
Dynamic Voltage and Cache Reconfiguration for Low
Power

Andre Costi Nacul and Tony Givargis
Department of Computer Science
University of California, Irvine

Center for Embedded Computer Systems
{nacul, givargis}@ics.uci.edu

Technical Report #03-34
November 7, 2003.

Abstract

Given a set of real-time tasks scheduled using the earliest deadline first (EDF)
algorithm, we discuss two techniques for reducing power consumption while meeting all
timing requirements. Specifically, we proposed a combined Dynamic Voltage Scaling
(DVS) and Dynamic Cache Reconfiguration (DCR) technique for low power embedded
systems. Toward this goal, we first analyze the potential power savings achievable by
each technique (DVS or DCR) alone, then, we present an online algorithm that combines
both techniques, reducing the power consumption even more. Our online algorithm
gradually constructs a set of pseudo-Pareto-optimal system configurations for each task,
which it then uses to determine a low power operating point meeting timing
requirements. We evaluate the possible savings and observe that they are highly
correlated with the specific timing requirements of the task. We also show that the
combination of voltage and cache reconfiguration provides the best overall power
savings, as much as 28% when considering the total platform power consumption.

Table of Contents
TABLE OF CONTENTS.. 2

1. INTRODUCTION .. 3

2. RELATED WORK... 3

3. PROBLEM FORMULATION .. 4

3.1. OVERVIEW... 4
3.2. PROPOSED SOLUTION... 5

4. EXPERIMENTAL SETUP.. 6

5. COMBINING DVS AND DCR.. 8

6. ONLINE RECONFIGURATION ... 10

6.1. DISCOVERY ALGORITHM ... 10
6.2. SIMULATION RESULTS... 11

7. CONCLUSIONS... 13

ACKNOWLEDGMENTS .. 14

REFERENCES.. 14

1. Introduction

Minimizing energy consumption of electronic devices has become a first class system
design concern [1], especially, in the areas of embedded and portable devices, since such
devices draw their current from batteries that place a limited amount of energy at the
system’s disposal. On the other hand, in recent years, increased application demand for
functionality [2][3], market pressures, and shortening of design cycles, have led to a new
system-on-a-chip (SOC) platform based design methodology [4].

A platform is a computing system composed of artifacts such as general-purpose
processors, hierarchy of caches, on-chip main memory, I/O peripherals, co-processors,
and possibly FPGA fabric for post-fabrication customizations. These platforms are
generally targeted toward a large number of applications from a specific domain (e.g.,
networking or multimedia). To address the need for energy efficiency, the artifacts within
these SOC platforms are often designed to be dynamically configurable. Features such as
processor and memory power modes [5]; dynamic voltage scaling [6]; and run-time cache
reconfiguration (e.g., Motorola’s M*CORE [7][8]) have been commercially introduced.
Dynamic reconfiguration of the platform provides an opportunity for operating system
(OS) and/or application tasks to carry out strategic high-level resource management for
low power.

Dynamic Voltage Scaling (DVS) has been extensively studied and shown to be a very
efficient power saving technique [9][10][11]. More recently, some authors have focused
their attention on cache reconfiguration, since a good tuning of the memory hierarchy
also yields significant power savings [12][13][14][15][16][17]. Although DVS and
Dynamic Cache Reconfiguration (DCR) are orthogonal solutions and could be applied to
the same system individually in an optimal way, their combined effect on power
consumption might not be simply a linear combination of the two optimal solutions. Both
DVS and DCR rely on the same principle to save power: the processor/cache does not
need to run at full speed/capacity at every moment in order to meet a task’s deadline. We
commonly refer to this excess processor speed or cache capacity as slack. In general,
significant energy savings is achievable when reducing the slack.

In this work, we propose a combined DVS and DCR online algorithm that
dynamically adapts the processor speed (i.e., voltage) and the cache subsystem to the
workload requirements for the purposes of saving energy. The workload is considered to
be a set of tasks with real-time deadlines. Our online algorithm is invoked as part of the
OS scheduler, which performs standard earliest deadline first (EDF) task scheduling first.
Then, our online algorithm, determines an ideal voltage/cache configuration for the
current executing task.

This paper is organized as follows. In Section 2, we present some related previous
work. In Section 3, we formalize the problem and introduce our proposed solution. In
Section 4, we describe our experimental setup. In Section 5, we present our simulation
results. In section 6, we introduce the algorithm for learning the configurations while the
system is running. In Section 7, we state our concluding remarks.

2. Related Work
Dynamic Voltage Scaling (DVS) is an approach for power reduction that has gained

much attention in the recent years. With DVS, one can save energy with minor

performance degradation by reducing the operating supply voltage of the processor, or
even of the whole system [9][10]. The premise of all DVS techniques is to achieve a
steady/even processor speed while meeting all tasks deadlines. This is often
accomplished by appropriately scheduling tasks and selecting voltage settings that
eliminate the slack [11][18][19]. Some of these approaches consider an ideal processor
with infinite voltage settings and no reconfiguration penalty while others focus on exact
DVS behavior of commercial processors.

A great amount of previous work has also shown that statically tuning the cache
subsystem to the running task can result in significant energy savings [12][13]. For
example, Motorola’s recent version of an M*CORE processor IC has a configurable 4
way set associative unified cache, in which each way can be disabled, or used for
instructions, data, or both. Malik et al. [8] have shown that the best cache configuration
depends heavily on the particular running task. Likewise, Zhang et al. [14][15] analysis
shows that having a dynamically configurable line size architecture can have a significant
(up to 50%) energy saving potential in embedded systems.

Tang et al. [16] have proposed an architectural scheme for dynamic cache line sizing.
Their approach is to introduce a hardware unit along with a memory and cache protocol
for fine grained tuning of the line size. In contrast, our approach is a software technique
that allows the OS to take charge of cache reconfiguration, taking into account a dynamic
workload and application requirements.

In a similar effort, Dropsho et al. [17] have considered disabling cache ways (i.e.,
associativity) dynamically to achieve low power. They propose cache architectures
intended for dynamic reconfiguration. Further, they provide a hardware solution for
adaptivity. As with the previous technique, our approach is a software technique
performing the resource management at the task and OS levels.

Fan et. al. [20] also analyze the interactions between processor and memories,
showing that there is a benefit in combining a memory-aware system with a DVS-
enabled processor. However, their solution involves only shutting down parts of the main
memory, while we try to combine the cache subsystem and the processor speed.

3. Problem Formulation
3.1. Overview

Our problem formulation is as follows. The system is composed of N tasks, T1, T2 …
Tn. Each task Ti has a deadline Di and a period Pi. To generalize the solution, a non
periodic or sporadic task Ti is assumed to have Pi = 0. Tasks are non-preemptive. One of
the tasks that is running on the platform is the scheduler Ts. Scheduler task Ts has no
deadline and no period, and is activated every time a task finishes execution to perform
the context switching. As stated previously, the scheduler selects the next task Tj to be
executed based on EDF. Then, our online algorithm, running as part of the scheduler,
selects an appropriate cache configuration that maintains the timing of the task Tj while
saving as much energy as possible.

The platform’s cache subsystem is assumed to have a finite number of possible
configurations C1, C2 … Cn. Each configuration Ci will be different than any other
configuration Cj by at least one of the configurable parameters: cache size, line size or
cache associativity. Among all valid configurations, one of them is the so-called
reference configuration Cr. The reference configuration is assumed to be the default

system configuration, or the configuration to be used if dynamic cache reconfiguration is
not used. For schedulability testing, we assume that the worse case execution time of
each task under the reference configuration is known ahead of time (e.g., obtained via
offline simulation).

The voltage of the platform can also be set to one of a finite set of voltages V1, V2 …
Vn. A reduction in voltage directly affects the operating frequency of the system as well.

We assume a time penalty for cache reconfiguration. This penalty is for writing dirty
data back to memory. The time penalty is captured by a function PT(Ci,Cj) of the current
configuration Ci and the new configuration Cj. This function can be either hard coded
statically, or learned by our online algorithm during run time.

As with time, there is also a power penalty associated with cache reconfiguration that
is taken into account in our reported results. The power penalty is partially due to writing
dirty data back to memory and is a function of the current and the new configuration as
well as the last task that executed.

In a similar fashion, we assume a constant time penalty for selecting a new processor
operating point (i.e., voltage/speed).

3.2. Proposed Solution

Any feasible solution in this context must address a multi-objective problem:
minimize power while still meeting task deadlines. In a multi-objective problem, it is
usually the case that one specific solution is good for one objective, but not so good for
the other ones. In the universe of different configurations, we can identify some
configurations that are better than all the other ones for at least one of the objectives.
These are the so-called Pareto-optimal solutions.

Assuming the exact set of Pareto-optimal voltage and cache configurations for each
task are known, our online algorithm, after performing EDF scheduling, picks the Pareto-
optimal configuration that best fills the slack given the next task to be executed as shown
in Algorithm 1.

Algorithm 1: Schedule
Input: T1, T2 … Tn
Output: Tnext
Output: V , C // voltage and cache points
Tnext := EDF(T1, T2 … Tn);
slack := calculate_utilization(); // see Eq. 1
target_time := T next .fastest/slack; // see Eq. 2
// assume P’s are sorted w.r.t. execution time
for P ∈ Tnext .Pareto-optimal-set do
 if P. time > target_time then
 break;
 < V, C> := P.< V, C>

The challenge, thus, is to compute the voltage and cache Pareto-optimal configurations

for each task. Computing the Pareto-optimal set for the voltage parameter is trivial, since
all the voltage configurations are part of the Pareto-optimal set. However, that is not the
case for the cache parameters, and extensive simulations are needed in order to compute
the exact Pareto-optimal set in this case.

For practical reasons, we have considered computing the Pareto-optimal sets online.
However, due to computation overhead, it is not feasible to compute the exact Pareto-
optimal sets. Instead, an approximation of the Pareto-optimal set is sufficient. In section
6, we present our online algorithm to compute the approximate Pareto-optimal sets.

Given the Pareto-optimal sets (or an approximation in the online case), the system can
trade-off power consumption with execution time by selecting the configuration that is
best suited to fill the excess processing time or cache capacity (i.e., slack). The
configuration selection is based on the utilization rate of the processor. The utilization
rate of the processor is calculated every time a task finishes execution, or whenever a task
is added or removed to and from the system. At any moment, given that the tasks are
sorted according to EDF, the utilization rate can be calculated as follows.

��
�
�
�
�

�

�

��
�
�
�
�

�

�

−
=

�
=

∀ timecurrentdeadline

timeexec

util
i

i

j
j

i _

_

max 1
 Eq. (1)

For the utilization calculation, the best case execution time (but not necessarily most

energy efficient) of each task is used. Given this utilization rate, we calculate the target
execution time for the next task Tj as shown below.

util
timeexec

timeexectarget j
j

_
__ = Eq. (2)

Given the target execution time, the scheduler is able to select the Pareto-optimal

configuration that has a time less, but closest to the target time.

4. Experimental Setup
In order to evaluate the effects and benefits of our online algorithm, we have

performed several simulations. In our simulations, we have considered different task
timings and have experimented with only DVS, only DCR, and the combination of DVS
and DCR.

Our simulations were performed on a target platform that is composed of a MIPS
processor, unified L1 reconfigurable cache, on-chip memory, and the associated busses
between the cache and the processor, as well as cache and on-chip memory, as depicted
in Figure 1. In addition, our platform includes a hardware power monitor for real-time
power measurements.

Task running on our platform are able to dynamically modify the cache configuration

through the use of a dedicated register. Similarly, task running on our platform can
dynamically scale the voltage via the DC/DC converter. The unified cache can be
configured to accommodate different cache sizes, line sizes, and degrees of associativity.
Cache size ranges from 1K to 32K, in powers of two intervals. Line size can be set to
values between 4 and 64, also in power of 2 increments. Finally, the degrees of
associativity are 1 (direct mapped cache), 2, 4 and 8. The total number of possible cache
configurations is the cross-product of these parameters, resulting in 820 different valid
platform configurations. The DVS sub-system of our platform is modeled after the Intel
XScale commercial processor [21]. Specifically, there are 7 possible voltage/frequency
combinations that range from a fast, 400 MHz, working at 1.3 V, down to a slower 100
MHz clock operating at 1V.

In our experiments, we ran the task-set under different system scenarios, as listed
below:

(A) Largest cache (largest size, line, and associativity) configuration and maximum
voltage. This is the platform configuration for highest performance.

(B) Typical cache configuration and static voltage. Typical cache configuration is
derived from an offline analysis of the benchmarks, leading to a cache
configuration that would perform reasonably well (in terms of power and
performance) over a large set of the benchmarks executed.

(B1) running at 400Mhz
(B2) running at 330Mhz
(B3) running at 300Mhz

(C) Large cache configuration and fixed voltage. The processor voltage is set offline
to a fixed voltage, and no dynamic adjustments are made.

(C1) running at 300Mhz
(C2) running at 266Mhz

(D) Large cache configuration and DVS. In this configuration, we can benefit from
DVS in a system that has a general, high performance cache configuration.

(E) Typical cache configuration and DVS. In this configuration, we can benefit from
DVS in a system that has a tuned cache configuration.

(F) DCR and fixed voltage. In this case, the voltage is fixed, and the cache
configuration is modified at run-time, according to the task that is running;

(F1) running at 400Mhz
(F2) running at 330Mhz

Figure 1 - The Target Platform

µP Unified $

Power
Monitor DC-DC

Converter
Timer

Main Memory

(F3) running at 300Mhz
(G) DCR and DVS. The combination of DVS and DCR potentially maximizes the

power savings and yield a better usage of the available slack.
The selected applications represent a mix of large, medium, and small embedded

applications drawn from the PowerStone [8], MediaBench [23], and MiBench [22]
application sets. Specifically, we selected v42 (modem protocol), g3fax (fax encoding),
crc (checksum calculation) and compress (the Unix compression utility). The task
deadlines were set so that different amount of slack were available to be used by our
online algorithm.

Our reported time and power results include all the penalties associated with having
DVS and cache reconfiguration. In the DVS case, the time penalty is considered to be the
time needed by the PLL clock circuit to stabilize. The power penalty is due to the power
dissipation in the DC-DC converter. The cache reconfiguration penalty includes the
effects of the cache flush before each reconfiguration, and the cold misses that result
from the fact that the cache is cleared before every task is executed.

For this work, we assumed that tasks are non-preemptive and that they execute to
completion before yielding the processor back to the scheduler. Although it is possible to
apply dynamic cache reconfiguration to a preemptive system, the recurring penalties of
flushing the cache, associated to the extra cold misses that occur when a task is replaced
in the processor would probably reduce the overall savings.

5. Combining DVS and DCR
In our first set of experiments we attempted to estimate the possible savings by the

combination of DVS and DCR. In order to get a more accurate estimate of the largest
savings possible, the operating system was fed with the actual Pareto-optimal sets. We
call this an Oracle solution, since it knows the behavior of the applications beforehand.

We observed that the combination of DVS and DCR had a potential for larger savings
than either of the two techniques alone. However, the effective energy savings was highly
dependable on the deadlines (and so on the slack available), as expected. Table 1
summarizes the results for the different scenarios and platform configurations.

Configuration D=19.0ms D=20.3ms D=22.5ms
(A) 32K,64,8,400Mhz 2.26W

13.4ms
2.29W
13.4ms

2.33W
13.4ms

(C1) 32K,64,8,300Mhz 1.14W
18ms

1.16W
18ms

1.19W
18ms

(C2) 32K,64,8,266Mhz n/a 0.99W
20.2ms

1.02W
20.2ms

(D) 32K,64,8,DVS 1.04W
18.9ms

1.04W
19.6ms

0.93W
21.9ms

(B1) 16K,16,2,400Mhz 0.65W
16.3ms

0.67W
16.3ms

0.69W
16.3ms

(B2) 16K,16,2,330Mhz n/a 0.51W
19.7ms

0.54W
19.7ms

(B3) 16K,16,2,300Mhz n/a n/a 0.34W
21.7ms

(E) 16K,16,2,DVS 0.53W
18.5ms

0.50W
19.2ms

0.44W
22.3ms

(F1) Dynamic,400Mhz 0.55W
18.7ms

0.52W
20.2ms

0.47W
21.7ms

(F2) Dynamic,330Mhz 0.56W
18.4ms

0.51W
20.2ms

0.45W
22.4ms

(F3) Dynamic,300Mhz n/a n/a 0.33W
22.3ms

(G) Dynamic,DVS 0.52W
18.9ms

0.45W
20.1ms

0.32W
22.4ms

n/a = not possible to meet time constrains with the respective configuration

Table 1. Summary of experimental results.

Based on Table 1, we conclude that a DVS-only system performs slightly better than a
DCR-only system. For example, the results of configuration E (DVS only) and F2 (DCR
only) are very close, with a small advantage in terms of power to E. However, the
difference is almost irrelevant. DVS and DCR perform very similarly in all scenarios. At
the same time, it is possible to notice that the combination of DVS and DCR (experiment
G) always has better overall savings than either of the techniques alone.

Based on Table 1, we observe that the additional savings provided by the combination
of DVS and DCR increases with larger slacks. In the 19 ms deadline scenario, there is
almost no gain in adding DCR to the system (i.e., changing from E to G). However, in the
20.3 ms and 22.5 ms, there is an extra saving of 10% and 27%, respectively.

Table 1 also shows that combining DVS and DCR allows a better usage of the slack.
For example, in the 20.3 ms scenario, DVS only (experiment E) can slowdown execution
to 19.2 ms, leaving 1.1 ms unused. When DCR is combined to DVS (experiment G), the
execution time is stretched to 20.1 ms, almost fulfilling the available processing time.
DCR only (experiment F2) has an execution time that is even closer to completely using
the slack. Overall, experiment G is consistently closer to using all the available slack than
D or E.

6. Online Reconfiguration
As an alternative to pre-computing the exact Pareto-optimal sets, this section

introduces an online algorithm for calculating an approximation of the Pareto-optimal
sets.

This online algorithm uses the same scheduling algorithm that was discussed in
Section 3. Here, the OS scheduler additionally interleaves the configuration selection
with the configuration discovery algorithm, as depicted in Figure 2. After each invocation
of the scheduler, a new point may be added to the Pareto-optimal sets.

In our algorithm, a common task configuration database is shared between discovery
and selection. The database is build incrementally by the Pareto discovery algorithm, and
is used to keep information about the Pareto-optimal configurations known so far. After a
finite number of iterations, the discovery process is considered finished and the database
is stable.

6.1. Discovery Algorithm

The main objective of the Pareto discovery algorithm is to converge on to a reasonable
approximation of the actual Pareto-optimal set for each task.

The discovery procedure starts with the reference configuration as the only member of
the Pareto-optimal sets. Gradually, each of the cache size, line size, and associativity
parameters are varied, individually (i.e., one change per scheduler invocation) in a greedy
search process. Specifically, in a first stage, starting from the reference configuration, the
cache size parameter is changed until all possible settings have been explored, or the task
timings are affected beyond certain threshold. Then, in a similar fashion, during second
and third stages, the cache line and associativity parameters are varied for all the
configurations in the Pareto database at the time.

A new point pi is introduced into the pseudo-Pareto-optimal set P if it has a better time
or power measure than every other point pj ∈ P. The newly added point pi will invalidate
any existing point pj ∈ P if pj has an inferior time and power measures than pi.
Invalidated points are removed from the set P. The discovery algorithm is merged with
the scheduler, resulting Algorithm 2.

Figure 2 - The Online Algorithm

EDF

Phase I: Pareto

discovery
Phase II:

V/$ selector

Next
task

Next V/$
config.

Task database

Scheduler

Algorithm 2: Discover and Schedule
Input: Tcurr // current task
Input: T1, T2 … Tn
Output: Tnext // next task
Output V, C // voltage and cache
// compute delta time and power
dtime := time() – T curr .start_time
dpower := (energy() – T curr .start_energy)/dtime
// introduce new Pareto points
is_pareto := true
for P ∈ Tcurr .Pareto-optimal-set do
 if P.time < dtime && P.power < dpower then
 is_pareto := false
if is_pareto then

 T curr .P := Ti.P ∪ { C i }
 for P ∈ Tcurr .Pareto-optimal-set do
 if(P.time > dtime && P.power > dpower)
 T i .P := T i .P – { P }
// perform standard scheduling
Tnext := EDF(T1, T2 … Tn);
// explore or select
if need_to_explore(T next) then
 C,V := discover_pareto(T next)
else
 C,V := pick_best_config(T next) // see Alg. 1
// prepare for next execute
Tnext .start_time := time()
Tnext .start_energy := energy()
return(T next , V, C)

The complexity of the discovery algorithm can be analyzed for each operation.

Checking if a new point is a Pareto-optimal point is O(log N), where N is the total
number of Pareto configurations in the set, since the Pareto set is kept in a binary heap
data structure. Whenever a point is added to the set, it demands that a filtering process is
performed, to eliminate the configurations that are invalidated by the newly added point.
This operation is O(N), since one new point might invalidate all the other points in the set
if it has a better execution time and power consumption than all the other points in the
set.

6.2. Simulation Results

The power consumption results for the online approach are depicted in Figure 3,
Figure 4, and Figure 5. For comparison purposes, all the figures include the plots for the
online system as well as the Oracle system (see Section 5) and the reference
configuration.

As expected, the online performance is slightly worse than the Oracle DCR+DVS
implementation. The worst increase happened in the case when the deadline is 22.5 ms,
where the power consumption increased by as much as 20%. Despite the slight overall
increase in power, savings are still higher when DVS and DCR are combined when
compared to either technique alone.

The online discovery behavior can also be seen in the plots shown in Figure 3, Figure
4, and Figure 5. Initially, the power consumption oscillates quickly, as the system

discover new Pareto-optimal points. As the discovery converges, the power profile
stabilizes.

Deadline = 19ms

0

0.5

1

1.5

2

2.5

Time

P
o

w
er

Online

Reference

Oracle, Dynamic+DVS

Oracle, DVS

Oracle, Dynamic

Figure 3 - Online Behavior, Deadline = 19ms

Deadline = 20.3ms

0

0.5

1

1.5

2

2.5

Time

P
o

w
er

Online

Reference

Oracle, Dynamic+DVS

Oracle, DVS

Oracle, Dynamic

Figure 4 - Online Behavior, Deadline = 20.3ms

Deadline = 22.5ms

0

0.5

1

1.5

2

2.5

Time

P
o

w
er

Online

Reference

Oracle, Dynamic+DVS

Oracle, DVS

Oracle, Dynamic

Figure 5 - Online Behavior, Deadline = 22.5ms

Furthermore, while the system is testing new cache configurations, some deadlines are
eventually lost. In the tighter execution, with deadline set to 19 ms, 10% of the deadlines
are lost during discovery. On the other hand, when deadline is 22.5 ms, only 4% of the
deadlines are lost during the discovery of the pseudo-Pareto-optimal configurations.
Clearly, the online approach is not suitable for real-time applications with strict
deadlines. In the hard real-time instances, the static approach to discovering Pareto-
optimal points should be utilized

As a final remark, we observed that the discovery process requires to analyze about
60-70 platform configurations in order to converge. This is less than 10% of the 820
possible configurations when cache and voltage are combined.

7. Conclusions
We have discussed the combination of Dynamic Voltage Scaling (DVS) and Dynamic

Cache Reconfiguration (DCR) for power reduction is embedded systems. We have
analyzed the power savings achievable using these techniques alone or in a combined
way. We have presented an online algorithm for dynamically selecting the best cache and
voltage configuration using the Pareto-optimal sets. We have also presented an online
algorithm for discovery of the Pareto-optimal sets. Our results show that the combination
of DVS and DCR can achieve 27% more savings when compared to DVS alone.

Acknowledgments
This work was supported in part by a National Science Foundation Award (#0205712)

and by a CAPES Foundation, Brazil scholarship (#1054015).

References
[1] T. Mudge. Power: A First Class Architectural Design Constraint. IEEE Computer, vol. 34, no. 4, pp.

52-57, 2001.
[2] International Technology Roadmap for Semiconductors (ITRS), 2001.
[3] D. Wingard, R. Fordham, J. Ready, F. Romeo, A. de Oliveira. Embedded system design: the real story,

in Proceedings of the Design Automation Conference, 2001.
[4] F. Vahid, T. Givargis. The case for a configure-and-execute paradigm, in the Proceedings of the

International Workshop on Hardware/Software Codesign, 1999.
[5] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, M.J. Irwin. Hardware and Software

Techniques for Controlling DRAM Power Modes. IEEE Transactions on Computers, vol. 50, no. 11,
pp. 1154-1173, 2001.

[6] L. Geppert, T.S. Perry. Transmeta's magic show. IEEE Spectrum, vol. 37, no. 5, pp. 26-33, May 2000.
[7] Motorola M*CORE Product Page. http://www.motorola.com.
[8] A. Malik, B. Moyer, D. Cermak. A Lower Power Unified Cache Architecture Providing Power and

Performance Flexibility. International Symposium on Low Power Electronics and Design, June 2000.
[9] T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Brodersen. A Dynamic Voltage Scaled Microprocessor

System. IEEE International Solid-State Circuits Conference, Nov. 2000.
[10] T. Pering, T. Burd, R. Brodersen. The Simulation and Evaluation of Dynamic Voltage Scaling

Algorithms. International Symposium on Low Power Electronics and Design. Aug. 1998.
[11] A. Rae, S. Parameswaran. Voltage Reduction of Application-Specific Heterogeneous Multiprocessor

Systems for Power Minimization. ASP-DAC, 2000, pp. 147-152.
[12] P. Petrov, A. Orailoglu. Towards Effective Embedded Processors in Codesigns: Customizable

Partitioned Caches. International Workshop on Hardware/Software Codesign, 2001.
[13] C. Su, A.M. Despain. Cache Design Trade-offs for Power and Performance Optimization: A Case

Study. International Symposium on Low Power Electronics and Design, 1995.
[14] C. Zhang, F. Vahid, W. Najjar. A Highly Configurable Cache Architecture for Embedded Systems. In

Proceedings of International Symposium on Computer Architecture. 2003.
[15] C. Zhang, F. Vahid. Cache Configuration Exploration on Prototyping Platforms. In Proceedings of

International Workshop on Rapid Systems Prototyping. Jun. 2003.
[16] W. Tang, A. Veidenbaum and R. Gupta. Architectural Adaptation for Power and Performance.

Proceedings of the International Conference on Supercomputing, pp 145-154, 1999.
[17] S. Dropsho, et al. Integrating Adaptive On-Chip Storage Structures for Reduced Dynamic Power.

Proceedings of the International Conference on Parallel Architectures and Compilation Techniques,
2002.

[18] P. Pillai, K. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating Systems.
In Proceedings of 18th ACM Symposium on Operating Systems Principles (SOSP'01), October, 2001

[19] I. Hong, M. Potkonjak, M. Srivastava. On-Line Scheduling of Hard Real-Time Tasks on Variable
Voltage Processor. In Proceedings of International Conference on Computer Aided Design, 1998.

[20] X. Fan, C Ellis, A. Lebeck. The Synergy between Power-aware Memory Systems and Processor
Voltage Scaling. Technical Report CS-2002-12, Department of Computer Science, Duke University,
2002.

[21] Intel Corporation. Intel PXA255 Processor Developer’s Manual. Mar. 2003.
[22] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, R. Brown. MiBench: A free, commercially

representative embedded benchmark suite. IEEE 4th Annual Workshop on Workload Characterization.
Dec. 2001.

[23] C. Lee, M. Potkonjak, W. Mangione-Smith. MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems. In Proceedings of Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 1997, pp. 330 -335.

[24] T. Givargis, F. Vahid. Platune: A Tuning Framework for System-on-a-chip Platforms. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v21, n11, pp 1317-1327,
2002.

