
 POSIX-Compliant Portable Code Synthesis for Embedded
Systems

Andre Costi Nacul, Siddharth Choudhuri, and Tony Givargis
Department of Computer Science
University of California, Irvine

Center for Embedded Computer Systems
{nacul, sid, givargis}@ics.uci.edu

Technical Report #03-36

November 25, 2003.

Abstract

In a large class of embedded systems, dynamic multithreading using traditional OS
techniques is infeasible due to memory and processing overheads or lack of operating
systems (OS) availability for the target embedded processor. In this work, we propose a
source-to-source translator that takes a POSIX compliant multithreaded C program as
input and generates an equivalent, embedded processor independent, single threaded
ANSI C program, to be compiled using the embedded processor-specific tool chain. The
output of our tool is a highly tuned ANSI C program that embodies the application-
specific embedded scheduler and dynamic multithreading infrastructure along with the
user code. In this work, we outline the implementation details of our source-to-source
translator and show the feasibility of the proposed technique by comparing execution
efficiency to approaches based on Java-VM and traditional UNIX based POSIX
implementations.

Keywords
Dynamic multithreading, embedded scheduler, code generation, multitasking, scheduling,
serializing compilers, software synthesis

Table of Contents
1. INTRODUCTION... 3

2. RELATED WORK ... 4

2.1. VM BASED TECHNIQUES.. 4
2.2. TEMPLATE BASED TECHNIQUES... 5
2.3. STATIC SCHEDULING TECHNIQUES... 5

3. TECHNICAL APPROACH ... 6

3.1. INTRODUCTION... 6
3.2. PREEMPTION AND SCHEDULING.. 6
3.3. SYNCHRONIZATION .. 9
3.4. PARTITIONING .. 9
3.5. INTERRUPTS.. 10

4. EXPERIMENTS.. 10

5. CONCLUSIONS.. 12

6. REFERENCES .. 13

1. Introduction
Embedded software continues to play an ever increasing role in the design of complex
embedded applications. In part, the elevated level of abstraction provided by a high-level
programming paradigm immensely facilitates a short design cycle, fewer design errors,
design portability, and Intellectual Property (IP) reuse. In particular, the concurrent
programming paradigm is an ideal model of computation for design of embedded
systems, which often encompass inherent concurrency.

On the other hand, embedded systems often have stringent performance requirements
(e.g., timing, energy, form-factor, etc.) and, consequently, require a carefully selected and
performance tuned embedded processor to meet specified design constraints. In recent
years, a plethora of highly customized embedded processors have become available. As
an example, Tensilica [1] provides a large family of highly customized application-
specific embedded processors (a.k.a., the Xtensa). Likewise, ARM [2] and MIPS [3]
provide several derivatives of their respective core processors, in an effort to provide
their customers an application-specific solution.

Such embedded processors ship with cross-compilers and the associated tool chain for
application development. However, to support a multithreaded application development
environment, there is a need for an operating system (OS) layer that can support thread
creation, thread synchronization, and thread communication.

Such OS support is seldom available for each and every variant of the base embedded
processor. In part, this is due to the lack of system memory and/or sufficient processor
performance (e.g., in the case of microcontrollers such as the Microchip PIC [4] and the
Phillips 8051 [5]) coupled with the high performance penalty of having a full-fledged OS.
Additionally, manually porting and verifying an OS to every embedded processor
available is a high-cost job, in terms of time and money.

Thus, there exists a gap in realizing a multithreaded application targeted at a particular
embedded processor, as shown in Figure 1.

In this work, we fill this gap by providing a fully automated source-to-source translator
that takes a POSIX1 compliant multithreaded C program as input and generates an
equivalent, embedded processor independent, single threaded ANSI C program, to be
compiled using the embedded processor-specific tool chain. The output of our tool is a
highly tuned ANSI C program that embodies the application-specific embedded scheduler
and dynamic multithreading infrastructure along with the user code.

An additional motivation for our work is in the context of hardware/software codesign.
Specifically, given a partitioned system, our tool can be used to automatically synthesize
the software implementing a cluster of functions F1, F2 … FN that have been mapped to a
particular processor Pi.

The remainder of this work is organized as follows. In Section 2, we summarize prior
related work. In Section 3, we outline the implementation details of our source to source

1 C extended with POSIX is a standardized way of providing constructs for multi-
threaded programming.

translator. In Section 4, we give our experimental results. Finally, in Section 5, we state
our conclusions.

2. Related Work
There are three categories of solutions that partially address the problem stated in this
work, namely, a class of virtual machine (VM) based techniques, a class of template
based OS generation techniques, and a class of static scheduling techniques.

2.1. VM Based Techniques

In the VM based techniques, an OS providing a multithreaded execution environment is
implemented to run on a virtual processor. A compiler for the VM is used to map the
application program onto the VM. The virtual processor is in turn executed on the target
processor. Portability here is achieved by porting the VM to the desired target embedded
processor. The advantages of this class of techniques are that the application and OS code
do not require recompilation when moving to a different embedded processor. The
disadvantage of this class of techniques is a significant performance penalty (i.e., speed,
energy, and memory footprint) incurred by the VM layer, and specifically the VM
instruction set interpreter. Moreover, the porting of the VM to the target embedded
processor may require more than recompilation efforts. Examples of such VM based
techniques are Java [6] and C# [7]. Research in this area tries to address the above-
mentioned disadvantages by proposing customized VM for embedded applications [8] or
just in time (JIT) compilation techniques [9].

Figure 1: OS gap in embedded processor based designs.

O
S

 G
ap

A

va
ila

b
le

 f
ro

m

P
ro

ce
ss

o
r

V
en

d
o

r

High-level Programming Paradigm

Embedded
Processor B

Embedded
Processor C

Embedded
Processor A

Cross
Compiler A

Cross
Compiler C

ANSI C Single-threaded Application

C/POSIX Multithreaded Application

Cross
Compiler B

2.2. Template Based Techniques

In the template-based OS generation techniques, a reference OS is used as a template in
generating customized derivatives of the OS for particular embedded processors. This
class of techniques mainly relies on inclusion or exclusion of OS features depending on
application requirements and embedded processor resource availabilities. The
disadvantage of this class of techniques is that no single generic OS template can be used
in the variety of embedded processors available. Instead, for optimal performance, a
rather customized OS template must be made available for each line or family of
embedded processor. In addition, for each specific embedded processor within a line or
family of processors, an architecture model must be provided to the generator engine.

In one example, Gerstlauer et al. [10] have used the SpecC2 language, a system-level
language, as an input to a refinement tool. The refinement tool partitions the SpecC input
into application code and OS partitions. The OS partition is subsequently refined to a
final implementation. The mechanism used in this refinement is based on matching
needed OS functionality against a library of OS functions.

In a similar approach, Vercauteren et al. [11] have proposed a method based on an API
providing OS primitives to the application programmer. This OS template is used to
realize the subset of the API that is actually used in the application program.

Finally, Gauthier et al. [12] have proposed an environment for OS generation similar to
the previous approaches. Here, a library of OS components that are parameterized is used
to synthesize the target OS given a system level description of application program.

2.3. Static Scheduling Techniques

In the static scheduling based techniques, it is assumed that the application program
consists of a static and a priori know set of tasks. Given this assumption, it is possible to
compute a static execution schedule, in other words, an interleaved execution order and
generate an equivalent monolithic program. The advantage of this class of approaches is
that the generated program is application-specific and thus highly efficient. The
disadvantage of this class of techniques is that dynamic multithreading is not possible.
Our technique specifically addresses the dynamic multithreading issue. Moreover, our
technique is orthogonal to such static scheduling. For example, the set of a priori know
static threads can be scheduled using static scheduling while the dynamically created
threads can be handled by a technique similar to ours. A very good general survey on
generating sequential code for a static set of tasks is done by Edwards [13].

In a more specific example, Lin [14] has proposed a technique that takes as input an
extended C code that includes primitives for inter-task communication based on channels,
as well as primitives for specifying threads and generates ANSI C code. The mechanism
here is to model the static set of tasks using a Petri Net and generate a single threaded
code simulating a correct execution order of the Petri Net. Similar techniques have also
been proposed by Cortadella et al. [15][16].

2 The multitasking allowed in SpecC is limited to a static and a priori known set of
concurrent tasks.

3. Technical Approach
3.1. Introduction

Input to our translator is a multithreaded program Pinput, written in C extended with
POSIX [17]. The basic constructs provided by POSIX are functions for task creation and
management (e.g., pthread_create , pthread_join , pthread_cancel , etc.) as
well as a set of synchronization variables (e.g., sema_t , mutex_t , etc.). Output of our
system is a single-threaded strict ANSI C program Poutput that is equivalent in function to
Pinput. More specifically, Poutput does not require any OS support and can be compiled by
any valid ANSI C compiler into a self sufficient binary for a target embedded processor.

To support multithreading there is a need for efficient sharing of the processor among
multiple threads, providing synchronization mechanisms, and communication primitives.
Sharing of the processor among threads requires preemption and, in turn, preemption
requires a mechanism for saving/restoring thread specific information (i.e., the task
context). In conventional approaches, multithreading is implemented within the OS.
When a thread Ti is created, OS allocates sufficient memory for saving Ti’s context
information (e.g., registers, function call stack, program counter, etc.). Periodically, an
interrupt generated by the system timer invokes the OS scheduler. The scheduler saves
the context of the currently executing task Told and restores the context of a new task Tnew
to be executed. The OS, in turn, relies on the underlying processor for invoking the
scheduler (i.e., via a timer interrupt), context switching (register load/store instructions),
and synchronization (i.e., test-and-set instruction).

In our approach, the challenge is to achieve the same at a higher level of abstraction,
namely, by using the mechanisms provided by strict ANSI C language. In the next
section, we give our implementation details for source-level multithreading.

3.2. Preemption and Scheduling

In our implementation, the basic unit of execution, scheduled by the scheduler, is called
an atomic execution block (AEB). An AEB is a block of code that is executed in its
entirety prior to scheduling the next AEB. A thread Ti is partitioned into an AEB graph
whose nodes are AEBs and edges represent control flow. For example, in Figure 2 the
AEB graph of thread gcd is composed of nodes N0, N1, N2, and N3. Within an AEB graph,
each node is implemented as an ANSI C function whose return value encodes a pointer to
the next node in that graph. For example in Figure 2, lines 32-58, the function n1
corresponds to node N1 and returns a pointer to n2 or n3 , representing nodes N2 or N3
depending on the runtime behavior of the program. We note that in our implementation,
the partitioning is performed on the basic block intermediate representation of the input
source program. Moreover, we note that an AEB node may be composed of one or more
basic blocks. We return to the topic of partitioning and its implications on the runtime
behavior in a later section.

During runtime, we maintain the following context information for each thread that has
been created: memory to store the intermediate variables computed by a partially
executed thread called live (this is accomplished by performing a live variable analysis
during the partitioning of the program into AEB nodes) and a pointer to the next AEB

node that is to be executed some time in the future, called next, as shown in Figure 2,
lines 4-7.

When a thread is created, the above context for it is allocated, the next field is initialized
to the entry AEB of the thread, and the thread context is pushed onto a queue of existing

Figure 2: Source-level multithreading.

int x, y, r;
void gcd() {
 int a = x;
 int b = y;
 while(a != b)
 if(a < b)
 b -= a;
 else
 a -= b;
 r = a;
}
int main() {
 x = 111;
 y = 23;
 pthread_create(gcd…);
 return 0;
}

gcd

main

N5

N4

00: #define STORE(x, y) x->live.push(“y”, y)
01: #define RESTORE(x, y) y = x->live.pop(“y”)
02: enum id_t { MAIN, GCD };
03: ptr2f entry[] = { N4, N0 };
04: struct thread_t {
05: hash_t live;
06: ptr2f next;
07: };
08: queue_t queue;
09: void create(id_t i) {
10: thread_t *t = malloc(sizeof(thread_t));
11: t->next = entry[i];
12: queue.push(t);
13: }
14: int main() {
15: thread_t *curr;
16: create(MAIN); /* main always created * /
17: while(!queue.empty()) {
18: curr = queue.top();
19: curr->next = curr->next(curr);
20: if(curr->next == 0)
21: queue.remove(curr);
22: }
23: return 0;
24: }

25: int x, y, r;
26: ptr2f n0(thread_t*t) {
27: int a = x, b = y;
28: STORE(t, a);
29: STORE(t, b);
30: return n1;
31: }
32: ptr2f n1(thread_t*t) {
33: int a, b;
34: RESTORE(t, a);
35: RESTORE(t, b);
36: if(a != b)
37: return n2;
38: else
39: return n3;
40: }
41: ptr2f n2(thread_t*t) {
42: int a, b;
43: RESTORE(t, a);
44: RESTORE(t, b);
45: if(a < b)
46: b -= a;
47: else
48: a -= b;
49: STORE(t, a);
50: STORE(t, b);
51: return n1;
52: }

53: ptr2f n3(thread_t*t) {
54: int a;
55: RESTORE(t, a);
56: r = a;
57: return 0;
58: }
59: ptr2f n4(thread_t*t) {
60: x = 111;
61: y = 23;
62: create(GCD);
63: return n5;
64: }
65: ptr2f n5(thread_t*t) {
66: return 0;
67: }

N2

N3

N1

N0

threads, called queue, to be processed by the embedded scheduler, as shown in Figure 2,
lines 8-13.

The embedded scheduler is responsible for selecting and executing the next thread as
shown in Figure 2, lines 14-22. The embedded scheduler always creates the main thread,
corresponding to the main function of the input C program. Then, as long as the queue
of existing threads is not empty, the scheduler selects the thread with the highest priority
Ti, or in the case of a priority tie, the one with the next highest identifier. The next AEB
pointer of Ti, pointing to fi, is used to resume the execution of Ti by making a function
call to fi. The return value of fi is in turn used to update the next AEB of Ti. A return value
of zero indicates that Ti has reached its termination point, and thus is removed from the
queue of existing threads. The scheduling algorithm here is a priority based scheme, as

Figure 3: Semaphore synchronization primitive implementation.

00: struct semaphore_t {
01: int value;
02: queue_t waiting;
03: };
04: ptr2f wait(thread_t *t, semaphore_t *s) {
05: if(s->value == 0) {
06: s->waiting.push(t);
07: t->status = BLOCKED;
08: return t->curr;
09: }
10: value--;
11: return t->next
12: }
13: ptr2f signal(thread_t *t, semaphore_t *s) {
14: s->value++;
15: while(!s->waiting.empty())
16: (s->waiting.pop())->status = RUNNABLE;
17: return t->next;
18: }

semaphore_t s1, s2;

void producer() {
 … /* region 1 */
 s1.wait();
 … /* region 2 */
}

void consumer() {
 … /* region 3 */
 s2.wait();
 … /* region 4 */
}

Nwait

AEB’s of
region 1

(a)

(b)

AEB’s of
region 2

AEB’s of
region 3

 AEB’s of
region 4

defined by the POSIX. The way priorities are assigned to threads, as they are created, can
enforce alternate scheduling schemes, such as round-robin, in the case of all threads
having equal priority, or earliest deadline first (EDF), in the case of threads having
priority equal to the inverse of their deadline, priority inversion, and so on.

3.3. Synchronization

We implement the basic semaphore (sema_t in POSIX) synchronization primitive,
upon which any other synchronization construct can be built. A semaphore is an integer
variable with two operations, wait and signal (sema_wait and sema_post in
POSIX). A thread Ti calling wait on a semaphore S will be blocked if the S’s integer
value is zero. Otherwise, S’s integer value is decremented and Ti is allowed to continue.
Ti calling signal on S will increment S’s integer value and unblock any thread that is
currently blocked waiting on S.

To implement semaphores, we add to a thread Ti’s context two additional fields called
status and current. Status is one of blocked or runnable and is set appropriately when a
thread is blocked waiting on a semaphore. The current field of a thread is similar to the
next field (see Figure 2, line 6) but at any given time points to the current AEB that is
being executed. A thread is always partitioned into AEBs when semaphore wait or signal
operations are encountered. In other words, the semaphore wait and signal primitives
always reside in their own AEBs, as shown in Figure 3(a). Moreover, these special AEBs
are shared nodes connecting AEB graphs of multiple threads.

We implement a semaphore as a data structure with an integer field and a queue of
waiting threads, as shown in Figure 3(b), lines 0-3. A wait operation on a semaphore S
checks the value of S and, if zero, blocks the calling thread Ti by setting Ti’s status to
blocked, adds Ti to S’s queue of waiting threads, and returns control to the embedded
scheduler. However, instead of returning a pointer to the next AEB of Ti, it returns a
pointer to the current AEB of Ti (i.e., the one containing the semaphore wait or signal
call) so that when Ti is unblocked, S’s variable is rechecked. If S’s value is nonzero, it is
decremented and control is returned to the embedded scheduler with a pointer to the next
AEB of Ti, following the wait operation. A signal operation on S increments the value of
S, unblocks all the threads in the waiting queue of S, and returns control to the embedded
scheduler with a pointer to the next AEB of Ti, following the signal operation.

3.4. Partitioning

As described earlier, the partitioning of the code into AEB graphs is the key to
implementing multithreading at a high-level of abstraction. Recall that boundaries of
AEB represent the points where threads might be preempted or resumed for execution.
Some partitions are unavoidable and must be performed for correctness, specifically,
when a thread invokes a synchronization operation, or when a thread creates another
thread. In the case when a thread invokes a synchronization operation and thus is
blocked, the embedded scheduler must regain and transfer control to one of runnable
threads. Likewise, when a thread creates another, possibly higher priority, thread, the
embedded scheduler must regain and possibly transfer control to the new thread in
accordance with the priority based scheduling technique. However, partitioning beyond
what is needed for correctness, impacts timing issues as described next.

In general, partitioning will determine the granularity level of the scheduling (i.e., the
time quantum), as well as the thread latency. A good partitioning of the threads into
AEBs would be one where all AEBs have approximately the same average case
execution time µ and a relatively low deviation λ from the average, which can be
computed if the average case execution time of each AEB is known. Note that the
average case execution time Wi of an AEB Ni is defined as the time taken to execute the
code Ci in Ni plus the time taken to store and restore all live variables Vi at the entry and
exit of Ni. Moreover, an estimate of Vi can be obtained by performing a live variable
analysis. An estimate of Ci can be obtained by static profiling. In an iterative approach,
our partitioning heuristic refines an existing partition and evaluates the average case
execution times until an acceptable partition is discovered.

3.5. Interrupts

Preempting an AEB when an interrupt occurs would break the principle that every AEB
executes until completion without preemption. Instead, the code for an interrupt service
routine I is treated as a thread. On an interrupt destined for I, a corresponding thread is
created, having a priority higher than all existing threads. Note that if multiple interrupts
destined for I occur, multiple threads will be created and scheduled for execution. This is
a uniform and powerful mechanism for handling interrupts in a multithreaded
environment. However, the latency for handling the interrupt will depend on the average
execution time of the AEBs, which in turn depends on the partitioning scheme used, as
described in the previous section.

4. Experiments
Our experimental flow is depicted in Figure 4. The multithreaded C extended with
POSIX application is compiled with a generic front-end compiler to obtain the basic
block (BB) control flow graph (CFG) representation. This intermediate representation
along with an annotated (i.e., identified POSIX primitives) version of the input source
application, is used by the partitioning module to generate the AEB graphs. Then, a live
variable analysis is performed on the AEB graphs and the result is fed back to the
partitioning module to refine the partitions until acceptable preemption timing and
latency is achieved. The resulting AEB graphs are then passed to the code generator to
output the corresponding ANSI C functions for each AEB node. In addition, the
embedded scheduler along with other C data structures and synchronization APIs is
included from the generic C structures library.

The above experimental flow has been successfully applied to two classical concurrent
problems, the consumer-producer problem and the dining philosophers problem. We
have compared the performance of the generated output with two other implementations
of the same problems. One of the implementations has been done in C with POSIX
threads, using the Solaris POSIX libraries (i.e., an OS based approach), and the other has
been implemented in Java (i.e., a VM based approach). Our results are presented in
Figure 5.

In our results, the OS based approach has a slightly better performance, in terms of
execution time, due to fewer context switches, given the default time quantum of the
underlying preemption scheme. As expected, the VM based approach has worse

Figure 4: Experimental setup.

Figure 5: Experimental results.

C/POSIX
Application

Generic
Front-End
Compiler

Partitioning
Module

Live Variable
Analyzer

POSIX Calls
Identifier

Code Generation

ANSI C Single-threaded Application

BB
CFG

AEB
Graphs

Generic C
Structures

0

5

10

15

20

25

Consumer/Producer Dining Philosophers

UNIX POSIX

Our Approach

Java VM

Time (sec)

performance in terms of execution time due to the overhead of interpreted VM code.

Among all experiments, the size of the binary executable of our scheme is 35KB
(consumer-producer) and 37KB (dining philosophers), the size of the binary executable
of the OS based scheme is 24KB (consumer-producer) and 26KB (dining philosophers),
and the size of the byte code in the VM based scheme is 6KB (consumer-producer) and
3KB (dining philosophers). Moreover, we point out that our binary executable is a self
sufficient executable which does not require any additional API or OS support. In the
case of the OS based scheme, the OS footprint must also be considered. Likewise, in the
case of the VM based technique, the VM layer footprint must also be considered. We
note that binaries were generated by using gcc version 3.2 or javac version 1.4.1 for the
Sun Solaris OS version 8.0.

5. Conclusions
We have presented a scheme for source-to-source translation of a multithreaded
application written in C extended with POSIX into a single-threaded ANSI C program
which can be compiled using a standard C cross-compiler for any target embedded
processor. While compiler tool chains are commonly available for any of the large
number of customized embedded processors, the same is not true for operating systems,
which traditionally provides the primitives for multithreading at the application level. Our
source-to-source translator fills this missing OS gap by automatically generating a
platform independent C program that encapsulates multithreading support customized for
the input application.

Our future direction is to explore more efficient source-to-source translation schemes that
can take advantage of abstract architecture description models and application profiling
information. Specifically, our partitioning algorithm can benefit from knowledge of the
underlying target embedded processor combined with profiling information in better
estimating the execution time of an AEB as depicted in Figure 6. In addition, extension

Figure 6: Future design flow.

Source-to-source
Translation

Standard
Compiling Tools Binary

C/POSIX
Application

ANSI C
Application

Platform
Models

Profiling
Information

for soft and firm real-time systems can also be implemented which attempt at providing
more stringent and deterministic timing behavior.

6. Acknowledgments
This work was supported in part by a National Science Foundation Award (#0205712)
and by a CAPES Foundation, Brazil scholarship (#1054015).

7. References
[1] Tensilica Inc. www.tensilica.com.

[2] ARM Inc. www.arm.com.

[3] MIPS Inc. www.mips.com.

[4] Microchip Inc. www.microchip.com.

[5] Philips Inc. www.philips.com.

[6] J Gosling, B. Joy, G. Steele. The Java Language Specification. Addison-Wesley, 1996.

[7] Microsoft Corporation. The C# 2.0 Specification. Available at http://msdn.microsoft.com/vcsharp.
July 2003.

[8] V.C. de Verdiere, S. Cros, C. Fabre, R. Guider, S. Yovine. Speedup Prediction for Selective
Compilation of Embedded Java Programs. Proceedings of EMSOFT, October 2002.

[9] J. Aycock. A Brief History of Just-In-Time. In ACM Computing Surveys, v. 35, n. 2, June 2003. pp
97-113.

[10] Gerstlauer, H. Yu, D. Gajski. RTOS Modeling for System Level Design. Proceedings of DATE,
March 2003.

[11] S. Vercauteren, B. Lin, H. De Man. A Strategy for Real-Time Kernel Support in Application-Specific
HW/SW Embedded Architectures. Proceedings of DAC, 1996.

[12] L. Gauthier, S. Yoo, A. Jerraya. Automatic Generation and Targeting of Application-Specific
Operating Systems and Embedded Systems Software. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems. v. 20, n. 11, November 2001, pp 1293-1301.

[13] S. Edwards. Tutorial: Compiling Concurrent Languages for Sequential Processors. ACM Transactions
on Design Automation of Electronic Systems, v.8, n.2, April 2003, pp 141-187.

[14] B. Lin. Efficient Compilation of Process-Based Concurrent Programs without Run-Time Scheduling.
Proceedings of DATE, February 1998.

[15] J. Cortadella et. al. Task Generation and Compile-Time Scheduling for Mixed Data-Control
Embedded Software. Proceedings of DAC 2000.

[16] J. Cortadella et. al. Quasi-static scheduling of independent tasks for reactive systems. Lecture Notes in
Computer Science, June 2002.

[17] POSIX Open Group. http://www.opengroup.org.

