Dynamic Voltage and Cache Reconfiguration for Low
Power

Andre Costi Nacul and Tony Givargis
Department of Computer Science
University of California, Irvine
Center for Embedded Computer Systems
{nacul, givargis}@ics.uci.edu

Technical Report #03-34
November 7, 2003.

Abstract

Given a set of real-time tasks scheduled using the earliest deadline first (EDF)
algorithm, we discuss two techniques for reducing power consumption while meeting all
timing requirements. Specifically, we proposed a combined Dynamic Voltage Scaling
(DVS) and Dynamic Cache Reconfiguration (DCR) technique for low power embedded
systems. Toward this goal, we first analyze the potential power savings achievable by
each technique (DVS or DCR) alone, then, we present an online algorithm that combines
both techniques, reducing the power consumption even more. Our online algorithm
gradually constructs a set of pseudo-Pareto-optimal system configurations for each task,
which it then uses to determine a low power operating point meeting timing
requirements. We evaluate the possible savings and observe that they are highly
correlated with the specific timing requirements of the task. We also show that the
combination of voltage and cache reconfiguration provides the best overall power
savings, as much as 28% when considering the total platform power consumption.

Table of Contents

TABLE OF CONTENTS ..ottt ettt sttt s et b e s b se st eb e s s ese e e besesnssennneses 2
L INTRODUCTION oottt sttt sttt b et a st et se st b e e st e s es s e et benesaenens 3
2. RELATED WORK ..ottt sttt et ettt ettt sttt s st s e st be st s e st et e e aenens 3
3. PROBLEM FORMULATION ...ociiiiiiciistete sttt sttt s bt se st nenens 4
T O @ = AV SRR
3.2, PROPOSEDSOLUTION ... tttettteteesteeesanteeesseeaessseesssneesssesesasseeessseseesssseeesnssesennseeeesnseeenses 5
4. EXPERIMENTAL SETUP ..ottt st saesenessenenenens 6
5. COMBINING DVSAND DCR....coeuiirieieeieiesisieeses et sesesseses s sessesasessssesessssassssssessssesensssesensssesens 8
6. ONLINE RECONFIGURATION ...oooiiicteirieienisietere s sese st e e s senesessensssssenessnsens 10
6.1. DISCOVERYALGORITHM ..eteeiutireeiutireesnneeesantereanseeeesaseesasssneesnsssessnssseasssesessseessnsseeesnnses 10
6.2. SIMULATION RESULTS. ..ttt e e e e ettt e e e e e e e e e e e e eeeetbabi e e e e e e e e e e e eeeeanebannnnnans 11
7. CONCLUSIONS. .. .ottt sttt st b e st et a b e bt e s st b et ebe e ss e s e e s ebe e senens 13
ACKNOWLEDGMENTS ..ottt sttt sttt st st se st se st enesnssese s e 14

REFERENCES..... ..ottt a e bbb sn e renre s 14

1. Introduction

Minimizing energy consumption of electronic devices has becomstaliass system
design concern [1], especially, in the areas of embedded and portalglesgdsince such
devices draw their current from batteries that place addnémount of energy at the
system’s disposal. On the other hand, in recent years, increasezht@pldemand for
functionality [2][3], market pressures, and shortening of design £yickve led to a new
system-on-a-chip (SOC) platform based design methodology [4].

A platform is a computing system composed of artifacts sucheasrg-purpose
processors, hierarchy of caches, on-chip main memory, I/O peripheoaprocessors,
and possibly FPGA fabric for post-fabrication customizations. Thptadgorms are
generally targeted toward a large number of applications &®pecific domain (e.g.,
networking or multimedia). To address the need for energy eftigjeéhe artifacts within
these SOC platforms are often designed to be dynamicalligooaible. Features such as
processor and memory power modes [5]; dynamic voltage scaling [6]; and run-timee ca
reconfiguration (e.g., Motorola’s M*CORE [7][8]) have been commédyciatroduced.
Dynamic reconfiguration of the platform provides an opportunity for aipey system
(OS) and/or application tasks to carry out strategic high-l@esgurce management for
low power.

Dynamic Voltage Scaling (DVS) has been extensively studied and shown to be a very
efficient power saving technique [9][10][11]. More recently, sa@uthors have focused
their attention on cache reconfiguration, since a good tuning of the mdmaoarchy
also yields significant power savings [12][13][14][15][16][17]. Wdugh DVS and
Dynamic Cache Reconfiguration (DCR) are orthogonal solutions and could be applied to
the same system individually in an optimal way, their combinedctetfeé power
consumption might not be simply a linear combination of the two opsolations. Both
DVS and DCR rely on the same principle to save power: theegsod/cache does not
need to run at full speed/capacity at every moment in orderdbartask’s deadline. We
commonly refer to this excess processor speed or cache cagssigk. In general,
significant energy savings is achievable when reducing the slack.

In this work, we propose a combined DVS and DCR online algorithm that
dynamically adapts the processor speed (i.e., voltage) and the sabsystem to the
workload requirements for the purposes of saving energy. The worklaahsidered to
be a set of tasks with real-time deadlines. Our online ahgorni$ invoked as part of the
OS scheduler, which performs standard earliest deadline firgt)(8Bk scheduling first.
Then, our online algorithm, determines an ideal voltage/cache cotiftguri@r the
current executing task.

This paper is organized as follows. In Section 2, we present sglated previous
work. In Section 3, we formalize the problem and introduce our proposed solation.
Section 4, we describe our experimental setup. In Section 5, wenfpoesesimulation
results. In section 6, we introduce the algorithm for learningdhé&gurations while the
system is running. In Section 7, we state our concluding remarks.

2. Related Work

Dynamic Voltage Scaling (DVS) is an approach for power reéolu¢hat has gained
much attention in the recent years. With DVS, one can save enatigyminor

performance degradation by reducing the operating supply voltage pfdbessor, or
even of the whole system [9][10]. The premise of all DVS techsigsido achieve a
steady/even processor speed while meeting all tasks deadlites. ig often
accomplished by appropriately scheduling tasks and selecting evo#teigings that
eliminate the slack [11][18][19]. Some of these approaches coraidieteal processor
with infinite voltage settings and no reconfiguration penalty wbilers focus on exact
DVS behavior of commercial processors.

A great amount of previous work has also shown that staticatiyng the cache
subsystem to the running task can result in significant enexgyngs [12][13]. For
example, Motorola’s recent version of an M*CORE processor IC lamiigurable 4
way set associative unified cache, in which each way can bblatiseor used for
instructions, data, or both. Malik et al. [8] have shown that the belse @nfiguration
depends heavily on the particular running task. Likewise, Zhang Ei43{15] analysis
shows that having a dynamically configurable line size amthite can have a significant
(up to 50%) energy saving potential in embedded systems.

Tang et al. [16] have proposed an architectural scheme for dyeanotie line sizing.
Their approach is to introduce a hardware unit along with a meamarycache protocol
for fine grained tuning of the line size. In contrast, our approaahsistware technique
that allows the OS to take charge of cache reconfiguratiomgtakio account a dynamic
workload and application requirements.

In a similar effort, Dropsho et al. [17] have considered disablauwhe ways (i.e.,
associativity) dynamically to achieve low power. They proposeheaarchitectures
intended for dynamic reconfiguration. Further, they provide a hardseitgion for
adaptivity. As with the previous technique, our approach is a softiemienique
performing the resource management at the task and OS levels.

Fan et. al. [20] also analyze the interactions between processbrmemories,
showing that there is a benefit in combining a memory-awareemaystith a DVS-
enabled processor. However, their solution involves only shutting downgbaines main
memory, while we try to combine the cache subsystem and the processor speed.

3. Problem Formulation
3.1. Overview

Our problem formulation is as follows. The system is composédtagks,T;, T, ...

T,. Each taskT; has a deadlin®; and a period®.. To generalize the solution, a non
periodic or sporadic task is assumed to haw® = 0. Tasks areon-preemptive. One of
the tasks that is running on the platform is the schedulebcheduler tasHs has no
deadline and no period, and is activated every time a task finiskestiex to perform
the context switching. As stated previously, the scheduler selectsext taskl; to be
executed based on EDF. Then, our online algorithm, running as pdm stheduler,
selects an appropriate cache configuration that maintaingnting tof the taskT; while
saving as much energy as possible.

The platform’s cache subsystem is assumed to have a finite nurhhmssible
configurationsCy, C, ... C,. Each configuratiorC; will be different than any other
configurationC; by at least one of the configurable parametesishe size, line size or
cache associativity. Among all valid configurations, one of them is the so-called
reference configuratiorC,. The reference configuration is assumed to be the default

system configuration, or the configuration to be used if dynanaiceceeconfiguration is
not used. For schedulability testing, we assume that the worseegasution time of
each task under the reference configuration is known ahead ofdime dbtained via
offline simulation).

The voltage of the platform can also be set to one of a fieitefsvoltagesv/s, Va ...
V,. A reduction in voltage directly affects the operating frequency of the systesmllas

We assume a time penalty for cache reconfiguration. This pesdtiy writing dirty
data back to memory. The time penalty is captured by a fure{{@s,C;) of the current
configurationC; and the new configuratio@;. This function can be either hard coded
statically, or learned by our online algorithm during run time.

As with time, there is also a power penalty associated \&ithecreconfiguration that
is taken into account in our reported results. The power penggytially due to writing
dirty data back to memory and is a function of the current andaweconfiguration as
well as the last task that executed.

In a similar fashion, we assume a constant time penaltyefectsng a new processor
operating point (i.e., voltage/speed).

3.2. Proposed Solution

Any feasible solution in this context must address a multi-olbgcproblem:
minimize power while still meeting task deadlines. In a rabijective problem, it is
usually the case that one specific solution is good for one objectivapbsb good for
the other ones. In the universe of different configurations, we identify some
configurations that are better than all the other ones fagast lone of the objectives.
These are the so-called Pareto-optimal solutions.

Assuming the exact set of Pareto-optimal voltage and cachegematfons for each
task are known, our online algorithm, after performing EDF scheduydioks the Pareto-
optimal configuration that best fills the slack given the nask to be executed as shown
in Algorithm 1.

Algorithm 1: Schedule
Input: T, To... T,
Qut put: Tpex
Qut put: V, C //voltage and cache points
Thext :=EDF(Ti, To... Tp);
slack := calculate_utilization(); // see Eq. 1
target_time :=T next -fastest/slack; // see Eq. 2
/ assume P’s are sorted w.r.t. execution time
for P 0O Tphe .Pareto-optimal-set do
if P.time > target time t hen
br eak;
<V, &C= PV, C

The challenge, thus, is to compute the voltage and cache Pareto-optimal coafigurat
for each task. Computing the Pareto-optimal set for the voltagmetaais trivial, since
all the voltage configurations are part of the Pareto-optimaHsestever, that is not the
case for the cache parameters, and extensive simulationseated in order to compute
the exact Pareto-optimal set in this case.

For practical reasons, we have considered computing the foptetal sets online.
However, due to computation overhead, it is not feasible to compute ttie Rad@ato-
optimal sets. Instead, an approximation of the Pareto-optimal seffisent. In section
6, we present our online algorithm to compute the approximate Pareto-optimal sets.

Given the Pareto-optimal sets (or an approximation in the onlimgd, ¢he system can
trade-off power consumption with execution time by selecting dméiguration that is
best suited to fill the excess processing time or cache icap@e., slack). The
configuration selection is based on the utilization rate ofptioeessor. The utilization
rate of the processor is calculated every time a task finishes executidmemever a task
is added or removed to and from the system. At any moment, givethéhtdsks are
sorted according to EDF, the utilization rate can be calculated as follows.

Zi:exec_ti me;

util = ma = :
O | deadling —current_time

Eq. (1)

For the utilization calculation, the best case execution timendtuhecessarily most
energy efficient) of each task is used. Given this utibratate, we calculate the target
execution time for the next ta3kas shown below.

target _exec_time; = exec_time (il Eq. (2)

Given the target execution time, the scheduler is able tot dbled?areto-optimal
configuration that has a time less, but closest to the target time.

4. Experimental Setup

In order to evaluate the effects and benefits of our onlineritdgn we have
performed several simulations. In our simulations, we have considdfecenli task
timings and have experimented with only DVS, only DCR, and the corinat DVS
and DCR.

Our simulations were performed on a target platform that is cadpokta MIPS
processor, unified L1 reconfigurable cache, on-chip memory, and tbeiased busses
between the cache and the processor, as well as cache and orectopyras depicted
in Figure 1. In addition, our platform includes a hardware power monitarefdtime
power measurements.

uP « > Unified $ » Main Memory
A A, ‘ N ‘P\\Ower
DC-DC Timer | Monitor
Converter

Figure 1 - The Target Platform

Task running on our platform are able to dynamically modify tlibeaonfiguration
through the use of a dedicated register. Similarly, task running orplatiorm can
dynamically scale the voltage via the DC/DC converter. Theieghitache can be
configured to accommodate different cache sizes, line sizdgjegrees of associativity.
Cache size ranges from 1K to 32K, in powers of two intervals. sire can be set to
values between 4 and 64, also in power of 2 increments. Finally, theeslegfe
associativity are 1 (direct mapped cache), 2, 4 and 8. The total nofhjbessible cache
configurations is the cross-product of these parameters, resutB20 different valid
platform configurations. The DVS sub-system of our platform is neodafter the Intel
XScale commercial processor [21]. Specifically, there are 7ilpessltage/frequency
combinations that range from a fast, 400 MHz, working at 1.3 V, dowrstowser 100
MHz clock operating at 1V.

In our experiments, we ran the task-set under different systemarios, as listed
below:

(A) Largest cache (largest size, line, and associativity) caiafignn and maximum

voltage. This is the platform configuration for highest performance.

(B) Typical cache configuration and static voltage. Typical cadreiguration is
derived from an offline analysis of the benchmarks, leading to checa
configuration that would perform reasonably well (in terms of poaed
performance) over a large set of the benchmarks executed.

(B1) running at 400Mhz
(B2) running at 330Mhz
(B3) running at 300Mhz

(C) Large cache configuration and fixed voltage. The processor volag offline

to a fixed voltage, and no dynamic adjustments are made.
(C1) running at 300Mhz
(C2) running at 266Mhz

(D) Large cache configuration and DVS. In this configuration, we can ibéroeh
DVS in a system that has a general, high performance cache configuration.

(E) Typical cache configuration and DVS. In this configuration, we caeflidrom
DVS in a system that has a tuned cache configuration.

(F) DCR and fixed voltage. In this case, the voltage is fixed, and #chec
configuration is modified at run-time, according to the task that is running;

(F1) running at 400Mhz
(F2) running at 330Mhz

(F3) running at 300Mhz

(G) DCR and DVS. The combination of DVS and DCR potentially maxesithe

power savings and yield a better usage of the available slack.

The selected applications represent a mix of large, medium, aalli embedded
applications drawn from the PowerStone [8], MediaBench [23], and MiB¢R2]
application sets. Specifically, we selectet?2 (modem protocol)g3fax (fax encoding),
crc (checksum calculation) andompress (the Unix compression utility). The task
deadlines were set so that different amount of slack weréablato be used by our
online algorithm.

Our reported time and power results include all the penalsissceted with having
DVS and cache reconfiguration. In the DVS case, the time tyasalonsidered to be the
time needed by the PLL clock circuit to stabilize. The powealtg is due to the power
dissipation in the DC-DC converter. The cache reconfiguration pemallydes the
effects of the cache flush before each reconfiguration, and tdentskes that result
from the fact that the cache is cleared before every task is executed.

For this work, we assumed that tasks are non-preemptive and thatxibeute to
completion before yielding the processor back to the scheduler. Althoisgbassible to
apply dynamic cache reconfiguration to a preemptive systemetcurring penalties of
flushing the cache, associated to the extra cold misses thatvaoenra task is replaced
in the processor would probably reduce the overall savings.

5. Combining DVS and DCR

In our first set of experiments we attempted to estimatedissible savings by the
combination of DVS and DCR. In order to get a more accurate astiof the largest
savings possible, the operating system was fed with the adttoRoptimal sets. We
call this an Oracle solution, since it knows the behavior of the applications beforehand.

We observed that the combination of DVS and DCR had a potential der avings
than either of the two techniques alone. However, the effective energy saasgsyivly
dependable on the deadlines (and so on the slack available), as expettiedl
summarizes the results for the different scenarios and platform confogsati

Configuration D=19.0ms D=20.3ms D=22.5ms
(A) 32K,64,8,400Mhz 2.26W 2.29W 2.33W
13.4ms 13.4ms 13.4ms
(C1) 32K,64,8,300Mhz 1.14W 1.16W 1.19wW
18ms 18ms 18ms
(C2) 32K,64,8,266Mhz n/a 0.99W 1.02wW
20.2ms 20.2ms
(D) 32K,64,8,DVS 1.04W 1.04W 0.93W
18.9ms 19.6ms 21.9ms
(B1) 16K,16,2,400Mhz 0.65W 0.67W 0.69W
16.3ms 16.3ms 16.3ms
(B2) 16K,16,2,330Mhz n/a 0.51W 0.54W
19.7ms 19.7ms
(B3) 16K,16,2,300Mhz n/a n/a 0.34W
21.7ms
(E) 16K,16,2,DVS 0.53W 0.50W 0.44W
18.5ms 19.2ms 22.3ms
(F1) Dynamic,400Mhz 0.55W 0.52W 0.47TW
18.7ms 20.2ms 21.7ms
(F2) Dynamic,330Mhz 0.56W 0.51W 0.45W
18.4ms 20.2ms 22.4ms
(F3) Dynamic,300Mhz n/a n/a 0.33W
22.3ms
(G) Dynamic,DVS 0.52W 0.45W 0.32W
18.9ms 20.1ms 22.4ms

n/a = not possible to meet time constrains with the respective configuration

Table 1. Summary of experimental results.

Based on Table 1, we conclude that a DVS-only system perfoighfi\sbetter than a
DCR-only system. For example, the results of configuration\ES(Dnly) and F2 (DCR
only) are very close, with a small advantage in terms of powdt. tblowever, the
difference is almost irrelevant. DVS and DCR perform veryilainhy in all scenarios. At
the same time, it is possible to notice that the combinatio’V& &d DCR (experiment
G) always has better overall savings than either of the techniques alone.

Based on Table 1, we observe that the additional savings providad bgmbination
of DVS and DCR increases with larger slacks. In the 19 ms deasltienario, there is
almost no gain in adding DCR to the system (i.e., changing from E to G). Howetles, i
20.3 ms and 22.5 ms, there is an extra saving of 10% and 27%, respectively.

Table 1 also shows that combining DVS and DCR allows a bettge uwdahe slack.
For example, in the 20.3 ms scenario, DVS only (experiment E)@ad@vn execution
to 19.2 ms, leaving 1.1 ms unused. When DCR is combined to DVS (experipenée G
execution time is stretched to 20.1 ms, almost fulfilling the alkl processing time.
DCR only (experiment F2) has an execution time that is evenrctmsempletely using
the slack. Overall, experiment G is consistently closer to @adirige available slack than
DorE.

|
| |
| N
I =bF INext =
: v v itask
' :
I .
| Phase I: Paretp Phase II: |
- H—>
l discovery V/$ selector Next V/$
: Iconﬁg.
|
|
I Scheduler Task database I
|

Figure 2 - The Online Algorithm

6. Online Reconfiguration

As an alternative to pre-computing the exact Pareto-optimal, s$kis section
introduces an online algorithm for calculating an approximation of #reté*optimal
sets.

This online algorithm uses the same scheduling algorithm tlaat discussed in
Section 3. Here, the OS scheduler additionally interleaves the eaatf@n selection
with the configuration discovery algorithm, as depicted in Figure &r &fch invocation
of the scheduler, a new point may be added to the Pareto-optimal sets.

In our algorithm, a common task configuration database is shared hetigeevery
and selection. The database is build incrementally by the Risetovery algorithm, and
is used to keep information about the Pareto-optimal configurations knofan #dter a
finite number of iterations, the discovery process is considereshédiand the database
is stable.

6.1. Discovery Algorithm

The main objective of the Pareto discovery algorithm is to converge aneasonable
approximation of the actual Pareto-optimal set for each task.

The discovery procedure starts with the reference configuratithre amly member of
the Pareto-optimal sets. Gradually, each of the cache sizesiliegand associativity
parameters are varied, individually (i.e., one change per schaaweation) in a greedy
search process. Specifically, in a first stage, staftorg the reference configuration, the
cache size parameter is changed until all possible settingsleawn explored, or the task
timings are affected beyond certain threshold. Then, in a simaghidn, during second
and third stages, the cache line and associativity parametrsaded for all the
configurations in the Pareto database at the time.

A new pointp; is introduced into the pseudo-Pareto-optimaPsitt has a better time
or power measure than every other pjrifl P. The newly added poim will invalidate
any existing pointp; O P if p; has an inferior time and power measures tpan
Invalidated points are removed from the BefThe discovery algorithm is merged with
the scheduler, resulting Algorithm 2.

Algorithm 2: Discover and Schedule

I nput: Teur /I current task

| nput : T, To... T,

Qut put @ Thex /I next task

Qutput V, C /I voltage and cache

/I compute delta time and power

dtime :=time() - T curr -Start_time

dpower := (energy() - T crr -Start_energy)/dtime

/l introduce new Pareto points
is_pareto := true
for P O T .Pareto-optimal-set do
i f P.time < dtime && P.power < dpower t hen
is_pareto := false
i f is_pareto t hen
T e P:=TiP O{C ;}
for P O Teur .Pareto-optimal-set do
if(P.time > dtime && P.power > dpower)
T iP=T ,P—{P}
/I perform standard scheduling
Thext :=EDF(T1, To... Tp);
/I explore or select
i f need_to_explore(T next) then

C,V :=discover_pareto(T next)
el se
C,V := pick_best_config(T next) /1 see Alg. 1

/I prepare for next execute
Thext -Start_time := time()

Thext -Start_energy := energy()
return(T pext , V, C)

The complexity of the discovery algorithm can be analyzed foh esperation.
Checking if a new point is a Pareto-optimal pointO8og N), whereN is the total
number of Pareto configurations in the set, since the Pareto lsgttisn a binary heap
data structure. Whenever a point is added to the set, it demanddfitteatng process is
performed, to eliminate the configurations that are invalidatethdyéwly added point.
This operation i©(N), since one new point might invalidate all the other points in the se
if it has a better execution time and power consumption than atittiee points in the
set.

6.2. Simulation Results

The power consumption results for the online approach are depictedgure B,
Figure 4, and Figure 5. For comparison purposes, all the figures inbligéots for the
online system as well as the Oracle system (see Sectioan®)the reference
configuration.

As expected, the online performance is slightly worse than thel®©DCR+DVS
implementation. The worst increase happened in the case when thieal&a22.5 ms,
where the power consumption increased by as much as 20%. Desptgtih@verall
increase in power, savings are still higher when DVS and DCR@ardined when
compared to either technique alone.

The online discovery behavior can also be seen in the plots shown in Fjdtigeire
4, and Figure 5. Initially, the power consumption oscillates quicklythassystem

discover new Pareto-optimal points. As the discovery convergespaiwer profile
stabilizes.

Deadline = 19ms
2.5 q
2 -
1.5 - —Online
5 —— Reference
§ Oracle, Dynamic+DVS
o —— Oracle, DVS
11 —— Oracle, Dynamic
A,
! L L | apng
0.5 ~ =
0
Time
Figure 3 - Online Behavior, Deadline = 19ms
Deadline = 20.3ms
2.5 4
2 -
15 - ——Online
5 — Reference
g Oracle, Dynamic+DVS
o —— Oracle, DVS
14 —— Oracle, Dynamic
. . 1 fln
1]] VN LD h i
0.5 4 v |
0
Time

Figure 4 - Online Behavior, Deadline = 20.3ms

Deadline = 22.5ms

2.5 7

15 - — Online
—— Reference

Oracle, Dynamic+DVS
—— Oracle, DVS

14 M A — Oracle, Dynamic
AL T

05 | IWHH' ‘Ivlﬂ' T P

" AN N ——

Power

Time

Figure 5 - Online Behavior, Deadline = 22.5ms

Furthermore, while the system is testing new cache confignsatsome deadlines are
eventually lost. In the tighter execution, with deadline set to 19.6% of the deadlines
are lost during discovery. On the other hand, when deadline is 22.5 mgl%rdf the
deadlines are lost during the discovery of the pseudo-Pareto-optimajucatbns.
Clearly, the online approach is not suitable for real-time egipdins with strict
deadlines. In the hard real-time instances, the static approadisdovering Pareto-
optimal points should be utilized

As a final remark, we observed that the discovery process esduiranalyze about
60-70 platform configurations in order to converge. This is less thandfO¥e 820
possible configurations when cache and voltage are combined.

7. Conclusions

We have discussed the combination of Dynamic Voltage Scaling (BMS&Pynamic
Cache Reconfiguration (DCR) for power reduction is embedded sysidmshave
analyzed the power savings achievable using these techniquesorlona combined
way. We have presented an online algorithm for dynamicdkgtseg the best cache and
voltage configuration using the Pareto-optimal sets. We have alsenped an online
algorithm for discovery of the Pareto-optimal sets. Our reshitis/ shat the combination
of DVS and DCR can achieve 27% more savings when compared to DVS alone.

Acknowledgments

This work was supported in part by a National Science FoundationdX#w@205712)
and by a CAPES Foundation, Brazil scholarship (#1054015).

References

[1] T. Mudge. Power: A First Class Architectural Desigonstraint. IEEE Computer, vol. 34, no. 4, pp.
52-57, 2001.

[2] International Technology Roadmap for SemicondudiidiRS), 2001.

[3] D. Wingard, R. Fordham, J. Ready, F. Romeo, A. liee®a. Embedded system design: the real story,
in Proceedings of the Design Automation Confere@6671.

[4] F. Vahid, T. Givargis. The case for a configure-emdcute paradigm, in the Proceedings of the
International Workshop on Hardware/Software Capgsl999.

[5] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Siv#samaniam, M.J. Irwin. Hardware and Software
Techniques for Controlling DRAM Power Modes. IEEEiisactions on Computers, vol. 50, no. 11,
pp. 1154-1173, 2001.

[6] L. Geppert, T.S. Perry. Transmeta's magic showEIBBectrum, vol. 37, no. 5, pp. 26-33, May 2000.

[7] Motorola M*CORE Product Page. http://www.motorotant

[8] A. Malik, B. Moyer, D. Cermak. A Lower Power UnifleCache Architecture Providing Power and
Performance Flexibility. International Symposiumlasw Power Electronics and Design, June 2000.

[9] T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Braztar. A Dynamic Voltage Scaled Microprocessor
System. IEEE International Solid-State Circuits feoence, Nov. 2000.

[10]T. Pering, T. Burd, R. Brodersen. The Simulatiord &wvaluation of Dynamic Voltage Scaling
Algorithms. International Symposium on Low Poweedtonics and Design. Aug. 1998.

[11]A. Rae, S. Parameswaran. Voltage Reduction of Apptin-Specific Heterogeneous Multiprocessor
Systems for Power Minimization. ASP-DAC, 2000, p$7-152.

[12]P. Petrov, A. Orailoglu. Towards Effective EmbeddBdocessors in Codesigns: Customizable
Partitioned Caches. International Workshop on Haré¥software Codesign, 2001.

[13]C. Su, A.M. Despain. Cache Design Trade-offs fow&oand Performance Optimization: A Case
Study. International Symposium on Low Power Eleuts and Design, 1995.

[14]C. Zhang, F. Vahid, W. Najjar. A Highly Configur@bCache Architecture for Embedded Systems. In
Proceedings of International Symposium on CompAtehitecture. 2003.

[15]C. Zhang, F. Vahid. Cache Configuration Exploratmm Prototyping Platforms. In Proceedings of
International Workshop on Rapid Systems Prototypiug. 2003.

[16]W. Tang, A. Veidenbaum and R. Gupta. Architectudaaptation for Power and Performance.
Proceedings of the International Conference on &opeputing, pp 145-154, 1999.

[17]S. Dropsho, et al. Integrating Adaptive On-Chipr&ge Structures for Reduced Dynamic Power.
Proceedings of the International Conference onlRR&rchitectures and Compilation Techniques,
2002.

[18]P. Pillai, K. Shin. Real-Time Dynamic Voltage Saoglifor Low-Power Embedded Operating Systems.
In Proceedings of 18th ACM Symposium on Operatiggt&ns Principles (SOSP'01), October, 2001

[19]1. Hong, M. Potkonjak, M. Srivastava. On-Line Schity of Hard Real-Time Tasks on Variable
Voltage Processor. In Proceedings of Internati@uaiference on Computer Aided Design, 1998.

[20]1X. Fan, C Ellis, A. Lebeck. The Synergy between Boaware Memory Systems and Processor
Voltage Scaling. Technical Report CS-2002-12, Depant of Computer Science, Duke University,
2002.

[21]Intel Corporation. Intel PXA255 Processor Develdpdtanual. Mar. 2003.

[22]M. Guthaus, J. Ringenberg, D. Ernst, T. AustinMidge, R. Brown. MiBench: A free, commercially
representative embedded benchmark suite. IEEE Attu@&l Workshop on Workload Characterization.
Dec. 2001.

[23]C. Lee, M. Potkonjak, W. Mangione-Smith. MediaBenehtool for evaluating and synthesizing
multimedia and communications systems. In Procesdiof Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 1997, pp. 33b.

[24]T. Givargis, F. Vahid. Platune: A Tuning Framewoftr System-on-a-chip Platforms. IEEE
Transactions on Computer-Aided Design of Integr&&duits and Systems, v21, n11, pp 1317-1327,
2002.

