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Abstract

Traditionally, dynamic voltage scaling techniques have been designed to minimize the dynamic power
consumption, which has been the dominant factor. As the technology scales, leakage current is con-
tributing to significant energy consumption. In this paper, we propose task scheduling techniques that
take leakage into account to minimize the total energy consumption. We compute an operating point
called thecritical speedwhich minimizes the dynamic and leakage energy consumption per unit work.
The leakage energy dominates when operating at speeds lower than the critical speed and it is energy
efficient to execute faster and shutdown the system. Due to the time and energy cost associated with
shutdown, longer shutdown intervals are better. To address this issue, we also present a scheduling pro-
crastination scheme, which delays task execution to extend sleep intervals. Our simulation experiments
show on an average 20% energy gains over a leakage oblivious dynamic voltage scaling and the pro-
crastination scheme increases the gains to up to35%. Our scheduling scheme extends the sleep intervals
to up to5 times while meeting all timing requirements.
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1 Introduction

Power management is of primary importance in the operation of embedded systems, which can be at-
tributed to longer battery life, reliability and packaging costs. Power consumption of a device is broadly
classified as dynamic power consumption which arises due to switching energy and static power con-
sumption which is present even when no logic operations are performed. CMOS has emerged as a
dominant technology because of its low static power consumption. CMOS device scaling trends, driven
by the need for faster devices and higher transistor densities, show a 30% decrease in the device dimen-
sions with each technology generation [5]. Constant electric field scaling allows a proportional reduction
of supply voltage. As supply voltage is reduced, the threshold voltage(Vth) must be proportionately re-
duced to maintain the desired performance (delay) improvements.This reduction of threshold voltage
results in an exponential increase in the subthreshold leakage current [6], leading to larger standby
current.

Leakage current in CMOS circuits contribute to a significant portion of the total power consumption
and is becoming an increasing concern. The subthreshold leakage current is 0:01µA=µmfor the 130nm
and is projected to be 3µA=µm for the 45nm technology [1]. A five fold increase in the leakage power
is predicted with each technology generation [5]. The static power consumption is comparable to the
dynamic power dissipation and projected to surpass it if measures are not taken to minimize leakage
current [9]. Furthermore, leakage has an adverse effect with the increase in temperature [29].

To address this issue, efforts at process, circuit design and micro-architecture level are made to min-
imize leakage power. The exponentially dependence of subthreshold leakage current on the threshold
voltage has led to threshold voltage scaling. Scaling the threshold voltage by controlling the body bias
voltage [23, 21] has been proposed to minimize leakage. Multi threshold CMOS (MTCMOS) [7] is a
popular technique to reduce standby current. Other techniques such as input vector control [14] and
power supply gating [22] have been proposed. At higher levels of abstraction, recent works have fo-
cused on minimizing the leakage of components such as cache. Techniques like cache decay [11] and
turning off cache lines [10] reduce have shown effective results in reducing cache leakage. Clock gating
techniques are also used to control leakage in Systems on Chip (SoC). The IBM PowerPC 405LP [8]
implements clock gating at the IP core and register level. The Intel PXA [12] family processors also
support fine granularity clock gating to exploit the fact that not all system transistors are used at the
same time. The chip aggressively shuts down elements of the processor which are idle by gating them
off or disabling their input. Processors support various shutdown mode to save power. For examples, the
Transmeta Crusoe [28] processor support various sleep modes (normal, autohalt, quick start, deep sleep,
off) for various types of workload. These power states may be used to reduce the operating power of the
processor during systems states that require little or no CPU activity.

Dynamic voltage scaling (DVS) [25, 24, 26, 3, 4, 15] based on performance requirements reduces the
power consumption and can lead to significant energy gains Recently, techniques to optimize the total
static and dynamic power consumption have been proposed in [16, 21]. Note that the energy savings
based on DVS come at the cost of increased execution time. This implies that the devices will be on
for a longer time duration and result in greater leakage energy consumption. With the steep increase in
leakage current per generation, it is not obvious whether to perform DVS or to execute the system at
maximum speed and shutdown. Note that the slowdown resulting from frequency scaling decreases the
dynamic energy whereas increases leakage energy. It is important to select the correct operation point to
minimize the total energy. Thus we have to judiciously balance the extent of slowdown and shutdown to
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minimize the total energy consumption. As shown later, operating at the maximum or minimum possible
voltage (frequency) need not be the optimal point. Furthermore the additional time and energy cost of
shutdown makes the problem harder.

Irani et al. [13] consider the combined problem of DVS and shutdown and propose a3-competitive
off-line algorithm. They introduce the concept of critical speed which minimizes the energy per unit
workload. They present a theoretical result, based on the assumption of a continuous voltage range,
for any given convex power consumption function. Leeet al. propose an Leakage Control EDF (LC-
EDF) [18] scheduling algorithm to minimize the leakage energy consumption in real time systems. They
propose delaying task executions to extend idle intervals. Their algorithm is based on the assumption
that the tasks are executed at the maximum speed and the processor is shutdown. However, it may not be
energy efficient to execute at the maximum speed. We enhance this work by combining dynamic voltage
scaling with shutdown to minimize the total energy consumption. Our contributions are as follows:
Firstly, based on the leakage characteristics of the 0:07µmtechnology, we compute thecritical speedfor
the system. Furthermore, if this assigned speed leaves idle intervals, we compute the time interval by
which task executions can be delayed to extend the length of the idle periods to have more opportunity to
shutdown the processor. Our work differs from that in [18], in that we compute delays given slowdown
for the tasks. Our algorithm is simple to implement and has a very low run-time overhead compared to
LC-EDF. Furthermore, the minimum idle period guaranteed by our algorithm is always greater than or
equal to that by LC-EDF.

The rest of the paper is organized as follows: Section 2 and 3 discusses the leakage power model
and the computation of the critical speed to minimize energy consumption. In Section 4, we present the
procrastination algorithm for EDF scheduling. The experimental results are given in Section 5. Finally,
Section 6 concludes the paper with future directions.

2 Power Model

In this section, we describe the power model used to compute the static and dynamic components of
power consumption of CMOS circuits. The dynamic power consumption(PAC) of CMOS circuits is
given by,

PAC =Ce f fV
2
ddf (1)

whereVdd is the supply voltage,f is the operating frequency andCe f f is the effective switching capaci-
tance. Dynamic voltage scaling reduces the dynamic power consumption due to its quadratic dependence
on voltage.

Different leakage sources [2] contribute to the total leakage in a device. The major contributors
of leakage are the subthreshold leakage and the reverse bias junction current which can increase sig-
nificantly with adaptive body biasing [21]. We use the power model and the technology parameters
described by Martinet al. [21]. The threshold voltageVth, subthreshold currentIsubn, and cycle timetinv

as a function of the supply voltageVdd and the body bias voltageVbs are given below :

Vth =Vth1�K1 �Vdd�K2 �Vbs (2)

whereK1, K2 andVth1 are technology constants.

Isubn= K3eK4VddeK5Vbs (3)
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Table 1.0:07µmtechnology constants

[21]

Const Value Const Value Const Value

K1 0:063 K6 5:26x10�12 Vth1 0:244

K2 0:153 K7 �0:144 I j 4:8x10�10

K3 5:38x10�7 Vdd0 1 Ce f f 0:43x10�9

K4 1:83 Vbs0 0 Ld 37

K5 4:19 α 1:5 Lg 4x106

whereK3, K4 andK5 are constant fitting parameters.

tinv =
LdK6

(Vdd�Vth)α (4)

The leakage power dissipation due to subthreshold leakage(Isubn) and reverse bias junction current
(I j) is given by,

PDC =VddIsubn+ jVbsjI j (5)

This is the leakage per device and the total leakage power consumption isLg �PDC, whereLg is the
number of devices in the circuit.

The technology constants for the 0:07µmtechnology are presented in Tables 1 as given in [21]. The
value forCe f f based on the Transmeta Crusoe processor, scaled to 0:07µm technology based on the
technology scaling trends [5], is also given in the table. To reduce the leakage substantially, we use
Vbs=�0:7V. The static and dynamic power consumption as the supply voltage is varied in the range of
0:5V and 1:0V is shown in Figure 1.

3 Critical Speed

There is an inherent cost in keeping the processor on, which must be taken into consideration in com-
puting the optimal operating speed. In addition to the gate level leakage, there are certain processor
components which consume power even when the processor is idle. Some of the major contributors are
(1) the PLL circuitry, which drives up to 200mAcurrent [12, 28]. (2) the I/O power supplyVIO has a
higher voltage supply (2.5V to 3.3V) that the processor core with peak currents of 400mAduring I/O.
Though the current is comparatively lower when there is no I/O, the power consumption adds to a sig-
nificant portion of the idle power consumption. This intrinsic power cost of keeping the system on is
referred to asPon. The power consumption of these components will scale with technology and archi-
tectural improvement and we assume a conservative value ofPon= 0:1W. The total power consumption
by the processor,P, is :

P= PAC+PDC+Pon (6)

wherePAC andPDC are the dynamic and static power consumptions. The variation of the power con-
sumption with supply voltage is shown in Figure 1. It can be seen that the total power consumption
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Figure 1. Power consumption of0:07µmtechnology for Crusoe processor:PDC is the leakage power,PAC is the dynamic

power andPon is the intrinsic power consumption in on state

decreases asVdd is scaled. The linear dependence of static power consumption on voltage and the
quadratic dependence of dynamic power on voltage is seen in the figure.

To evaluate the effectiveness of dynamic voltage scaling, we compute the energy consumption per
cycle for different supply voltage values. Due to the decrease in the operating frequency with voltage,
the leakage can adversely effect the total energy consumption with voltage scaling. We compute the
energy per cycle to decide the aggressiveness of voltage scaling. The contribution of the dynamic energy
per cycle is given by,

EAC =Ce f fV
2
dd (7)

The leakage power per device is given by Equation 5. Since the cycle time increases as voltage
decreases, the leakage energy per cycle is given by,

EDC = f�1 �Lg � (IsubnVdd+ jVbsjI j) (8)

wheref�1 is the delay per cycle. The energy to keep the system on increases with lower frequencies and
is given by,Eon = f�1Pon. The total energy consumption per cycle,Ecycle, with varying supply voltage
levels is given below and shown in Figure 2 .

Ecycle= EAC+EDC+Eon (9)
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Figure 2. Energy per Cycle for0:07µm technology for the Crusoe processor:EAC is the switching energy,EDC is the

leakage energy andEon is the intrinsic energy to keep the processor on.

We define thecritical speedas the operating point that minimizes the energy consumption per cycle.
We can compute the minimum of this energy function by evaluating the gradient of the energy function
with respect toVdd. Figure 2 shows the energy characteristics for the 0:07µm technology. From the
figure, it is seen that the critical point is atVdd= 0:70V. From the voltage frequency relation described in
Equation 4,Vdd=0:7V corresponds to a frequency of 1:26 GHz. The maximum frequency atVdd=1:0V
is 3:1 GHz, resulting in a critical slowdown ofηcrit = 1:26=3:0= 0:41. It can be seen that it is not energy
efficient to scale the voltage belowVdd = 0:7V. Executing at the critical speed and shutting down the
system is more energy efficient than executing at voltages lower than 0:7V.

4 Real Time Scheduling

In this section, we enhance real time scheduling techniques with the knowledge of critical speedηcrit ,
to minimize the total energy consumption of the system.

4.1 Background

In a classical real-time system model, tasks arrive periodically and have deadlines. A task set ofn
periodic real time tasks is represented asΓ = fτ1; :::;τng. A 3-tupleτi = fTi;Di;Cig is used to represent
each taskτi, whereTi is the period of the task,Di is the relative deadline withDi � Ti, andCi is the
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worst case execution time (WCET) for the task at maximum speed. These tasks are to be scheduled
on a single processor system based on a preemptive scheduling policy. In this work, we assume task
deadlines are equal to the period (Di = Ti) and the tasks are scheduled by the Earliest Deadline First
(EDF) [19] scheduling policy. All tasks are assumed to be independent and preemptive.

Dynamic voltage scaling (DVS) have been proposed to minimize the dynamic power consumption in
real time systems. A task slowdown factor is the extent of slowdown that can be applied while meeting
specified performance requirements. A taskslowdown factor(ηi) can be viewed as the normalized
operating frequency and lies in the range [0,1]. Under EDF scheduling, a slowdown equal to the task
utilization is the optimal slowdown to minimize the dynamic energy consumption [4].

4.2 DVS and Critical Speed

The task slowdown can be computed with any known dynamic voltage scaling algorithm. We assume
that the system utilization is assigned as the slowdown for each task. Since executing below the critical
speed consumes more time and energy, we set the minimum value for the slowdown factor as the critical
speed(ηcrit ). We update a task slowdown factor to the critical speed if it is smaller thanηc. The
algorithm is as follows:

8i
i = 1; :::;n i f (ηi < ηcrit ) ηi ηcrit (10)

Since we are only increasing slowdown factors of a given feasible task set, the feasibility of the task set
is maintained.

4.3 Shutdown Overhead

In previous work, the overhead of processor shutdown/wakeup has been neglected or considered only
as the actual time and energy consumption incurred within the processor. However, a processor shutdown
and wakeup has a higher overhead. The Intel PXA processor family [12], when switched to the deepest
sleep mode, loses its registers and cache contents. Thus, all the registers have to be saved in main
memory and all the dirty data cache lines have to be flushed to main memory before shutdown. This
memory access results in an additional energy overhead. Waking up from the sleep state also incurs
a considerable overhead. First there is an inherent energy delay cost of wakeup as specified in the
datasheets. In addition, components such as data and instruction caches, data and instruction translation
look aside buffers (TLBs) and branch target buffers (BTBs) have to be initialized, resulting in cold start
misses in case of the caches and TLBs, and branch mispredictions in case of the BTBs. These result in an
additional energy cost. This cost will vary depending on the nature of the application and the processor
architecture.

4.4 Procrastination Algorithm

Due to the cost of shutdown, we have to make a decision whether to shutdown or not. An unforeseen
shutdown can result in extra energy and/or missing task deadlines. Based on the idle power consumption,
we can compute the minimum idle period, referred to as theidle thresholdintervaltthreshold, to break even
with the wakeup energy overhead. LetPidle be the power consumption in the idle state in addition to the
power consumption in the shutdown state. IftshutdownandEshutdownare the time and energy overhead
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incurred due to shutdown (the overhead of shutdown as well as wakeup), thentthresholdis given by:

Pidle � tthreshold= Eshutdown

Thus, it is energy efficient to shutdown if the idle interval is greater thantthreshold. Thus longer idle
interval increase the changes of shutdown, thereby saving energy. We present a procrastination scheme
to achieve this goal.

4.4.1 Computing Procrastination Interval

First, we give the EDF feasibility condition with task slowdown. Givenn independent periodic tasks,
the task set is feasible at a slowdown factor ofηi for taskτi if,

n

∑
i=1

1
ηi

Ci

Ti
� 1 (11)

We compute a procrastination interval for each task while maintaining feasibility. The procrastination
interval,Zi, for taskτi is the time interval by which theτi can be delayed while guaranteeing all task
deadlines. The computation ofZi is given by Lemma 1. The detailed explanation of all results are given
in [27].

Lemma 1 [27] Given tasks are ordered in non-decreasing order of their period, a procrastination of

taskτi by Zi time units guarantees the deadlines of all tasks if,

8i
i = 1; :::;n

Zi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (12)

8k<i Zk� Zi (13)

4.4.2 Algorithm

It is assumed that thepower managerwhich handles task procrastination is implemented in a FPGA.
When the processor enters sleep state, it handles over the control to the power manager (FPGA con-
troller), which handles all the interrupts and task arrivals while the processor is in sleep state. The
controller has a timer to keep track of time and wake the processor after a specified time period. The
procrastination algorithm is shown in Figure 3. When the processor is sleep state and the first taskτi

arrives, the timer is set toZi. The timer counts down every clock cycle. If another task arrives before the
counter expires, the counter is adjusted based on the new task arrival. If another taskτ j arrives, then the
timer is updated to the minimum of the current timer value andZj. This ensures that no taskτk in the
system lets the processor be in sleep state for more thanZk time units after its arrival. When the counter
counts down to zero (expires), the processor is woken up and the scheduler schedules the highest priority
task in the system. All tasks are scheduled at their assigned slowdown factor.
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On arrival of a new job Ji :

(1) if (processor is in sleep state)

(2) if (Timer is not active)

(3) timer Zi; //(Initialize timer)

(4) else

(5) timer min(timer;Zi);

(6) endif

(7) endif

On expiration of Timer (timer= 0):

(1) Wakeup Processor;

(2) Scheduler schedules highest priority task;

(3) Deactivate timer;

Timer Operation :

(1) timer--;

// Counts down every clock cycle;

Figure 3. Procrastination Algorithm
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Theorem 2 [27] Given tasks are ordered in non-decreasing order of their period, the procrastination

algorithm guarantees all task deadlines if the procrastination interval Zi of each taskτi satisfies:

8i
i = 1; :::;n

Zi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (14)

8k<i Zk� Zi (15)

We also compute the minimum idle period guaranteed by the procrastination algorithm. This idle
period helps make better shutdown decisions.

Lemma 3 The minimum idle period guaranteed by the procrastination algorithm is is given as,

Zmin = min1�i�n

(
Zi = (1�

i

∑
k=1

1
ηk

Ck

Tk
)Ti

)
(16)

We also compare our algorithm to LC-EDF [18]. Since the LC-EDF algorithm assumes all tasks
execute at maximum speed, we prove that our proposed algorithm guarantees more procrastination than
LC-EDF if tasks are executed at maximum speed.

Lemma 4 [27] Given, tasks are executed at maximum speed, the minimum delay interval guaranteed

by the procrastination algorithm is greater than or equal to that guaranteed by LC-EDF.

5 Experiments

We implemented the different scheduling techniques using a discrete event simulator. To evaluate
the effectiveness of our scheduling techniques, we consider several task sets, each containing up to
20 randomly generated tasks. We note that such randomly generated tasks is a common validation
methodology in previous works [4, 18, 26]. Based on real life task sets [20], tasks were assigned a
random period and WCET in the range [10 ms,125 ms] and [0.5 ms, 10 ms] respectively. All tasks are
assumed to execute up to their WCET. We use the processor power model described in Section 2. The
critical speed for this processor isηcrit = 0:41. We compared the energy consumption for the following
techniques presented in the paper:

� No DVS (no-DVS): where all tasks are executed at maximum processor speed.

� Traditional Dynamic Voltage Scaling (DVS) : where tasks are assigned the minimum possible
slowdown factor.

� Critical Speed DVS (CS-DVS): where all tasks are assigned a slowdown greater than or equal to
the processor critical speed.

� Critical Speed DVS with Procrastination (CS-DVS-P): This is CS-DVS with the procrastination
scheduling scheme.
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We assume that the processor supports discrete voltage levels in steps of 0:05V in the range 0:5V to
1:0V. These voltage levels correspond to discrete slowdown factors and each computed slowdown factor
is mapped to the smallest discrete level greater than or equal to it. In all the scheduling schemes except
CS-DVS-P, the processor wakes up on the arrival of a task in the system. The idle interval in these
techniques is assumed to be the time period before the next task arrival in the system. CS-DVS-P adds
the minimum guaranteed procrastination interval to estimate the minimum idle interval. The processor
is shutdown if the idle period greater thantthreshold, the minimum idle period to result in energy gains.

5.1 Shutdown Overhead

An embedded processor like the PXA-250 dissipates almost negligible power in the sleep mode
(180µW), whereas in idle mode it dissipates 555mW of power. As discussed in Section 4.3, the cache
results in additional energy overhead. The Intel PXA family processors have typically cache sizes of
32KB. We assume 20% lines of the data cache to be dirty before shutdown which results in 6554 mem-
ory writes. With an energy cost of 13nJ [17] per memory write, the cost of flushing the data cache
is computed as 85µJ. We assume the energy and latency of saving the registers to be negligible. On
wakeup, there is an additional cost due to cache miss. Note that a context switch occurs when a task
resumes execution which has its own cache miss penalty. However, shutdown has its own additional
cost than a regular context switch due to the fact that these structures are empty. We assume 10% ad-
ditional misses rate in both the instruction and data cache. For the TLBs and BTBs, we consider the
overhead to be negligible. Therefore, the total overhead of bringing the processor to active mode is
6554 cache misses. A cost of 15nJ [17] per memory access, results in 98µJ overhead. Adding the cache
energy overhead to the actual charging of circuit logic, which we assume to be 300µJ, the total cost
is 85+98+ 300= 483µJ . Since the idle power consumption is 240mW, the threshold idle interval,
tthresholdis 2ms. We assume a sleep state power of 50µW, which can account for the power consumption
in the sleep state and that of the FPGA controller.

5.2 Energy Consumption

We compare the energy consumption of the techniques discussed in this section and the results are
shown in Figure 4. no-DVS consumes the maximum energy and the energy consumption of other tech-
niques are normalized to no-DVS. It is seen that all the techniques perform almost identical up to the
critical speed. When the task slowdown factors fall below the critical speed, DVS technique starts con-
suming more energy due to the dominance of leakage. At lower speeds the energy consumed by DVS
approaches close to that of no-DVS. The CS-DVS technique executes at the critical speed and shuts
down the system to minimize energy. However if the idle intervals are not sufficient to shutdown, it can
consume more energy that the DVS technique, as seen at utilization of 20% and 30%. CS-DVS leads
to as much as 20% energy gains over no-DVS and 5% gains over DVS. The CS-DVS-P minimizes idle
energy by stretching sleep intervals as much as possible to minimize the shutdown overhead. It is seen
that the CS-DVS-P results in an additional 18% gains over CS-DVS.

Figure 5 and 6 compares CS-DVS-P to CS-DVS. Figure 5 shows the number of wakeups and the
idle energy comparison of CS-DVS-P normalized to CS-DVS. Note that, since the slowdown factors are
mapped to discrete voltage/frequency levels, there are idle intervals at higher utilization as well. These
idle period can be used in dynamic reclamation [4] for more energy gains. However, we use these idle
intervals to shutdown the processor to compare the benefits of our procrastination scheme. At higher
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utilization, the inherent idle intervals are short and there is less chance for a shutdown. However due
to procrastination, the idle periods can be extended resulting in energy savings through shutdown. As
seen in the Figure 5, the number of shutdowns are higher at higher utilizations which results in reduced
idle energy consumption. At lower utilization, the relative number of wake-ups compared to CS-DVS
decrease considerably. Note that the idle energy consumption of CS-DVS-P is always lower than that of
CS-DVS. The number of wakeup are reduced to as much as 25% percent thereby reducing the shutdown
overhead. It is seen from the figure that the idle energy consumption also reduces proportionately.

Figure 6 compares the relative increase of the sleep time intervals of CS-DVS-P over CS-DVS. It is
seen that on an average the sleep interval is increased by 4 to 5 times. This extended sleep interval
is beneficial as it allows for a shutdown of other peripheral devices that are idle. I/O devices such as
memory have a time overhead of 10msto wake up from deep sleep states. This increases the opportunity
to shutdown more devices to minimize the total system energy. The figure also compares the average
idle interval (intervals when no task is executing i.e. an idle or sleep state). It is seen that the average idle
interval increases up to 7 times. This suggests that CS-DVS has relatively more idle intervals where it
does not shutdown the processor resulting in leakage energy consumption. CS-DVS-P clusters the task
executions thereby increasing the opportunity to shutdown and thereby reduce leakage. This also means
the power manager also has to make fewer decisions whether to shutdown.

11



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 #

 w
ak

eu
ps

 a
nd

 id
le

 e
ne

rg
y

% processor utilization at maximum speed

Comparison of gains of CS-DVS-P  normalized to CS-DVS

# wakeups
Idle Energy
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6 Conclusions and Future Work

In this paper, we have presented scheduling techniques that consider leakage energy contribution
to minimize the total energy consumption in a system. We show that executing at the maximum or
minimum processor speed need not be the optimal operating point. While operating at the minimum
speed increases the leakage energy contribution, we show that executing at the critical speed and shutting
down the processor is more energy efficient. This results in up to 20% energy gains. Furthermore,
extending the sleep intervals by our procrastination scheme increases the gains to 35% energy gains.
Compared to a naive wakeup scheme, procrastination reduces the number of wakeups to one fourth
while stretching the sleep intervals to up to 5 times. The extended idle periods results in an energy
efficient operation of the system while meeting all timing requirements. The techniques are simple,
energy efficient and can be easily implemented. We plan to extend these techniques to scheduling system
wide resources for minimizing the total energy consumption.
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A Proofs

We say a taskτi is procrastinated if the system remains idle despite the presence of a taskτi in the ready
queue. The total time units by which an task instance is procrastinated is referred as itsprocrastination
interval.

Theorem 1: Given tasks are ordered in non-decreasing order of their period, the procrastination
algorithm guarantees all task deadlines if the procrastination intervalZi of each taskτi satisfies:

8i
i = 1; :::;n

Zi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (17)

8k<i Zk� Zi (18)

Proof: Suppose the claim is false and a task instance misses its deadline. Lett be the first time that
a job misses its deadline. Lett 0 be the the latest time beforet such that there are no pending jobs with
arrival times beforet 0 and deadlines less than or equal tot. Since no requests can arrive before system
start time(time= 0), t 0 is well defined. LetA � fτ1; :::τig be the set of jobs that arrive no earlier than
t 0 and have deadlines at or beforet. Since there are pending requests of jobs inA at all times during
the interval[t 0; t], only tasks inA execute during the interval[t 0; t] . Let X = t� t 0, then the number of
instances of tasksτk in the intervalX is bounded byb X

Tk
c. Let τl be the job that arrives at timet 0. If the

system is executing a lower priority job at timet 0, preemption occurs and jobs inA are executed. The job
executions are procrastinated only if the processor is in the sleep state. By the procrastination algorithm,
if at time t 0 the processor is in the sleep state with the timer not active or the timer value greater than
Zl , then the timer value is set toZl . Thus the wakeup timer value after the arrival ofτl is at mostZl .
Since the timer value can only be decreased by the arrival of another task, the procrastination interval
of every task inA is bounded byZl . From Equation 18, it follows that8k�i Zk� Zi and the maximum
procrastination interval for any job inA is bounded byZi time units. Since a task misses its deadline at
time t, the sum of the total execution time of jobs inA and the procrastination intervalZi exceeds the
length of the interval. Therefore,

Zi +
i

∑
k=1

b
X
Tk
c
Ck

ηk
> X

SinceX
Ti
� bX

Ti
c, we have

Zi

X
+

i

∑
k=1

1
ηk

Ck

Tk
> 1

Since all jobs inA have their arrival time and deadline in the interval[t 0; t], we haveTi � X, and

Zi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
> 1

which contradicts with Equation 17. Thus all tasks meet the deadline by the procrastination algorithm.
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Lemma 3: The minimum idle period guaranteed by the procrastination algorithm is given as,

Zmin = min1�i�n

(
Zi = (1�

i

∑
k=1

1
ηk

Ck

Tk
)Ti

)
(19)

Proof: Note that the procrastination interval ofZmin for each task satisfies the constraints given in
Lemma 1 and guarantees meeting all task deadlines. Thus for each taskτi, there exists procrastination
intervalsZi � Zmin that satisfy Lemma 1. According to the procrastination algorithm, if the processor is
in the sleep state with the timer inactive, the arrival of a task sets the timer value to the procrastination
interval of the arrived task. The timer counts down every clock cycle and the processor is woken up
when the timer expires. If a task arrives with a smaller procrastination intervalZl than the current timer
value, then the timer is set toZl . Consider the last time that the timer was set before the expiration of the
timer and let taskτi be the task whose arrival set the timer. Thus the timer expires after a procrastination
interval of at leastZi. Since all tasks have a procrastination interval greater than or equal toZmin, we
haveZi � Zmin. Thus the minimum procrastination interval isZmin.

Lemma 4: Given, tasks are executed at maximum speed, the minimum delay interval guaranteed by
the procrastination algorithm is greater than or equal to that guaranteed by LC-EDF.

Proof: The minimum idle period given by the LC-EDF algorithm is given as,

lmin = min1�i�n

(
li = (1�

n

∑
k=1

Ck

Tk
)Ti

)

and the minimum idle period given by the procrastination algorithm at maximum speed is given by

Zmin = min1�i�n

(
Zi = (1�

i

∑
k=1

Ck

Tk
)Ti

)

We show thatZi � li and hence it follows thatZmin� lmin.

Zi = (1�
i

∑
k=1

Ck

Tk
)Ti

= (1�
n

∑
k=1

Ck

Tk
+

n

∑
l=i+1

Cl

Tl
)Ti

= li +(
n

∑
j=i+1

Cj

Tj
)Ti

� li

SinceZi � li , it follows that the minimum over allZi is greater than or equal to the minimum over all
li. ThusZmin� lmin.
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