POSIX-Compliant Portable Code Synthesis for Embedded
Systems

Andre Costi Nacul, Siddharth Choudhuri, and Tony Givargis
Department of Computer Science
University of California, Irvine
Center for Embedded Computer Systems
{nacul, sid, givargis}@ics.uci.edu

Technical Report #03-36
November 25, 2003.

Abstract

In a large class of embedded systems, dynamic multithreading using traditional OS
techniques is infeasible due to memory and processing overheads or lack of operating
systems (OS) availability for the target embedded processor. In this work, we propose a
source-to-source translator that takes a POS X compliant multithreaded C program as
input and generates an equivalent, embedded processor independent, single threaded
ANS C program, to be compiled using the embedded processor-specific tool chain. The
output of our tool is a highly tuned ANS C program that embodies the application-
specific embedded scheduler and dynamic multithreading infrastructure along with the
user code. In this work, we outline the implementation details of our source-to-source
translator and show the feasibility of the proposed technique by comparing execution
efficiency to approaches based on Java-VM and traditional UNIX based POSX
implementations.

Keywords

Dynamic multithreading, embedded scheduler, code generation, nkitiitascheduling,
serializing compilers, software synthesis

Table of Contents

1. NI RO 1 1 O 1]\ R 3
2. L I I = B IRV A A] = 4
2.1. VM BASED TECHNIQUES. ...uuttiiteiteiteetaeit et eesteseteestessasssaeetesae et esaeeaeataeeaesteeteesnnsrannns 4
2.2. TEMPLATE BASED TECHNIQUES.ccuuiittiitieit ettt eeei ettt et eese e e e s set e st e et e st e st e st e eaeataesnaeaneenns
2.3. STATIC SCHEDULING TECHNIQUES.....uuuiiteittieeeeeetieeeeeettiaeeeessssaasaesestanaaesessanaaesessnnaaeseesnnaaaees 5
3. TECHNICAL APPROAGCH ...ttt ettt a e e e a e e e e e e s et a e e e s e e s eabereeeaeeeaan 6
3.1. N R0 10 1] 6
3.2. PREEMPTION AND SCHEDULING. . ..ctuetteitettee it te e e s et e e e st e et s sae e s s et e et s et s et e e eaaseneesnesaneseneens
3.3. SYNCHRONIZATION 1.ttt ttes et et e ettt e e e e et e e e e s e e e ea e st e ea s et e e et s ea s et e eaaaesseen s ennsransssnesenns 9
3.4. L = I 1] 11N 9
3.5. N T E R RUP TS 1ttt ettt ettt ettt e et e e e e et e et e e e et e e et et e et e e st e e aa e eaa e e s e s sa e e s e e saeeeaneateenneenennnns 10
4, L = N = IS 10
5. (OO]\ (O S 11 12

6. REFERENCES...... .o e s 13

1. Introduction

Embedded software continues to play an ever increasing role iresigndf complex
embedded applications. In part, the elevated level of abstraction mtdwde high-level
programming paradigm immensely facilitates a short desigre ci@iver design errors,
design portability, and Intellectual Property (IP) reuse. In pdatiic the concurrent
programming paradigm is an ideal model of computation for design of embedde
systems, which often encompass inherent concurrency.

On the other hand, embedded systems often have stringent perfomegucements
(e.g., timing, energy, form-factor, etc.) and, consequently, reqaiaecdully selected and
performance tuned embedded processor to meet specified design otmsinarecent
years, a plethora of highly customized embedded processors éev@ad available. As
an example, Tensilica [1] provides a large family of highly @ams&ted application-
specific embedded processors (a.k.a., the Xtensa). Likewise, ARMNH MIPS [3]

provide several derivatives of their respective core processoes) &ffort to provide
their customers an application-specific solution.

Such embedded processors ship with cross-compilers and the asstawtchain for
application development. However, to support a multithreaded application deealopm
environment, there is a need for an operating system (OS) latecan support thread
creation, thread synchronization, and thread communication.

Such OS support is seldom available for each and every variant baskeeembedded
processor. In part, this is due to the lack of system memoryprasuificient processor
performance (e.g., in the case of microcontrollers such asitredflip PIC [4] and the
Phillips 8051 [5]) coupled with the high performance penalty of having a full-te@ge
Additionally, manually porting and verifying an OS to every embeddextessor
available is a high-cost job, in terms of time and money.

Thus, there exists a gap in realizing a multithreaded applicttigeted at a particular
embedded processor, as shown in Figure 1.

In this work, we fill this gap by providing a fully automated sott@source translator

that takes a POSEXcompliant multithreaded C program as input and generates an
equivalent, embeddedorocessor independent, single threaded ANSI C program, to be
compiled using the embedded processor-specific tool chain. The output tiobis a
highly tuned ANSI C program that embodies the application-specific embedded scheduler
and dynamic multithreading infrastructure along with the user code.

An additional motivation for our work is in the context of hardware/s® codesign.
Specifically, given a partitioned system, our tool can be used to atitafty synthesize
the software implementing a cluster of functiéiisF, ... Fy that have been mapped to a
particular processd?,.

The remainder of this work is organized as follows. In Section 2swaemarize prior
related work. In Section 3, we outline the implementation details o$aunce to source

1 C extended with POSIX is a standardized way of providing constrfoct multi-
threaded programming.

High-level Programming Paradigm

Q.
& C/POSIX Multithreaded Application
0
(@)

ANSI C Single-threaded Application

Cross Cross Cross
Compiler A Compiler B Compiler C

Embedded Embedded Embedded
Processor A Processor B Processor C

Available from
Processor Vend

Figure 1: OSgap in embedded processor based designs.

translator. In Section 4, we give our experimental results. Fjnallgection 5, we state
our conclusions.

2. Related Work

There are three categories of solutions that partially adtiesproblem stated in this
work, namely, a class of virtual machine (VM) based techniquesass df template
based OS generation techniques, and a class of static scheduling techniques.

2.1. VM Based Techniques

In the VM based techniques, an OS providing a multithreaded executionrenent is
implemented to run on a virtual processor. A compiler for the VMseduo map the
application program onto the VM. The virtual processor is in tuat@ed on the target
processor. Portability here is achieved by porting the VM taléséred target embedded
processor. The advantages of this class of techniques are tapptivation and OS code
do not require recompilation when moving to a different embedded procdsgsor.
disadvantage of this class of techniques is a significant peafa@npenalty (i.e., speed,
energy, and memory footprint) incurred by the VM layer, and sSpallif the VM
instruction set interpreter. Moreover, the porting of the VM to drget embedded
processor may require more than recompilation efforts. Examplssiabf VM based
techniques are Java [6] and C# [7]. Research in this areatdriaddress the above-
mentioned disadvantages by proposing customized VM for embedded tppid8] or
just in time (JIT) compilation techniques [9].

2.2. Template Based Techniques

In the template-based OS generation techniques, a refereniseu®&] as a template in
generating customized derivatives of the OS for particular éddak processors. This
class of techniques mainly relies on inclusion or exclusion of @@ries depending on
application requirements and embedded processor resource avahbilifhe
disadvantage of this class of techniques is that no single gé@riemplate can be used
in the variety of embedded processors available. Instead, for opienf@rmance, a
rather customized OS template must be made available for mechorl family of
embedded processor. In addition, for each specific embedded proce$sorawine or
family of processors, an architecture model must be provided to the geragitce.

In one example, Gerstlauer et al. [10] have used the $ganGuage, a system-level
language, as an input to a refinement tool. The refinement todigeatihe SpecC input
into application code and OS partitions. The OS partition is subsequefitigd to a
final implementation. The mechanism used in this refinement isdbasematching
needed OS functionality against a library of OS functions.

In a similar approach, Vercauteren et al. [11] have proposed a meiked bn an API
providing OS primitives to the application programmer. This OS tamptaused to
realize the subset of the API that is actually used in the application program

Finally, Gauthier et al. [12] have proposed an environment for OS gemesatnilar to
the previous approaches. Here, a library of OS components thatrameeperized is used
to synthesize the target OS given a system level description of applicatgramr

2.3. Static Scheduling Techniques

In the static scheduling based techniques, it is assumed that theatgplprogram
consists of a static and a priori know set of tasks. Given thisngsin, it is possible to
compute a static execution schedule, in other words, an intadlexeeution order and
generate an equivalent monolithic program. The advantage of thssaflapproaches is
that the generated program is application-specific and thus higffilgient. The
disadvantage of this class of techniques is that dynamicthmatiding is not possible.
Our technique specifically addresses the dynamic multithhgadsue. Moreover, our
technique is orthogonal to such static scheduling. For example,ttbé ariori know
static threads can be scheduled using static scheduling whileytlaenidally created
threads can be handled by a technique similar to ours. A very goodilgsmemry on
generating sequential code for a static set of tasks is done by Edwards [13]

In a more specific example, Lin [14] has proposed a techniqueaked &s input an
extended C code that includes primitives for inter-task communication based on channels,
as well as primitives for specifying threads and generateS| ANcode. The mechanism

here is to model the static set of tasks using a Petrahbtgenerate a single threaded
code simulating a correct execution order of the Petri NetiléBitechniques have also
been proposed by Cortadella et al. [15][16].

2 The multitasking allowed in SpecC is limited to a static argtiari known set of
concurrent tasks.

3. Technical Approach
3.1. Introduction

Input to our translator is a multithreaded progrBmp., written in C extended with
POSIX [17]. The basic constructs provided by POSIX are functians$tt creation and
management (e.gpthread_create |, pthread_join , pthread_cancel , etc.) as

well as a set of synchronization variables (sgma_t , mutex_t , etc.). Output of our
system is a single-threaded strict ANSI C progRygg.: that is equivalent in function to
Pinput. More specifically Powpe does not require any OS support and can be compiled by
any valid ANSI C compiler into a self sufficient binary for a target emlg@decessor.

To support multithreading there is a need for efficient sharinthefprocessor among
multiple threads, providing synchronization mechanisms, and communicatioitiyas.
Sharing of the processor among threads requires preemption andj,impregmption
requires a mechanism for saving/restoring thread specifarnvation (i.e., the task
context). In conventional approaches, multithreading is implementddnwite OS.
When a threadr; is created, OS allocates sufficient memory for savirg context
information (e.g., registers, function call stack, program counte), &eriodically, an
interrupt generated by the system timer invokes the OS schet@b&eischeduler saves
the context of the currently executing tasly and restores the context of a new tagk
to be executed. The OS, in turn, relies on the underlying processaorviiking the
scheduler (i.e., via a timer interrupt), context switching (registad/store instructions),
and synchronization (i.e., test-and-set instruction).

In our approach, the challenge is to achieve the same at a hegleérof abstraction,
namely, by using the mechanisms provided by strict ANSI riguage. In the next
section, we give our implementation details for source-level multithreading.

3.2. Preemption and Scheduling

In our implementation, the basic unit of execution, scheduled by thdwdeheis called
an atomic execution block (AEB). An AEB is a block of code that is executed in its
entirety prior to scheduling the next AEB. A threhds partitioned into an AEB graph
whose nodes are AEBs and edges represent control flow. For examplgure 2 the
AEB graph of threadcd is composed of nodéd, N;, N2, andNs. Within an AEB graph,
each node is implemented as an ANSI C function whose return valogesna pointer to
the next node in that graph. For example in Figure 2, lines 32-58, th&ofund
corresponds to nodd; and returns a pointer 2 or n3, representing nodes, or N3
depending on the runtime behavior of the program. We note that in pleam@ntation,
the partitioning is performed on the basic block intermediate repatisenof the input
source program. Moreover, we note that an AEB node may be cechpbsne or more
basic blocks. We return to the topic of partitioning and its impbaoation the runtime
behavior in a later section.

During runtime, we maintain the following context information forhettwead that has
been created: memory to store the intermediate variables compwuted partially
executed thread callddve (this is accomplished by performing a live variable analysis
during the partitioning of the program into AEB nodes) and a poioténe next AEB

00: #define STORE(X,y) x->live.push(*y”, y)

int xvy,r . :
; 01: #define RESTORE(X, y) y = x->live.pop(“y”)
VO: gtggd:());{; 02: enumid_t { MAIN, GCD }
int b=y; 03: ptr2f entry[] = { N4, NO };
while(al=h) 04: struct thread_t{
if(a<bh) 05: hash_t live;
b-=a: 06: ptr2f next;
el se 07:};
a-=b 08: queue_t queue;
r=a 09: voi d create(id_t i) {
} ' 10: thread_t *t = malloc(sizeof(thread_t));
i nt main() { 11: t->next = entry[i];
X =111; 12: queue.push(t);
y=23 13}
pthread_create(gcd...); 14: i nt main() {
returnO; 15: thread_t *curr;
} 16: create(MAIN); /* main always created * /
17: whi | e(!queue.empty()) {

18: curr = queue.top();
19: curr->next = curr->next(curr);

20: i f(curr->next==0)
21: queue.remove(curr);
22: }

23: returnO;

24:}

N 25: int xy,n; 53: ptr2f n3(thread_t*t) {
26: ptr2f nO(thread_t*t) { 54: int a;
27: inta=x,b=y; 55: RESTORE(t, a);

28: STORE(t, a); 56: r=a;
o gcd 29: STORE(t, b); 57: returnO;
30: returnni, 58:}
31:} 59: ptr2f n4(thread_t*t) {
\ 32: ptr2f n1(thread_t*t) { 60: x =111,
/ 33: int a b; 61: y=23;
34: RESTORE(t, a); 62: create(GCD);
o 35: RESTORE(t, b); 63: returnns;
36: if(al=b) 64:}
37: returnn2; 65: ptr2f n5(thread_t*t) {
38: el se 66: returnO;
39: returnn3; 67:}
40:}
41: ptr2f n2(thread_t*t) {
42: int a,b;
43: RESTORE(t, a);
i 44: RESTORE(t, b);

mair 45; if(a<b)
46: b-=gq;
47: el se
48: a-=b;

: 49: STORE(t, a);
50: STORE(t, b);
51: returnnil;
52:}

Figure 2: Sour ce-level multithreading.

node that is to be executed some time in the future, caddédas shown in Figure 2,
lines 4-7.

When a thread is created, the above context for it is allocaedeikt field is initialized
to the entry AEB of the thread, and the thread context is pushe@ guieue of existing

AEB'’s of
semaphore_t s1, s2; region 1

voi d producer() {

... I*region 1 */
s1.wait(); R AEB'’s of

% i *
... I* region 2 */ region 2

voi d consumer() {
... I* region 3 */ s .
,,,,,,,,,,,,,,,, \

s2.wait(); J— J N

... I*region 4 */

AEB'’s of
region 3
AEB'’s of
region 4
(@)
00: struct semaphore_t{
01: i nt value;
02: queue_t waiting;
03: };
04: ptr2f wait(thread_t *t, semaphore_t *s) {
05: i f(s->value==0){

06: s->waiting.push(t);

07: t->status = BLOCKED;

08: return t->curr;

09: }

10: value--;

11: return t->next

12:}

13: ptr2f signal(thread_t *t, semaphore_t *s) {
14: s->value++;

15: whi | e(!s->waiting.empty())

16: (s->waiting.pop())->status = RUNNABLE;
17: return t->next;

18:}

(b)
Figure 3: Semaphor e synchronization primitive implementation.

threads, calledueue, to be processed by the embedded scheduler, as shown in Figure 2,
lines 8-13.

The embedded scheduler is responsible for selecting and exethdingext thread as
shown in Figure 2, lines 14-22. The embedded scheduler always ¢heateain thread,
corresponding to theain function of the input C program. Then, as long as the queue
of existing threads is not empty, the scheduler selects thadthvith the highest priority

T;, or in the case of a priority tie, the one with the next higidestifier. The next AEB
pointer ofT;, pointing tof;, is used to resume the executionTpby making a function

call tof;. The return value df is in turn used to update the next AEBTofA return value

of zero indicates thalk; has reached its termination point, and thus is removed from the
gqueue of existing threads. The scheduling algorithm here is atpii@sed scheme, as

defined by the POSIX. The way priorities are assigned tadisteas they are created, can
enforce alternate scheduling schemes, such as round-robin, instheofcall threads
having equal priority, or earliest deadline first (EDF), in theecaf threads having
priority equal to the inverse of their deadline, priority inversion, and so on.

3.3. Synchronization

We implement the basisemaphore (sema_t in POSIX) synchronization primitive,
upon which any other synchronization construct can be built. A semaphemmanseger
variable with two operationswait and signal (sema_wait and sema_post in
POSIX). A threadT; calling wait on a semapho®will be blocked if theSs integer
value is zero. Otherwis&s integer value is decremented ands allowed to continue.

T; calling signal onS will incrementSs integer value and unblock any thread that is
currently blocked waiting o6.

To implement semaphores, we add to a thread Ti's context two addliields called
status and current. Status is one of blocked or runnable andapepriately when a
thread is blocked waiting on a semaphore. The current field of altlgeamilar to the
next field (see Figure 2, line 6) but at any given time pdmtthe current AEB that is
being executed. A thread is always partitioned into AEBs wheageone wait or signal
operations are encountered. In other words, the semaphore wait andpsigriales
always reside in their own AEBSs, as shown in Figure 3(a). Moreover, these #teBsl
are shared nodes connecting AEB graphs of multiple threads.

We implement a semaphore as a data structure with an irftegeand a queue of
waiting threads, as shown in Figure 3(b), lines 0-3. A wait operan a semaphor@
checks the value db and, if zero, blocks the calling threddby settingT;’s status to
blocked, adddl; to Ss queue of waiting threads, and returns control to the embedded
scheduler. However, instead of returning a pointer to the next AEB, df returns a
pointer to the current AEB of; (i.e., the one containing the semaphore wait or signal
call) so that whef; is unblockedSs variable is rechecked. 8s value is nonzero, it is
decremented and control is returned to the embedded scheduler withea fmothe next
AEB of T;, following the wait operation. A signal operation increments the value of

S unblocks all the threads in the waiting queu& aind returns control to the embedded
scheduler with a pointer to the next AEBTgffollowing the signal operation.

3.4. Partitioning

As described earlier, the partitioning of the code into AEB graghshé key to
implementing multithreading at a high-level of abstraction. Rebakt boundaries of
AEB represent the points where threads might be preempted oreeg$amexecution.
Some partitions are unavoidable and must be performed for correcspessically,
when a thread invokes a synchronization operation, or when a threads @rather
thread. In the case when a thread invokes a synchronization operatiahuands
blocked, the embedded scheduler must regain and transfer control to nmenalble
threads. Likewise, when a thread creates another, possibly tpgbaty, thread, the
embedded scheduler must regain and possibly transfer control to whéhread in
accordance with the priority based scheduling technique. Howevétioparg beyond
what is needed for correctness, impacts timing issues as described next.

In general, partitioning will determine the granularity levelttid scheduling (i.e., the
time quantum), as well as the thread latency. A good partitionirtheothreads into
AEBs would be one where all AEBs have approximately the sameeage case
execution timey and a relatively low deviatiodl from the average, which can be
computed if the average case execution time of each AEB is kndute. that the
average case execution tird¢ of an AEBN; is defined as the time taken to execute the
codeC; in N; plus the time taken to store and restore all live varidjles the entry and
exit of N;. Moreover, an estimate &f can be obtained by performing a live variable
analysis. An estimate df; can be obtained by static profiling. In an iterative approach,
our partitioning heuristic refines an existing partition and evau#iite average case
execution times until an acceptable partition is discovered.

3.5. Interrupts

Preempting an AEB when an interrupt occurs would break the prirtbigleevery AEB
executes until completion without preemption. Instead, the code fortemuipt service
routinel is treated as a thread. On an interrupt destined, frcorresponding thread is
created, having a priority higher than all existing threadse @it if multiple interrupts
destined fol occur, multiple threads will be created and scheduled for executi@isT
a uniform and powerful mechanism for handling interrupts in a multidlecca
environment. However, the latency for handling the interrupt will deperitleoaverage
execution time of the AEBs, which in turn depends on the partitioningnechised, as
described in the previous section.

4. Experiments

Our experimental flow is depicted in Figure 4. The multithreaGedxtended with
POSIX application is compiled with a generic front-end compiler itaio the basic
block (BB) control flow graph (CFG) representation. This intermediapresentation
along with an annotated (i.e., identified POSIX primitives) versiothefinput source
application, is used by the partitioning module to generate the gk&ghs. Then, a live
variable analysis is performed on the AEB graphs and the restdid back to the
partitioning module to refine the partitions until acceptable preempiiming and
latency is achieved. The resulting AEB graphs are then passkd tmde generator to
output the corresponding ANSI C functions for each AEB node. In addition, the
embedded scheduler along with other C data structures and synctivoniXRIs is
included from the generic C structures library.

The above experimental flow has been successfully appliedat@lagsical concurrent
problems, theconsumer-producer problem and thedining philosophers problem. We
have compared the performance of the generated output with two rofflementations
of the same problems. One of the implementations has been done i @O&iX
threads, using the Solaris POSIX libraries (i.e., an OS bagedaxch), and the other has
been implemented in Java (i.e., a VM based approach). Our resulpseaented in
Figure 5.

C
BB

C/POSIX Generic _—
Application Front-End | ~——"y Partitioning
Compiler Module
y
POSIX Calls Live Variable
Identifier Analyzer
CodeGeneration

l

ANSI C Single-threaded Application

Figure4: Experimental setup.

In our results, the OS based approach has a slightly bettermarice, in terms of
execution time, due to fewer context switches, given the defaudt guantum of the
underlying preemption scheme. As expected, the VM based approach hss wor

Time (sec
- (sec)

20

15

= UNIX POSIX
m Our Approach
0O Java VM

Consumer/Producer

—

o

Dining Philosophers

Figure 5: Experimental results.

performance in terms of execution time due to the overhead of interpreted VM code.

Among all experiments, the size of the binary executable of cuense is 35KB
(consumer-producer) and 37KB (dining philosophers), the size of the l@racytable
of the OS based scheme is 24KB (consumer-producer) and 26KB (diniagoplhiers),
and the size of the byte code in the VM based scheme is 6KB (cerpuoducer) and
3KB (dining philosophers). Moreover, we point out that our binary execuislaeself
sufficient executable which does not require any additional ARD®rsupport. In the
case of the OS based scheme, the OS footprint must also be cahdiderwise, in the
case of the VM based technique, the VM layer footprint must alsobsidered. We
note that binaries were generated by ugjcgversion 3.2 ojavac version 1.4.1 for the
Sun Solaris OS version 8.0.

5. Conclusions

We have presented a scheme for source-to-source translation of tithreaded
application written in C extended with POSIX into a single-ttieeaANSI C program
which can be compiled using a standard C cross-compiler fortaaggt embedded
processor. While compiler tool chains are commonly availableafyr of the large
number of customized embedded processors, the same is not true fongEsIstems,
which traditionally provides the primitives for multithreading at the apiptindevel. Our
source-to-source translator fills this missing OS gap by atioally generating a
platform independent C program that encapsulates multithreading sapgtannized for
the input application.

Our future direction is to explore more efficient source-to-sotnanslation schemes that
can take advantage of abstract architecture description modelpg@licdtzon profiling
information. Specifically, our partitioning algorithm can benefit franowledge of the
underlying target embedded processor combined with profiling infasmati better
estimating the execution time of an AEB as depicted in Fi§uta addition, extension

C/POSIX |I
Application

Profiling
Information

) Standard
4/ CompilingTools

Figure 6: Futuredesign flow.

Platform
Models

A4

ANSI C
Application

Source-to-source
Translation

for soft and firm real-time systems can also be implementedh attempt at providing
more stringent and deterministic timing behavior.

6. Acknowledgments

This work was supported in part by a National Science FoundationdA#ap05712)
and by a CAPES Foundation, Brazil scholarship (#1054015).

7. References

[1] Tensilica Incwww.tensilica.com

[2] ARM Inc. www.arm.com

[3] MIPS Inc.www.mips.com

[4] Microchip Inc.www.microchip.com

[5] Philips Inc.www.philips.com

[6] J Gosling, B. Joy, G. Steele. The Java Languageifzion. Addison-Wesley, 1996.

[7]1 Microsoft Corporation. The C# 2.0 Specification.afable at http://msdn.microsoft.com/vcsharp.
July 2003.

[8] V.C. de Verdiere, S. Cros, C. Fabre, R. Guidel&ine. Speedup Prediction for Selective
Compilation of Embedded Java Programs. Proceedhg8&SOFT, October 2002.

[9] J. Aycock. A Brief History of Just-In-Time. In ACIi@omputing Surveys, v. 35, n. 2, June 2003. pp
97-113.

[10] Gerstlauer, H. Yu, D. Gajski. RTOS Modeling for &ya Level Design. Proceedings of DATE,
March 2003.

[11] S. Vercauteren, B. Lin, H. De Man. A Strategy faaRTime Kernel Support in Application-Specific
HW/SW Embedded Architectures. Proceedings of DAID6L

[12] L. Gauthier, S. Yoo, A. Jerraya. Automatic Genemtnd Targeting of Application-Specific
Operating Systems and Embedded Systems Softwd& TEansactions on Computer-Aided Design
of Integrated Circuits and Systems. v. 20, n. 1dyeéynber 2001, pp 1293-1301.

[13] S. Edwards. Tutorial: Compiling Concurrent Langusafye Sequential Processors. ACM Transactions
on Design Automation of Electronic Systems, v.&, April 2003, pp 141-187.

[14] B. Lin. Efficient Compilation of Process-Based Coment Programs without Run-Time Scheduling.
Proceedings of DATE, February 1998.

[15] J. Cortadella et. al. Task Generation and CompiteeTScheduling for Mixed Data-Control
Embedded Software. Proceedings of DAC 2000.

[16] J. Cortadella et. al. Quasi-static scheduling dependent tasks for reactive systems. Lecture Niotes
Computer Science, June 2002.

[17] POSIX Open Grouphttp://www.opengroup.org

