to-source translator 
that takes a POSIX1 compliant multithreaded C program as input and generates an 
equivalent, embedded processor independent, single threaded ANSI C program, to be 
compiled using the embedded processor-specific tool chain. The output of our tool is a 
highly tuned ANSI C program that embodies the application-specific embedded scheduler 
and dynamic multithreading infrastructure along with the user code. 

An additional motivation for our work is in the context of hardware/software codesign. 
Specifically, given a partitioned system, our tool can be used to automatically synthesize 
the software implementing a cluster of functions F1, F2 … FN  that have been mapped to a 
particular processor Pi. 

The remainder of this work is organized as follows. In Section 2, we summarize prior 
related work. In Section 3, we outline the implementation details of our source to source 

                                                 
1 C extended with POSIX is a standardized way of providing constructs for multi-
threaded programming. 



translator. In Section 4, we give our experimental results. Finally, in Section 5, we state 
our conclusions. 

2. Related Work 
There are three categories of solutions that partially address the problem stated in this 
work, namely, a class of virtual machine (VM) based techniques, a class of template 
based OS generation techniques, and a class of static scheduling techniques. 

2.1. VM Based Techniques 

In the VM based techniques, an OS providing a multithreaded execution environment is 
implemented to run on a virtual processor. A compiler for the VM is used to map the 
application program onto the VM. The virtual processor is in turn executed on the target 
processor. Portability here is achieved by porting the VM to the desired target embedded 
processor. The advantages of this class of techniques are that the application and OS code 
do not require recompilation when moving to a different embedded processor. The 
disadvantage of this class of techniques is a significant performance penalty (i.e., speed, 
energy, and memory footprint) incurred by the VM layer, and specifically the VM 
instruction set interpreter. Moreover, the porting of the VM to the target embedded 
processor may require more than recompilation efforts. Examples of such VM based 
techniques are Java [6] and C# [7]. Research in this area tries to address the above-
mentioned disadvantages by proposing customized VM for embedded applications [8] or 
just in time (JIT) compilation techniques [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: OS gap in embedded processor based designs. 
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2.2. Template Based Techniques 

In the template-based OS generation techniques, a reference OS is used as a template in 
generating customized derivatives of the OS for particular embedded processors. This 
class of techniques mainly relies on inclusion or exclusion of OS features depending on 
application requirements and embedded processor resource availabilities. The 
disadvantage of this class of techniques is that no single generic OS template can be used 
in the variety of embedded processors available. Instead, for optimal performance, a 
rather customized OS template must be made available for each line or family of 
embedded processor. In addition, for each specific embedded processor within a line or 
family of processors, an architecture model must be provided to the generator engine.  

In one example, Gerstlauer et al. [10] have used the SpecC2 language, a system-level 
language, as an input to a refinement tool. The refinement tool partitions the SpecC input 
into application code and OS partitions. The OS partition is subsequently refined to a 
final implementation. The mechanism used in this refinement is based on matching 
needed OS functionality against a library of OS functions.  

In a similar approach, Vercauteren et al. [11] have proposed a method based on an API 
providing OS primitives to the application programmer. This OS template is used to 
realize the subset of the API that is actually used in the application program. 

Finally, Gauthier et al. [12] have proposed an environment for OS generation similar to 
the previous approaches. Here, a library of OS components that are parameterized is used 
to synthesize the target OS given a system level description of application program. 

2.3. Static Scheduling Techniques 

In the static scheduling based techniques, it is assumed that the application program 
consists of a static and a priori know set of tasks. Given this assumption, it is possible to 
compute a static execution schedule, in other words, an interleaved execution order and 
generate an equivalent monolithic program. The advantage of this class of approaches is 
that the generated program is application-specific and thus highly efficient. The 
disadvantage of this class of techniques is that dynamic multithreading is not possible. 
Our technique specifically addresses the dynamic multithreading issue. Moreover, our 
technique is orthogonal to such static scheduling. For example, the set of a priori know 
static threads can be scheduled using static scheduling while the dynamically created 
threads can be handled by a technique similar to ours. A very good general survey on 
generating sequential code for a static set of tasks is done by Edwards [13].  

In a more specific example, Lin [14] has proposed a technique that takes as input an 
extended C code that includes primitives for inter-task communication based on channels, 
as well as primitives for specifying threads and generates ANSI C code. The mechanism 
here is to model the static set of tasks using a Petri Net and generate a single threaded 
code simulating a correct execution order of the Petri Net. Similar techniques have also 
been proposed by Cortadella et al. [15][16]. 

                                                 
2 The multitasking allowed in SpecC is limited to a static and a priori known set of 
concurrent tasks. 



3. Technical Approach 
3.1. Introduction 

Input to our translator is a multithreaded program Pinput, written in C extended with 
POSIX [17]. The basic constructs provided by POSIX are functions for task creation and 
management (e.g., pthread_create , pthread_join , pthread_cancel , etc.) as 
well as a set of synchronization variables (e.g., sema_t , mutex_t , etc.).  Output of our 
system is a single-threaded strict ANSI C program Poutput that is equivalent in function to 
Pinput. More specifically, Poutput does not require any OS support and can be compiled by 
any valid ANSI C compiler into a self sufficient binary for a target embedded processor. 

To support multithreading there is a need for efficient sharing of the processor among 
multiple threads, providing synchronization mechanisms, and communication primitives. 
Sharing of the processor among threads requires preemption and, in turn, preemption 
requires a mechanism for saving/restoring thread specific information (i.e., the task 
context). In conventional approaches, multithreading is implemented within the OS. 
When a thread Ti is created, OS allocates sufficient memory for saving Ti’s context 
information (e.g., registers, function call stack, program counter, etc.). Periodically, an 
interrupt generated by the system timer invokes the OS scheduler. The scheduler saves 
the context of the currently executing task Told and restores the context of a new task Tnew 
to be executed. The OS, in turn, relies on the underlying processor for invoking the 
scheduler (i.e., via a timer interrupt), context switching (register load/store instructions), 
and synchronization (i.e., test-and-set instruction). 

In our approach, the challenge is to achieve the same at a higher level of abstraction, 
namely, by using the mechanisms provided by strict ANSI C language. In the next 
section, we give our implementation details for source-level multithreading. 

3.2. Preemption and Scheduling 

In our implementation, the basic unit of execution, scheduled by the scheduler, is called 
an atomic execution block (AEB). An AEB is a block of code that is executed in its 
entirety prior to scheduling the next AEB. A thread Ti is partitioned into an AEB graph 
whose nodes are AEBs and edges represent control flow. For example, in Figure 2 the 
AEB graph of thread gcd is composed of nodes N0, N1, N2, and N3. Within an AEB graph, 
each node is implemented as an ANSI C function whose return value encodes a pointer to 
the next node in that graph. For example in Figure 2, lines 32-58, the function n1  
corresponds to node N1 and returns a pointer to n2  or n3 , representing nodes N2 or N3 
depending on the runtime behavior of the program. We note that in our implementation, 
the partitioning is performed on the basic block intermediate representation of the input 
source program. Moreover, we note that an AEB node may be composed of one or more 
basic blocks. We return to the topic of partitioning and its implications on the runtime 
behavior in a later section. 

During runtime, we maintain the following context information for each thread that has 
been created: memory to store the intermediate variables computed by a partially 
executed thread called live (this is accomplished by performing a live variable analysis 
during the partitioning of the program into AEB nodes) and a pointer to the next AEB 



node that is to be executed some time in the future, called next, as shown in Figure 2, 
lines 4-7. 

When a thread is created, the above context for it is allocated, the next field is initialized 
to the entry AEB of the thread, and the thread context is pushed onto a queue of existing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Source-level multithreading. 

int x, y, r; 
void gcd() { 
  int a = x; 
  int b = y; 
  while( a != b ) 
    if( a < b ) 
      b -= a; 
    else 
      a -= b; 
  r = a; 
} 
int main() { 
  x = 111; 
  y = 23; 
  pthread_create(gcd…); 
  return 0; 
} 

gcd 

main 

N5 

N4 

00: #define STORE(x, y)    x->live.push(“y”, y) 
01: #define RESTORE(x, y)  y = x->live.pop(“y”) 
02: enum id_t { MAIN, GCD }; 
03: ptr2f entry[] = { N4, N0 }; 
04: struct thread_t { 
05:   hash_t live;  
06:   ptr2f next; 
07: }; 
08: queue_t queue; 
09: void create(id_t i) { 
10:   thread_t *t = malloc(sizeof(thread_t)); 
11:   t->next = entry[i]; 
12:   queue.push(t); 
13: } 
14: int main() { 
15:   thread_t *curr; 
16:   create(MAIN);        /* main always created * / 
17:   while( !queue.empty() ) { 
18:     curr = queue.top(); 
19:     curr->next = curr->next(curr);  
20:     if( curr->next == 0 ) 
21:       queue.remove(curr); 
22:   } 
23:   return 0; 
24: } 

25: int x, y, r; 
26: ptr2f n0(thread_t*t) { 
27:   int a = x, b = y; 
28:   STORE(t, a); 
29:   STORE(t, b); 
30:   return n1; 
31: } 
32: ptr2f n1(thread_t*t) { 
33:   int a, b; 
34:   RESTORE(t, a); 
35:   RESTORE(t, b); 
36:   if( a != b ) 
37:     return n2; 
38:   else 
39:     return n3; 
40: } 
41: ptr2f n2(thread_t*t) { 
42:   int a, b; 
43:   RESTORE(t, a); 
44:   RESTORE(t, b); 
45:   if( a < b ) 
46:     b -= a; 
47:   else 
48:     a -= b;  
49:   STORE(t, a); 
50:   STORE(t, b); 
51:   return n1; 
52: } 

53: ptr2f n3(thread_t*t) {  
54:   int a; 
55:   RESTORE(t, a); 
56:   r = a; 
57:   return 0; 
58: } 
59: ptr2f n4(thread_t*t) {  
60:   x = 111; 
61:   y = 23; 
62:   create(GCD); 
63:   return n5; 
64: } 
65: ptr2f n5(thread_t*t) {  
66:   return 0; 
67: } 

N2 

N3 

N1 

N0 



threads, called queue, to be processed by the embedded scheduler, as shown in Figure 2, 
lines 8-13. 

The embedded scheduler is responsible for selecting and executing the next thread as 
shown in Figure 2, lines 14-22. The embedded scheduler always creates the main thread, 
corresponding to the main  function of the input C program. Then, as long as the queue 
of existing threads is not empty, the scheduler selects the thread with the highest priority 
Ti, or in the case of a priority tie, the one with the next highest identifier. The next AEB 
pointer of Ti, pointing to fi, is used to resume the execution of Ti by making a function 
call to fi. The return value of fi is in turn used to update the next AEB of Ti. A return value 
of zero indicates that Ti has reached its termination point, and thus is removed from the 
queue of existing threads. The scheduling algorithm here is a priority based scheme, as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Semaphore synchronization primitive implementation. 

00: struct semaphore_t { 
01:   int value; 
02:   queue_t waiting; 
03: }; 
04: ptr2f wait(thread_t *t, semaphore_t *s) { 
05:   if( s->value == 0 ) { 
06:     s->waiting.push(t); 
07:     t->status = BLOCKED; 
08:     return t->curr; 
09:   } 
10:   value--; 
11:   return t->next 
12: } 
13: ptr2f signal(thread_t *t, semaphore_t *s) { 
14:   s->value++; 
15:   while( !s->waiting.empty() ) 
16:     (s->waiting.pop())->status = RUNNABLE; 
17:   return t->next; 
18: } 

semaphore_t s1, s2; 
 
void producer() { 
  … /* region 1 */ 
  s1.wait(); 
  … /* region 2 */ 
} 
 
void consumer() { 
  … /* region 3 */ 
  s2.wait(); 
  … /* region 4 */ 
} 

Nwait 

 

AEB’s of 
region 1 

 

(a) 

(b) 

AEB’s of 
region 2 

 

AEB’s of 
region 3 

 AEB’s of 
region 4 

 



defined by the POSIX. The way priorities are assigned to threads, as they are created, can 
enforce alternate scheduling schemes, such as round-robin, in the case of all threads 
having equal priority, or earliest deadline first (EDF), in the case of threads having 
priority equal to the inverse of their deadline, priority inversion, and so on. 

3.3. Synchronization 

We implement the basic semaphore (sema_t  in POSIX) synchronization primitive, 
upon which any other synchronization construct can be built. A semaphore is an integer 
variable with two operations, wait and signal (sema_wait  and sema_post  in 
POSIX). A thread Ti calling wait on a semaphore S will be blocked if the S’s integer 
value is zero. Otherwise, S’s integer value is decremented and Ti is allowed to continue. 
Ti calling signal on S will increment S’s integer value and unblock any thread that is 
currently blocked waiting on S. 

To implement semaphores, we add to a thread Ti’s context two additional fields called 
status and current. Status is one of blocked or runnable and is set appropriately when a 
thread is blocked waiting on a semaphore. The current field of a thread is similar to the 
next field (see Figure 2, line 6) but at any given time points to the current AEB that is 
being executed. A thread is always partitioned into AEBs when semaphore wait or signal 
operations are encountered. In other words, the semaphore wait and signal primitives 
always reside in their own AEBs, as shown in Figure 3(a).  Moreover, these special AEBs 
are shared nodes connecting AEB graphs of multiple threads. 

We implement a semaphore as a data structure with an integer field and a queue of 
waiting threads, as shown in Figure 3(b), lines 0-3. A wait operation on a semaphore S 
checks the value of S and, if zero, blocks the calling thread Ti by setting Ti’s status to 
blocked, adds Ti to S’s queue of waiting threads, and returns control to the embedded 
scheduler. However, instead of returning a pointer to the next AEB of Ti, it returns a 
pointer to the current AEB of Ti (i.e., the one containing the semaphore wait or signal 
call) so that when Ti is unblocked, S’s variable is rechecked. If S’s value is nonzero, it is 
decremented and control is returned to the embedded scheduler with a pointer to the next 
AEB of Ti, following the wait operation. A signal operation on S increments the value of 
S, unblocks all the threads in the waiting queue of S, and returns control to the embedded 
scheduler with a pointer to the next AEB of Ti, following the signal operation. 

3.4. Partitioning 

As described earlier, the partitioning of the code into AEB graphs is the key to 
implementing multithreading at a high-level of abstraction. Recall that boundaries of 
AEB represent the points where threads might be preempted or resumed for execution. 
Some partitions are unavoidable and must be performed for correctness, specifically, 
when a thread invokes a synchronization operation, or when a thread creates another 
thread. In the case when a thread invokes a synchronization operation and thus is 
blocked, the embedded scheduler must regain and transfer control to one of runnable 
threads. Likewise, when a thread creates another, possibly higher priority, thread, the 
embedded scheduler must regain and possibly transfer control to the new thread in 
accordance with the priority based scheduling technique. However, partitioning beyond 
what is needed for correctness, impacts timing issues as described next. 



In general, partitioning will determine the granularity level of the scheduling (i.e., the 
time quantum), as well as the thread latency. A good partitioning of the threads into 
AEBs would be one where all AEBs have approximately the same average case 
execution time µ and a relatively low deviation λ from the average, which can be 
computed if the average case execution time of each AEB is known. Note that the 
average case execution time Wi of an AEB Ni is defined as the time taken to execute the 
code Ci in Ni plus the time taken to store and restore all live variables Vi at the entry and 
exit of Ni. Moreover, an estimate of Vi can be obtained by performing a live variable 
analysis. An estimate of Ci can be obtained by static profiling. In an iterative approach, 
our partitioning heuristic refines an existing partition and evaluates the average case 
execution times until an acceptable partition is discovered. 

3.5. Interrupts 

Preempting an AEB when an interrupt occurs would break the principle that every AEB 
executes until completion without preemption. Instead, the code for an interrupt service 
routine I is treated as a thread. On an interrupt destined for I, a corresponding thread is 
created, having a priority higher than all existing threads. Note that if multiple interrupts 
destined for I occur, multiple threads will be created and scheduled for execution. This is 
a uniform and powerful mechanism for handling interrupts in a multithreaded 
environment. However, the latency for handling the interrupt will depend on the average 
execution time of the AEBs, which in turn depends on the partitioning scheme used, as 
described in the previous section. 

4. Experiments 
Our experimental flow is depicted in Figure 4. The multithreaded C extended with 
POSIX application is compiled with a generic front-end compiler to obtain the basic 
block (BB) control flow graph (CFG) representation.  This intermediate representation 
along with an annotated (i.e., identified POSIX primitives) version of the input source 
application, is used by the partitioning module to generate the AEB graphs. Then, a live 
variable analysis is performed on the AEB graphs and the result is fed back to the 
partitioning module to refine the partitions until acceptable preemption timing and 
latency is achieved. The resulting AEB graphs are then passed to the code generator to 
output the corresponding ANSI C functions for each AEB node. In addition, the 
embedded scheduler along with other C data structures and synchronization APIs is 
included from the generic C structures library. 

The above experimental flow has been successfully applied to two classical concurrent 
problems, the consumer-producer problem and the dining philosophers problem. We 
have compared the performance of the generated output with two other implementations 
of the same problems. One of the implementations has been done in C with POSIX 
threads, using the Solaris POSIX libraries (i.e., an OS based approach), and the other has 
been implemented in Java (i.e., a VM based approach). Our results are presented in 
Figure 5. 



In our results, the OS based approach has a slightly better performance, in terms of 
execution time, due to fewer context switches, given the default time quantum of the 
underlying preemption scheme. As expected, the VM based approach has worse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Experimental setup. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Experimental results. 

C/POSIX 
Application 

Generic 
Front-End 
Compiler 

Partitioning 
Module 

Live Variable 
Analyzer 

POSIX Calls 
Identifier 

Code Generation 

ANSI C Single-threaded Application 

BB 
CFG 

AEB 
Graphs 

Generic C 
Structures 

0 

5 

10 

15 

20 

25 

Consumer/Producer Dining Philosophers 

UNIX POSIX 

Our Approach 

Java VM 

Time (sec) 



performance in terms of execution time due to the overhead of interpreted VM code. 

Among all experiments, the size of the binary executable of our scheme is 35KB 
(consumer-producer) and 37KB (dining philosophers), the size of the binary executable 
of the OS based scheme is 24KB (consumer-producer) and 26KB (dining philosophers), 
and the size of the byte code in the VM based scheme is 6KB (consumer-producer) and 
3KB (dining philosophers). Moreover, we point out that our binary executable is a self 
sufficient executable which does not require any additional API or OS support. In the 
case of the OS based scheme, the OS footprint must also be considered. Likewise, in the 
case of the VM based technique, the VM layer footprint must also be considered. We 
note that binaries were generated by using gcc version 3.2 or javac version 1.4.1 for the 
Sun Solaris OS version 8.0. 

5. Conclusions 
We have presented a scheme for source-to-source translation of a multithreaded 
application written in C extended with POSIX into a single-threaded ANSI C program 
which can be compiled using a standard C cross-compiler for any target embedded 
processor. While compiler tool chains are commonly available for any of the large 
number of customized embedded processors, the same is not true for operating systems, 
which traditionally provides the primitives for multithreading at the application level. Our 
source-to-source translator fills this missing OS gap by automatically generating a 
platform independent C program that encapsulates multithreading support customized for 
the input application. 

Our future direction is to explore more efficient source-to-source translation schemes that 
can take advantage of abstract architecture description models and application profiling 
information. Specifically, our partitioning algorithm can benefit from knowledge of the 
underlying target embedded processor combined with profiling information in better 
estimating the execution time of an AEB as depicted in Figure 6. In addition, extension 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Future design flow. 
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for soft and firm real-time systems can also be implemented which attempt at providing 
more stringent and deterministic timing behavior. 
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