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Abstract 
 

Given a set of real-time tasks scheduled using the earliest deadline first (EDF) 
algorithm, we discuss two techniques for reducing power consumption while meeting all 
timing requirements. Specifically, we proposed a combined Dynamic Voltage Scaling 
(DVS) and Dynamic Cache Reconfiguration (DCR) technique for low power embedded 
systems. Toward this goal, we first analyze the potential power savings achievable by 
each technique (DVS or DCR) alone, then, we present an online algorithm that combines 
both techniques, reducing the power consumption even more. Our online algorithm 
gradually constructs a set of pseudo-Pareto-optimal system configurations for each task, 
which it then uses to determine a low power operating point meeting timing 
requirements. We evaluate the possible savings and observe that they are highly 
correlated with the specific timing requirements of the task. We also show that the 
combination of voltage and cache reconfiguration provides the best overall power 
savings, as much as 28% when considering the total platform power consumption. 
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1. Introduction 

Minimizing energy consumption of electronic devices has become a first class system 
design concern [1], especially, in the areas of embedded and portable devices, since such 
devices draw their current from batteries that place a limited amount of energy at the 
system’s disposal. On the other hand, in recent years, increased application demand for 
functionality [2][3], market pressures, and shortening of design cycles, have led to a new 
system-on-a-chip (SOC) platform based design methodology [4]. 

A platform is a computing system composed of artifacts such as general-purpose 
processors, hierarchy of caches, on-chip main memory, I/O peripherals, co-processors, 
and possibly FPGA fabric for post-fabrication customizations. These platforms are 
generally targeted toward a large number of applications from a specific domain (e.g., 
networking or multimedia). To address the need for energy efficiency, the artifacts within 
these SOC platforms are often designed to be dynamically configurable. Features such as 
processor and memory power modes [5]; dynamic voltage scaling [6]; and run-time cache 
reconfiguration (e.g., Motorola’s M*CORE [7][8]) have been commercially introduced. 
Dynamic reconfiguration of the platform provides an opportunity for operating system 
(OS) and/or application tasks to carry out strategic high-level resource management for 
low power. 

Dynamic Voltage Scaling (DVS) has been extensively studied and shown to be a very 
efficient power saving technique [9][10][11]. More recently, some authors have focused 
their attention on cache reconfiguration, since a good tuning of the memory hierarchy 
also yields significant power savings [12][13][14][15][16][17]. Although DVS and 
Dynamic Cache Reconfiguration (DCR) are orthogonal solutions and could be applied to 
the same system individually in an optimal way, their combined effect on power 
consumption might not be simply a linear combination of the two optimal solutions. Both 
DVS and DCR rely on the same principle to save power: the processor/cache does not 
need to run at full speed/capacity at every moment in order to meet a task’s deadline. We 
commonly refer to this excess processor speed or cache capacity as slack. In general, 
significant energy savings is achievable when reducing the slack. 

In this work, we propose a combined DVS and DCR online algorithm that 
dynamically adapts the processor speed (i.e., voltage) and the cache subsystem to the 
workload requirements for the purposes of saving energy. The workload is considered to 
be a set of tasks with real-time deadlines. Our online algorithm is invoked as part of the 
OS scheduler, which performs standard earliest deadline first (EDF) task scheduling first. 
Then, our online algorithm, determines an ideal voltage/cache configuration for the 
current executing task. 

This paper is organized as follows. In Section 2, we present some related previous 
work. In Section 3, we formalize the problem and introduce our proposed solution. In 
Section 4, we describe our experimental setup. In Section 5, we present our simulation 
results. In section 6, we introduce the algorithm for learning the configurations while the 
system is running. In Section 7, we state our concluding remarks. 

2. Related Work 
Dynamic Voltage Scaling (DVS) is an approach for power reduction that has gained 

much attention in the recent years. With DVS, one can save energy with minor 



performance degradation by reducing the operating supply voltage of the processor, or 
even of the whole system [9][10]. The premise of all DVS techniques is to achieve a 
steady/even processor speed while meeting all tasks deadlines. This is often 
accomplished by appropriately scheduling tasks and selecting voltage settings that 
eliminate the slack [11][18][19]. Some of these approaches consider an ideal processor 
with infinite voltage settings and no reconfiguration penalty while others focus on exact 
DVS behavior of commercial processors. 

A great amount of previous work has also shown that statically tuning the cache 
subsystem to the running task can result in significant energy savings [12][13]. For 
example, Motorola’s recent version of an M*CORE processor IC has a configurable 4 
way set associative unified cache, in which each way can be disabled, or used for 
instructions, data, or both. Malik et al. [8] have shown that the best cache configuration 
depends heavily on the particular running task. Likewise, Zhang et al. [14][15] analysis 
shows that having a dynamically configurable line size architecture can have a significant 
(up to 50%) energy saving potential in embedded systems. 

Tang et al. [16] have proposed an architectural scheme for dynamic cache line sizing. 
Their approach is to introduce a hardware unit along with a memory and cache protocol 
for fine grained tuning of the line size. In contrast, our approach is a software technique 
that allows the OS to take charge of cache reconfiguration, taking into account a dynamic 
workload and application requirements. 

In a similar effort, Dropsho et al. [17] have considered disabling cache ways (i.e., 
associativity) dynamically to achieve low power. They propose cache architectures 
intended for dynamic reconfiguration. Further, they provide a hardware solution for 
adaptivity. As with the previous technique, our approach is a software technique 
performing the resource management at the task and OS levels. 

Fan et. al. [20] also analyze the interactions between processor and memories, 
showing that there is a benefit in combining a memory-aware system with a DVS-
enabled processor. However, their solution involves only shutting down parts of the main 
memory, while we try to combine the cache subsystem and the processor speed.  

3. Problem Formulation 
3.1. Overview 

Our problem formulation is as follows. The system is composed of N tasks, T1, T2 … 
Tn. Each task Ti has a deadline Di and a period Pi. To generalize the solution, a non 
periodic or sporadic task Ti is assumed to have Pi = 0. Tasks are non-preemptive. One of 
the tasks that is running on the platform is the scheduler Ts. Scheduler task Ts has no 
deadline and no period, and is activated every time a task finishes execution to perform 
the context switching. As stated previously, the scheduler selects the next task Tj to be 
executed based on EDF. Then, our online algorithm, running as part of the scheduler, 
selects an appropriate cache configuration that maintains the timing of the task Tj while 
saving as much energy as possible. 

The platform’s cache subsystem is assumed to have a finite number of possible 
configurations C1, C2 … Cn. Each configuration Ci will be different than any other 
configuration Cj by at least one of the configurable parameters: cache size, line size or 
cache associativity. Among all valid configurations, one of them is the so-called 
reference configuration Cr. The reference configuration is assumed to be the default 



system configuration, or the configuration to be used if dynamic cache reconfiguration is 
not used. For schedulability testing, we assume that the worse case execution time of 
each task under the reference configuration is known ahead of time (e.g., obtained via 
offline simulation).  

The voltage of the platform can also be set to one of a finite set of voltages V1, V2 … 
Vn. A reduction in voltage directly affects the operating frequency of the system as well. 

We assume a time penalty for cache reconfiguration. This penalty is for writing dirty 
data back to memory. The time penalty is captured by a function PT(Ci,Cj) of the current 
configuration Ci and the new configuration Cj. This function can be either hard coded 
statically, or learned by our online algorithm during run time.  

As with time, there is also a power penalty associated with cache reconfiguration that 
is taken into account in our reported results. The power penalty is partially due to writing 
dirty data back to memory and is a function of the current and the new configuration as 
well as the last task that executed. 

In a similar fashion, we assume a constant time penalty for selecting a new processor 
operating point (i.e., voltage/speed). 

3.2. Proposed Solution 

Any feasible solution in this context must address a multi-objective problem: 
minimize power while still meeting task deadlines. In a multi-objective problem, it is 
usually the case that one specific solution is good for one objective, but not so good for 
the other ones. In the universe of different configurations, we can identify some 
configurations that are better than all the other ones for at least one of the objectives. 
These are the so-called Pareto-optimal solutions. 

Assuming the exact set of Pareto-optimal voltage and cache configurations for each 
task are known, our online algorithm, after performing EDF scheduling, picks the Pareto-
optimal configuration that best fills the slack given the next task to be executed as shown 
in Algorithm 1. 

 
Algorithm 1: Schedule 
Input: T1, T2 … Tn 
Output: Tnext  
Output:  V , C  // voltage and cache points 
Tnext  := EDF( T1, T2 … Tn); 
slack  := calculate_utilization(); // see Eq. 1 
target_time := T next .fastest/slack; // see Eq. 2 
// assume P’s are sorted w.r.t. execution time 
for P ∈ Tnext .Pareto-optimal-set do 
  if P. time  > target_time  then 
     break; 
  < V, C> := P.< V, C> 

 
The challenge, thus, is to compute the voltage and cache Pareto-optimal configurations 

for each task. Computing the Pareto-optimal set for the voltage parameter is trivial, since 
all the voltage configurations are part of the Pareto-optimal set. However, that is not the 
case for the cache parameters, and extensive simulations are needed in order to compute 
the exact Pareto-optimal set in this case. 



For practical reasons, we have considered computing the Pareto-optimal sets online. 
However, due to computation overhead, it is not feasible to compute the exact Pareto-
optimal sets. Instead, an approximation of the Pareto-optimal set is sufficient. In section 
6, we present our online algorithm to compute the approximate Pareto-optimal sets. 

Given the Pareto-optimal sets (or an approximation in the online case), the system can 
trade-off power consumption with execution time by selecting the configuration that is 
best suited to fill the excess processing time or cache capacity (i.e., slack). The 
configuration selection is based on the utilization rate of the processor. The utilization 
rate of the processor is calculated every time a task finishes execution, or whenever a task 
is added or removed to and from the system. At any moment, given that the tasks are 
sorted according to EDF, the utilization rate can be calculated as follows. 

 

��
�
�
�
�

�

�

��
�
�
�
�

�

�

−
=

�
=

∀ timecurrentdeadline

timeexec

util
i

i

j
j

i _

_

max 1
 Eq. (1) 

 
For the utilization calculation, the best case execution time (but not necessarily most 

energy efficient) of each task is used. Given this utilization rate, we calculate the target 
execution time for the next task Tj as shown below. 
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Given the target execution time, the scheduler is able to select the Pareto-optimal 

configuration that has a time less, but closest to the target time. 

4. Experimental Setup 
In order to evaluate the effects and benefits of our online algorithm, we have 

performed several simulations. In our simulations, we have considered different task 
timings and have experimented with only DVS, only DCR, and the combination of DVS 
and DCR. 

Our simulations were performed on a target platform that is composed of a MIPS 
processor, unified L1 reconfigurable cache, on-chip memory, and the associated busses 
between the cache and the processor, as well as cache and on-chip memory, as depicted 
in Figure 1. In addition, our platform includes a hardware power monitor for real-time 
power measurements.  



 
Task running on our platform are able to dynamically modify the cache configuration 

through the use of a dedicated register. Similarly, task running on our platform can 
dynamically scale the voltage via the DC/DC converter. The unified cache can be 
configured to accommodate different cache sizes, line sizes, and degrees of associativity. 
Cache size ranges from 1K to 32K, in powers of two intervals. Line size can be set to 
values between 4 and 64, also in power of 2 increments. Finally, the degrees of 
associativity are 1 (direct mapped cache), 2, 4 and 8. The total number of possible cache 
configurations is the cross-product of these parameters, resulting in 820 different valid 
platform configurations. The DVS sub-system of our platform is modeled after the Intel 
XScale commercial processor [21]. Specifically, there are 7 possible voltage/frequency 
combinations that range from a fast, 400 MHz, working at 1.3 V, down to a slower 100 
MHz clock operating at 1V. 

In our experiments, we ran the task-set under different system scenarios, as listed 
below: 

(A) Largest cache (largest size, line, and associativity) configuration and maximum 
voltage. This is the platform configuration for highest performance. 

(B) Typical cache configuration and static voltage. Typical cache configuration is 
derived from an offline analysis of the benchmarks, leading to a cache 
configuration that would perform reasonably well (in terms of power and 
performance) over a large set of the benchmarks executed. 

(B1) running at 400Mhz 
(B2) running at 330Mhz 
(B3) running at 300Mhz 

(C) Large cache configuration and fixed voltage. The processor voltage is set offline 
to a fixed voltage, and no dynamic adjustments are made.  

(C1) running at 300Mhz 
(C2) running at 266Mhz 

(D) Large cache configuration and DVS. In this configuration, we can benefit from 
DVS in a system that has a general, high performance cache configuration.  

(E) Typical cache configuration and DVS. In this configuration, we can benefit from 
DVS in a system that has a tuned cache configuration.  

(F) DCR and fixed voltage. In this case, the voltage is fixed, and the cache 
configuration is modified at run-time, according to the task that is running;  

(F1) running at 400Mhz 
(F2) running at 330Mhz 

 

 

 

 

 

 

 

Figure 1 - The Target Platform 
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(F3) running at 300Mhz 
(G) DCR and DVS. The combination of DVS and DCR potentially maximizes the 

power savings and yield a better usage of the available slack.  
The selected applications represent a mix of large, medium, and small embedded 

applications drawn from the PowerStone [8], MediaBench [23], and MiBench [22] 
application sets. Specifically, we selected v42 (modem protocol), g3fax (fax encoding), 
crc (checksum calculation) and compress (the Unix compression utility). The task 
deadlines were set so that different amount of slack were available to be used by our 
online algorithm.  

Our reported time and power results include all the penalties associated with having 
DVS and cache reconfiguration. In the DVS case, the time penalty is considered to be the 
time needed by the PLL clock circuit to stabilize. The power penalty is due to the power 
dissipation in the DC-DC converter. The cache reconfiguration penalty includes the 
effects of the cache flush before each reconfiguration, and the cold misses that result 
from the fact that the cache is cleared before every task is executed. 

For this work, we assumed that tasks are non-preemptive and that they execute to 
completion before yielding the processor back to the scheduler. Although it is possible to 
apply dynamic cache reconfiguration to a preemptive system, the recurring penalties of 
flushing the cache, associated to the extra cold misses that occur when a task is replaced 
in the processor would probably reduce the overall savings. 

5. Combining DVS and DCR 
In our first set of experiments we attempted to estimate the possible savings by the 

combination of DVS and DCR. In order to get a more accurate estimate of the largest 
savings possible, the operating system was fed with the actual Pareto-optimal sets. We 
call this an Oracle solution, since it knows the behavior of the applications beforehand.  

We observed that the combination of DVS and DCR had a potential for larger savings 
than either of the two techniques alone. However, the effective energy savings was highly 
dependable on the deadlines (and so on the slack available), as expected. Table 1 
summarizes the results for the different scenarios and platform configurations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Configuration D=19.0ms D=20.3ms D=22.5ms 
(A) 32K,64,8,400Mhz 2.26W 

13.4ms 
2.29W 
13.4ms 

2.33W 
13.4ms 

(C1) 32K,64,8,300Mhz 1.14W 
18ms 

1.16W 
18ms 

1.19W 
18ms 

(C2) 32K,64,8,266Mhz n/a 0.99W 
20.2ms 

1.02W 
20.2ms 

(D) 32K,64,8,DVS 1.04W 
18.9ms 

1.04W 
19.6ms 

0.93W 
21.9ms 

(B1) 16K,16,2,400Mhz 0.65W 
16.3ms 

0.67W 
16.3ms 

0.69W 
16.3ms 

(B2) 16K,16,2,330Mhz n/a 0.51W 
19.7ms 

0.54W 
19.7ms 

(B3) 16K,16,2,300Mhz n/a n/a 0.34W 
21.7ms 

(E) 16K,16,2,DVS 0.53W 
18.5ms 

0.50W 
19.2ms 

0.44W 
22.3ms 

(F1) Dynamic,400Mhz 0.55W 
18.7ms 

0.52W 
20.2ms 

0.47W 
21.7ms 

(F2) Dynamic,330Mhz 0.56W 
18.4ms 

0.51W 
20.2ms 

0.45W 
22.4ms 

(F3) Dynamic,300Mhz n/a n/a 0.33W 
22.3ms 

(G) Dynamic,DVS 0.52W 
18.9ms 

0.45W 
20.1ms 

0.32W 
22.4ms 

n/a = not possible to meet time constrains with the respective configuration 

Table 1. Summary of experimental results. 

Based on Table 1, we conclude that a DVS-only system performs slightly better than a 
DCR-only system. For example, the results of configuration E (DVS only) and F2 (DCR 
only) are very close, with a small advantage in terms of power to E. However, the 
difference is almost irrelevant. DVS and DCR perform very similarly in all scenarios. At 
the same time, it is possible to notice that the combination of DVS and DCR (experiment 
G) always has better overall savings than either of the techniques alone. 

Based on Table 1, we observe that the additional savings provided by the combination 
of DVS and DCR increases with larger slacks. In the 19 ms deadline scenario, there is 
almost no gain in adding DCR to the system (i.e., changing from E to G). However, in the 
20.3 ms and 22.5 ms, there is an extra saving of 10% and 27%, respectively.  

Table 1 also shows that combining DVS and DCR allows a better usage of the slack. 
For example, in the 20.3 ms scenario, DVS only (experiment E) can slowdown execution 
to 19.2 ms, leaving 1.1 ms unused. When DCR is combined to DVS (experiment G), the 
execution time is stretched to 20.1 ms, almost fulfilling the available processing time. 
DCR only (experiment F2) has an execution time that is even closer to completely using 
the slack. Overall, experiment G is consistently closer to using all the available slack than 
D or E. 



6. Online Reconfiguration 
As an alternative to pre-computing the exact Pareto-optimal sets, this section 

introduces an online algorithm for calculating an approximation of the Pareto-optimal 
sets. 

This online algorithm uses the same scheduling algorithm that was discussed in 
Section 3. Here, the OS scheduler additionally interleaves the configuration selection 
with the configuration discovery algorithm, as depicted in Figure 2. After each invocation 
of the scheduler, a new point may be added to the Pareto-optimal sets. 

In our algorithm, a common task configuration database is shared between discovery 
and selection. The database is build incrementally by the Pareto discovery algorithm, and 
is used to keep information about the Pareto-optimal configurations known so far. After a 
finite number of iterations, the discovery process is considered finished and the database 
is stable. 

6.1. Discovery Algorithm 

The main objective of the Pareto discovery algorithm is to converge on to a reasonable 
approximation of the actual Pareto-optimal set for each task. 

The discovery procedure starts with the reference configuration as the only member of 
the Pareto-optimal sets. Gradually, each of the cache size, line size, and associativity 
parameters are varied, individually (i.e., one change per scheduler invocation) in a greedy 
search process. Specifically, in a first stage, starting from the reference configuration, the 
cache size parameter is changed until all possible settings have been explored, or the task 
timings are affected beyond certain threshold. Then, in a similar fashion, during second 
and third stages, the cache line and associativity parameters are varied for all the 
configurations in the Pareto database at the time. 

A new point pi is introduced into the pseudo-Pareto-optimal set P if it has a better time 
or power measure than every other point pj ∈ P. The newly added point pi will invalidate 
any existing point pj ∈ P if pj has an inferior time and power measures than pi. 
Invalidated points are removed from the set P. The discovery algorithm is merged with 
the scheduler, resulting Algorithm 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2 - The Online Algorithm 
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Algorithm 2: Discover and Schedule 
Input: Tcurr // current task 
Input: T1, T2 … Tn 
Output: Tnext // next task 
Output V, C // voltage and cache 
// compute delta time and power 
dtime := time() – T curr .start_time 
dpower := (energy() – T curr .start_energy)/dtime 
// introduce new Pareto points 
is_pareto := true 
for P ∈ Tcurr .Pareto-optimal-set do 
  if P.time < dtime && P.power < dpower then 
   is_pareto := false 
if is_pareto then 

  T curr .P := Ti.P ∪ { C i  } 
  for P ∈ Tcurr .Pareto-optimal-set do 
    if( P.time > dtime && P.power > dpower ) 
     T i .P := T i .P – { P } 
// perform standard scheduling 
Tnext  := EDF( T1, T2 … Tn); 
// explore or select      
if need_to_explore(T next ) then 
   C,V := discover_pareto(T next )  
else 
   C,V := pick_best_config(T next ) // see Alg. 1 
// prepare for next execute 
Tnext .start_time := time() 
Tnext .start_energy := energy() 
return(T next , V, C) 

 
The complexity of the discovery algorithm can be analyzed for each operation. 

Checking if a new point is a Pareto-optimal point is O(log N), where N is the total 
number of Pareto configurations in the set, since the Pareto set is kept in a binary heap 
data structure. Whenever a point is added to the set, it demands that a filtering process is 
performed, to eliminate the configurations that are invalidated by the newly added point. 
This operation is O(N), since one new point might invalidate all the other points in the set 
if it has a better execution time and power consumption than all the other points in the 
set. 

6.2. Simulation Results 

The power consumption results for the online approach are depicted in Figure 3, 
Figure 4, and Figure 5. For comparison purposes, all the figures include the plots for the 
online system as well as the Oracle system (see Section 5) and the reference 
configuration.  

As expected, the online performance is slightly worse than the Oracle DCR+DVS 
implementation. The worst increase happened in the case when the deadline is 22.5 ms, 
where the power consumption increased by as much as 20%. Despite the slight overall 
increase in power, savings are still higher when DVS and DCR are combined when 
compared to either technique alone. 

The online discovery behavior can also be seen in the plots shown in Figure 3, Figure 
4, and Figure 5. Initially, the power consumption oscillates quickly, as the system 



discover new Pareto-optimal points. As the discovery converges, the power profile 
stabilizes.  
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Figure 3 - Online Behavior, Deadline = 19ms 
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Figure 4 - Online Behavior, Deadline = 20.3ms 
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Figure 5 - Online Behavior, Deadline = 22.5ms 

 

Furthermore, while the system is testing new cache configurations, some deadlines are 
eventually lost. In the tighter execution, with deadline set to 19 ms, 10% of the deadlines 
are lost during discovery. On the other hand, when deadline is 22.5 ms, only 4% of the 
deadlines are lost during the discovery of the pseudo-Pareto-optimal configurations. 
Clearly, the online approach is not suitable for real-time applications with strict 
deadlines. In the hard real-time instances, the static approach to discovering Pareto-
optimal points should be utilized 

As a final remark, we observed that the discovery process requires to analyze about 
60-70 platform configurations in order to converge. This is less than 10% of the 820 
possible configurations when cache and voltage are combined. 

7. Conclusions 
We have discussed the combination of Dynamic Voltage Scaling (DVS) and Dynamic 

Cache Reconfiguration (DCR) for power reduction is embedded systems. We have 
analyzed the power savings achievable using these techniques alone or in a combined 
way. We have presented an online algorithm for dynamically selecting the best cache and 
voltage configuration using the Pareto-optimal sets. We have also presented an online 
algorithm for discovery of the Pareto-optimal sets. Our results show that the combination 
of DVS and DCR can achieve 27% more savings when compared to DVS alone. 
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