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Abstract :
The continuous increase in size and complexity of System-on-Chip designs has 
introduced new modeling and verification challenges. The system designs of today 
need modeling at higher levels of abstraction such as transaction level. On the 
verification front, techniques like assertion based verification are being used to 
complement traditional simulation and debugging of designs. Formal methods like 
logical equivalence checking are becoming increasingly relevant for minimizing or 
even eliminating the need for costly gate-level simulations. Property checking 
techniques like model checking and theorem proving are being employed in high-end 
processor and system design.
In this talk, we will present an overview on the role of modeling and verification in 
the complete design flow from system level to gates. We will discuss different models 
and the verification techniques that apply best for validating them. 
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Overview

• Simulation and debugging methods

• Formal verification methods

• Comparative analysis of verification techniques

• Model formalization for SoC verification

• Conclusions

The presentation will cover various techniques in verification of systems, ranging 
from simulation based methods to more formal static methods. A comparison of the 
techniques is given based on metrics like cost, applicability and coverage. We then 
discuss the challenge of verifying large systems with traditional techniques and 
present possible directions for a solution to verifying complete systems. Our approach 
is based on well defined model semantics and the formalization of model 
construction. We show how this approach can help establish a methodology for 
verification of systems.
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Design Verification Methods

• Simulation based methods
Specify input test vector, output test vector pair
Run simulation and compare output against expected output

• Semi-formal Methods
Specify inputs and outputs as symbolic expressions
Check simulation output against expected expression

• Formal Methods
Check equivalence of design models or parts of models
Check specified properties on models

The verification methods available today can be broadly classified into three 
categories, namely simulation based, semi-formal and formal methods. 

In simulation based methods, the designer writes an executable model of the design. 
Test vectors are applied to the inputs of the model and output values are generated 
after logical delays as specified in the model. The functionality of the model is tested 
by comparing the generated outputs to the expected outputs. 
Semi-formal methods primarily use a simulation environment, but apply symbolic 
methods for stimulating and monitoring the design. The gain is in the reduction of test 
cases, however monitoring simulation results becomes more complicated. This is 
because the monitor has to compare generated output expressions against expected 
output expressions, which may be syntactically different yet evaluate to the same 
value.
Pure formal methods do not need a simulation environment. The models and 
properties are expressed in a mathematical form and mathematical formulations are 
used to either compare two models or check if a property holds in a model.
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Simulation

• Task : Create test vectors and simulate model
• Inputs

Specification
− Typically natural language, incomplete and informal
− Used to create interesting stimuli and monitors

Model of DUT
− Typically written in HDL or C or both

• Output
Failed test vectors
− Pointed out in different design representations by debugging tools

Typical simulation environment

DUT
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Simulation is the most widely used method for validation of models. The design to be 
tested is described in some modeling language and is referred to as design under test 
(DUT). The design specification is then used to generate input and out test vectors. 
The stimulus routine applies the input vectors to the models. The inputs are 
propagated through the model by the simulation tool and finally the outputs are 
generated. A monitor routine checks the output of the DUT against expected outputs 
for each input test vector. If a mismatch is found, the designer can use debugging 
tools to trace back and find the source of the problem. The problem arises from either 
incorrect design or incorrect timing. Once the problem source is identified, the 
designer can fix it and simulate the new model.
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Improvements to Simulation Environment

• Main drawback is coverage
Several coverage metrics
− HDL statements, conditional branches, signal toggle, FSM states

Each metric is incomplete by itself
Exhaustive simulation for each coverage type is impractical

• Possible Improvements
Stimulus optimizations
− Language to specify tests concisely vs. exhaustive enumeration
− Write tests for uncovered parts of the model

Monitor optimizations
− Assertions within design to point to simulation failures
− Better debugging aids (correlation of code, waveforms and netlist)

Speedup techniques
− Cycle simulation vs. event driven
− Hardware prototyping on FPGA

Modeling techniques
− Models at higher abstraction level simulate faster

The intent of the designer is to test the model for all possible scenarios. However, this 
would require unreasonable number of test vectors. Since only a limited number of 
test vectors will be used, the designer must try to choose the most useful ones. The 
usefulness of a test case is usually defined by the number of components and 
connections it can cover. Moreover, a test case that verifies an already tested part of 
the design does not add any value. Therefore, several coverage metrics have been 
invented to quantify the usefulness of a test case.

The simulation performance can be improved either by speeding up the simulator or 
by choosing test cases intelligently to maximize coverage with minimal simulation 
runs. One optimization is to reduce test generation time by giving constraints to 
stimuli and testing with only valid inputs. Monitoring non-primary output variables in 
the model reduces debug time by pointing out the error closer to its source. Testing 
the model by implementing it on hardware provides much faster functional testing. 
Finally, rewriting the model by abstracting away low level details also reduces 
simulation time, thereby finding errors earlier. 
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Stimulus optimizations

• Testbench Authoring Languages
Generate test vectors instead of writing them down
− Pseudo random, constrained and directed tests

Several commercial and public domain “verification languages”
− e, Vera, Jeda, TestBuilder

• Coverage Feedback
Identify design parts that are not covered
Create new tests to cover those parts
− controllability is a problem !

x y z x y z

1
1

1
0

coverage analysis

Writing down test vectors for simulation can be a painful task. Also, generating test 
vectors randomly might result in a lot of invalid vectors. Since the model is typically 
constrained to work for only select scenarios, we can use this knowledge to generate 
valid test vectors only. The test scenario can thus be written in some language and a 
tool can be used to generate valid test vectors for that scenario.

Using the results from coverage is another way to minimize the number of test 
vectors. For instance, the code coverage feedback technique can be visualized in the 
given figure. A simulation run with vector “11” results in only block “x” being 
covered. The designer looks at the coverage result and comes up with a vector “10” to 
cover blocks “y” and “z”. Note that vector “00” would not cover block “y” and is thus 
not used. Such a feedback strategy can be used with other coverage metrics as well. 
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• Assertions in the model
Properties written as assertions in design
− Example : signals a and b are never ‘1’ at the same time
− Errors detected before reaching primary output (helps debugging)

Several methods of inserting assertions
− Assertion languages, e.g. PSL, SystemVerilog, e

− assert always !(a & b)
− Pragmas

• Debugging aids
Correlation between different design representations
− Waveforms, schematic, code, state machines

Monitor optimizations

…….
c = a and b
…….

a
b

c

a
b
c

Spec

Monitoring only the primary outputs of a design during simulation lets us know if a 
bug exists. Tracing the bug to its source can be difficult for a complex designs. If the 
source code of the model is available, assertions can be placed on internal variables or 
signals in the model. For example, we can specify that the two complementary 
outputs of a flip-flop never evaluate to the same value. Not only does this improve 
understanding of the design, it also points out the bug much closer to the source. 
Assertions can also be used to check validity of properties over time, like protocol 
compliance. It must be ensured that the assertions do not get synthesized along with 
the design. Therefore, they must be written either in a different language than the 
design, or as special comments that can be ignored by the synthesis tool.

Graphical visualization of the structure and behavior of a design also helps 
debugging. Specifically, correlation between different representations, such as 
waveforms, net lists, state machines and code, allows the designer to easily identify 
the bug in a graphical representations and locate the source code for buggy part of the 
model.
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Speedup techniques

• Cycle simulation
Observe signals once per clock cycle
Cannot observe glitches within a clock cycle

• Emulation
Prototype hardware model on FPGAs
Much faster than software simulation
In-circuit emulation
− FPGA is inserted on board instead of real component 

Simulation acceleration
− Emulate parts of hardware by interfacing with software simulator

Spec

Non-
synthesizable

synthesizable

SW

FPGA ISS / HDL simulator

Overall simulation time can be reduced by simply increasing the simulation speed. 
The two common speedup techniques are cycle simulation and emulation. Cycle 
simulation is used when we are only concerned about the signals at clock boundaries. 
This allows improving the simulation algorithm to update signal values at clock 
boundaries only. On the other hand event driven simulation needs to keep track of all 
events, even between the clock edges, and is thus much slower.

Another speedup technique is the use of reconfigurable hardware to implement the 
DUT. If the designer wants to simulate a component in a larger available system, the 
FPGA implementation can be hardwired in the system. This technique is called in-
circuit emulation. A different scenario in which emulation is used is dubbed software 
acceleration. The synthesizable part of the hardware is implemented on an FPGA. The 
SW and the unsynthesizable HW runs on a software simulator, which talks to the 
emulation tool via remote procedure calls.
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Modeling techniques

• Use higher levels of abstraction for faster simulation
Untimed functional / Specification model
− Executable specification to check functional correctness
− Simulates at the speed of C program execution but no timing

Timed architecture model
− Used to evaluate HW/SW partitioning
− Computation distributed onto system components

Transaction level model
− Used to evaluate system with abstract communication
− Transactions vs. bit toggling (data abstraction)

Bus functional model
− Communication modeled at pin-accurate / time accurate level
− Computation modeled at functional level

Cycle accurate model
− HW and SW at cycle accurate level
− Communication at cycle accurate level

A different approach to reduce functional verification time is by modeling the system 
at higher abstraction levels. By abstracting away unnecessary implementation details, 
the model not only becomes more understandable, but also simulates faster. For 
instance, models with bus transactions at word level simulate faster than those at bit 
level because the simulator does not have to keep track of bit-toggling on bus wires. 
Similarly, models with coarse timing result in fewer events during simulation. There 
are several abstract models that can be used depending on the size and nature of the 
design as well as the design methodology.
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Formal Verification Methods

• Equivalence Checking
Compare optimized/synthesized model against original model

• Model Checking
Check if a model satisfies a given property

• Theorem Proving
Prove implementation is equivalent to specification in some formalism

Formal verification techniques use mathematical formulations to verify designs. In 
order to check for correctness of synthesis and optimization of models, we can use 
equivalence checking. We define some notion of equivalence like logic equivalence 
or state machine equivalence and the equivalence checker proves or disproves the 
equivalence of original and optimized/synthesized models.

Model checking, on the other hand, takes a formal representation of both the model 
and a given property, and checks if the property is satisfied by the model. Assertions 
that have been used for simulation can also be used as properties for model checking.

Theorem proving takes formal representations of both the specification and 
implementation in a mathematical logic and proves their equivalence.
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Logic Equivalence Checking

• Task : Check functional equivalence of two designs
• Inputs

Reference (golden) design
Optimized (synthesized) design
Logic segments between registers, ports or black boxes

• Output
Matched logic segment equivalent/not equivalent

• Use canonical form in boolean logic to match segments

1 = 1’ ?
2= 2’ ?
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Equivalence 
result

Reference design

Optimized design

During synthesis or optimization of logic circuits, the design is optimized to reduce 
the number of gates or circuit delay. The designer is responsible for the logical 
correctness of any such transformation. A logic equivalence checker checks that the 
result of the synthesis or optimization is equivalent to the original design. This is 
achieved by dividing the model into logic cones between registers, latches or black-
boxes. The corresponding logic cones are then compared between original and 
optimized models.

Logic cones can be described with boolean expressions and thus represented as 
boolean decision diagrams (BDDs). Since BDDs have a canonical form, we can 
reduce the original and optimized cones to their respective canonical forms and check 
if they are the same. This technique is possible at the GATE/RTL level because of the 
available formalism for boolean algebra.
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FSM Equivalence Checking (1/2)

• Finite State Machine
M : < I, O, Q, Q0, F, H >
− I is the set of inputs
− O is the set of outputs
− Q is the set of states
− Q0 is the set of initial states
− F is the state transition function Q × I Q
− H is the output function Q O

• FSM as a language acceptor
Define Qf to be the set of final states
M accepts string S of symbols in I if 
− applying symbols of S to a state in Q0 leads to a state in Qf

Set of strings accepted by M is its language
• Product FSM

Define product FSM as a parallel composition of two machines
− M1: < I, O1, Q1, Q01, F1, H1 > , M2: < I, O2, Q2, Q02, F2, H2 > 
− M1×M2 : <I, O1×O2, Q1×Q2, Q01×Q02, F1× F2, H1×H2 >

Logic equivalence checker checks only the equivalence of the combinational part of 
the circuit. There are also techniques to check equivalence of the sequential part of 
the design. In order to understand those techniques, we have to define the notion of a 
finite state machine. A finite state machine (FSM) is a tuple consisting of a set of 
inputs, a set of outputs and a set of states. Some of the states are designated as initial 
states and some as final states. Transitions between states are defined as a function of 
current state and the input. An output is also associated with every state.

We can think of a FSM as a language acceptor. If we start from an initial state, supply 
input symbols from a string S and reach a final state, then S is said to be accepted by 
the FSM. The set of all acceptable strings forms the language of the FSM.

We also define the notion of a product FSM. The product of two finite state machines 
M1 and M2 has the same behavior as if M1 and M2 were running in parallel. 
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FSM Equivalence Checking (2/2)

• Task : Check if implementation is equivalent to spec
• Inputs

FSM for specification (Ms)
FSM for implementation (Mi)

• Output
Do Mi and Ms give same outputs for same inputs ?

• Idea (Devadas, Ma, Newton ’87)
Compute Mi×Ms
Qf(Mi×Ms) = States which have different outputs for Mi and Ms
Check if any state in Mi×Ms is reachable (language emptiness)
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We can now define equivalence of FSM models by using the previously discussed 
notions and concepts. The specification and its implementation are both represented 
as FSMs Ms and Mi respectively. It must be ensured that the input and output 
alphabet of the two machines should be the same. 

We derive the product machine Ms x Mi. Now all the states in Ms x Mi that have pair 
of differing outputs are labeled as final states. In the given figure, the states ps, pt and 
qr have output pairs with non-identical symbols (xy or yx) and are thus labeled as 
final states.  We also keep only those transitions that have the same symbols in the 
input pair. What we are trying to prove is that for the same sequence of inputs, Ms 
and Mi would produce the same sequence of outputs. In other words, any state with a 
pair of non-identical outputs should never be reached. Since such states are the final 
states in the product FSM, they should never be reached. Therefore the product FSM 
should not accept any language. This notion is called language emptiness.

Showing language emptiness means starting from the set of initial states in  Ms x Mi 
and performing a reachability analysis. If any of the final states is reachable, then the 
specification and implementation are not equivalent.
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Model Checking (1/2)

• Task : Property P must be satisfied by model M
• Inputs

Transition system representation of M
− States, transitions, labels representing atomic properties on states

Temporal property
− Expected values of variables over time
− Causal relationship between variables

• Output
True (property holds)
False + counter-example (property does not hold)
− Provides test case for debugging

True /
False + counter-exampleModel

Checker

P = P2 always leads to P4s1

s4 s3

s2P1

P3P4

P2

M

Model checking is a formal technique for property verification. The model is 
represented as a state transition system, which consists of a finite set of states, 
transitions between states and labels on each state. The state labels are atomic 
properties that hold true in that state. These atomic properties are expressed as a 
boolean expression of the state variables in the model. The property to be verified on 
the model is expressed as a temporal formula. The temporal formula is formed using 
state variables and time quantifiers like “always” or “eventually”.

For example, in the model of a D-flip flop the state variables would be the input, the 
clock, the output, its complement, and the reset. The states would be all possible 
values of the state variables. A simple property might be that if the reset signal is 0, 
then eventually the output will be 0. 

The model checker works on the state transition system of the model and the given 
property and produces a result TRUE is the property holds in the model. If the 
property does not hold, the checker gives a counter-example to show that the property 
is violated. This feature of model checking is very helpful in debugging because it 
provides a readymade test case. In the given figure, we see the state transition system 
of M and a temporal property stating that if P2 is true then eventually P4 will be true.



Verify 2003 Keynote Talk

15

Copyright ©2003 Daniel Gajski, Samar AbdiVerify 2003

Model Checking (2/2)

• Idea (Clarke, Emerson ’81)
Unroll transition system to 
an infinite computation tree
− Start state is the root (S1)

Define properties using 
− On all paths (A)
− On some path (E)
− Always / Globally (G)
− Eventually (F)

Some examples
− EG p
− AG p
− EF p
− AF p

• State space explosion
What next ?

s1

s4 s3

s2

Transition system

s1

s2 s4

s3 s4 s4

s4s4s2 s4

Computation Tree

The idea behind model checking can be visualized by unrolling the transition system. 
We start with the initial state and form an infinite tree (called the computation tree). 
Temporal properties can by graphically visualized on this computation tree.

The major problem with model checking is the state space explosion problem. The 
state transition system grows exponentially with the number of state variables. 
Therefore, memory for storing the state transition system becomes insufficient as the 
design size grows.
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Theorem Proving (1/2)

• Task : Prove implementation is equivalent to spec in given logic
• Inputs

Formula for specification in given logic (spec)
Formula for implementation in given logic (impl)
Assumptions about the problem domain
− Example : Vdd is logic value 1, Gnd is logic value 0

Background theory
− Axioms, inference rules, already proven theorems

• Output
Proof for spec = impl

AutomatedManual

Proof
Goal

Assumptions /
Background

theories /
Inference

rules

decomposition  | proof
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he
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An alternative approach to formal verification is verification by deductive reasoning. 
The specification and implementation models are written as formulas in some 
mathematical logic. Then a theorem is established and proven for the equivalence of 
these formulas. If a proof is found, the models are equivalent. However, if a proof is 
not found then the equivalence of models is inconclusive. 

The proof uses certain assumptions about the problem domain and axioms of the 
mathematical logic. In the domain of circuit design, an assumption might be that 
power supply is always at logic level 1 while ground is logic 0. The proof is 
constructed by breaking down a complex proof goal into smaller goals.  The smaller 
goals are then simplified using assumptions and then passed onto automatic theorem 
prover.

Theorem proving is still a largely manual process. Several steps of simplifying and 
breaking down proof goals may be required before an automatic prover can solve it.
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Theorem Proving (2/2)

• Example
CMOS inverter (Gordon’92)
Using higher order logic

• Assumptions
Vdd(y) := (y=T)
Gnd(y) := (y=F)
Ntran(x,y1,y2) := (x->(y1=y2))
Ptran(x,y1,y2) := (┐x->(y1=y2))

• Impl(x,y) :=      w1, w2. Vdd(w1) Λ
Ptran(x,w1,y) Λ Ntran(x,y,w2) Λ Gnd(w2)

• Spec(x,y) := (y=┐x)
• Proof

Impl(x,y) = ….. (assumption / thm / axiom)                   
= ….. (assumption / thm / axiom)
= ….. (assumption / thm / axiom)
= Spec(x,y)

ш

Vdd

Gnd

x y

w1

w2

CMOS inverter

We present a simple example of the use of theorem proving for verifying circuits. 
Suppose we have to prove that the CMOS inverter circuit inverts the input logic. We 
start with the basic assumptions about voltage levels and logic levels and the behavior 
of P and N transistors. The formula for the implementation is derived by conjunction 
of the various components of the inverter. The specification formula simply states that 
the output is logical inverse of input. The proof process takes the implementation 
formula and reduces it to the specification formula by  a number of steps. Each proof 
step uses either an assumption, an axiom or an already proven theorem.
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Drawbacks of formal methods

• Equivalence checking
Designs to be compared must be similar for LEC
− Correlated logic segments are identified by design structure
− Drastic transformations may force manual identification of segments 

FSM EC requires spec and implementation to
− Be represented as finite state machines
− Have same input  and output symbols

• Model Checking
State explosion problem
− Insufficient memory for designs with > 200 state variables

Limited types of designs
− Design should be represented as a finite transition system

• Theorem Proving
Not easy to deploy in industry
− Most designers don’t have background in math logic (esp. HOL)
− Models must be expressed as logic formulas

Limited automation
− Extensive manual guidance to derive proof sub-goals

Formal verification methods have not been as well accepted in the industry as 
simulation based methods because of several drawbacks. Logical equivalence 
checking works only for combinational logic and FSM equivalence checking requires 
both specification and implementation machines to have the same set of inputs and 
outputs.

Model checking, besides suffering from the state explosion problem, is not suitable 
for all types of designs. Since it needs a state transition system, it works best for 
control intensive designs like protocol compliance etc.

Automatic theorem proving has not become very popular in the industry because of 
several reasons. The foremost reason is the amount of manual intervention required in 
running the theorem proving. Since different applications have different kinds of 
assumptions and proof strategies, it is infeasible for a theorem proving tool to 
generate the entire proof automatically. Secondly, most designers lack a background 
in mathematical logic. Therefore, it requires a huge investment and long training time 
for them to start using theorem proving efficiently.
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Improvements to Formal Methods

• Symbolic Model Checking (McMillan ’93)
Represent states and transitions as BDDs
− Allows many more states (~10^20) to be stored
− Compare sets of states for equality using SAT solver

• Bounded Model Checking (Biere et.al. ’99)
Restricted to bugs that appear in first K cycles of model execution
− Unfolded model and property are written as propositional formula
− SAT solver or BDD equivalence used to check model for property

• Partial Order Reduction (Peled ’97)
Reduces model size for concurrent asynchronous systems
− Concurrent tasks are interleaved in asynchronous models
− Check only for 1 arbitrary order of tasks

• Abstraction (Long, Grumberg, Clarke ’93)
Cone of influence reduction
− Eliminate variables that do not influence variables in spec

There have been several improvements to formal techniques, particularly in model 
checking. Symbolic model checking encodes the state transition system using BDDs, 
which is much more compact than exhaustively enumerating the states and 
transitions. Since BDDs represent sets of states, the model checking algorithm can 
operate on sets of states rather than individual states.

Bounded model checking checks if a model satisfies a property on paths of length at 
most K. The number K is incremented until a bug is found or the problem becomes 
intractable.

Partial order reduction techniques are usually used in model checking of 
asynchronous systems, where concurrent tasks are interleaved rather than being 
executed simultaneously. It uses the commutativity of concurrently executed 
transitions, which result in the same state when executed in different orders.

Abstraction techniques are used to create smaller state transition graphs. The specified 
property is described using some state variables. The variables that do not influence 
the specified property are eliminated from the model, thereby preserving the property 
while reducing the model size.
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Semi-formal Methods (Symbolic Simulation)
• Task : Check if implementation satisfies specification
• Inputs

Simulation model of the circuit
Specification of expected behavior (as boolean expressions)

• Output
Expression for the signals in design

• Idea (Bryant ’90)
Encode set of inputs symbolically (using BDD)
Evaluate output expressions during simulation
Compare simulation output with expected output 
− using BDD canonical form

Simulation 
model

a
b
c
d

f(a,b,c,d)
?
= g(a,b,c,d) Specification

The idea behind symbolic simulation is to significantly minimize the number of 
simulation test vectors, for the same coverage, by using symbols.

In symbolic simulation, the stimulus applies  boolean variables as inputs to the 
simulation model. During simulation, the internal variables and outputs are computed 
as booelan expressions. In order to check for correctness, the output expression is 
compared with the expected output expression for logic equivalence. BDDs can be 
used to store the boolean expressions. Since, BDDs of equivalent boolean expressions 
can be reduced to the same canonical form, the equivalence of specified output 
expression to simulated output expression can easily be checked. For larger circuits, 
where the BDD size may blow up, SAT solvers are being increasingly used.
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Evaluation Metrics

• Coverage
How exhaustive is the technique ?
− % of statements covered
− % of branches taken
− % of states visited / state transitions taken

• Cost and Effort
How expensive is the technique ?
− Dollars spent per simulation / emulation cycle
− Training time for users

• Scalability
How well does the technique scale with design size / abstraction ?
− Tool capacity
− Tool applicability for various modeling abstraction levels

In order to determine the most suitable verification method, one can define some 
metrics to evaluate them. The three most common metrics that we discuss here are 
coverage, cost and scalability. Coverage of a verification method determines how 
much of the design’s functionality has been tested. Cost includes the money spent on 
purchase of tools, hiring of experts and the training of users. Scalability of the 
technique shows if there are any limitations on the size or type of design that we are 
verifying. 
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Coverage

Equivalence checking
Theorem proving
Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

• Formal methods provide 
complete coverage

For a specified property
For a reference model

• Simulation with assertions
Improves understanding of 
design
− White box vs. black box testing

High

Medium

Low

Formal verification claims to provide complete coverage. However, the coverage is 
limited to the given property and the model representation. For instance, model 
checking covers all possible states in the state transition representation of the model 
for a given property. Logic equivalence checking covers the combinational part of the 
model only. Nevertheless, the coverage of formal methods, if they are applicable, is 
significantly more than that of simulation methods for the same run-time.

Using assertions in the design can help make better test cases that exercise the 
assertions, thereby ensuring that the tests are useful and valid. Pseudo random testing, 
on the other hand, would generate a lot of test inputs that are invalid for the design, 
and hence wasted.
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Cost and Effort

• Pseudo-random simulation
Writing monitors

• Simulation with assertions
Identifying properties
Writing assertions

• Equivalence checking
Correlating logic segments

• Model checking
Writing assertions

• Theorem proving
Training (~ 6 months)
Identifying assumptions
Creating sub-goals

Equivalence checking

Theorem proving

Model checking

Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

Low

Medium

High

Cost and effort of a verification method influences the design phase in which it is 
used. For instance, the preliminary phase usually employs simulation to uncover most 
of the easy bugs. This is because most designers have experience with simulation 
tools and debuggers and it is thus cost effective. As the verification process continues 
and bugs become harder to find, specialized and more expensive techniques like 
model checking or theorem proving may be used.  Assertions are also used to 
generate more directed tests and to verify correctness on corner cases.
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Scalability

• Simulation based methods
Scale easily to large designs
Any model can be simulated !

• Theorem proving
Any type of design

• Symbolic simulation
BDD blowup for large designs
Limited to RTL and below

• Model checking
State space explosion

Equivalence checking
Theorem proving

Model checking
Symbolic simulation

Simulation with Assertions

Pseudo-random simulation

High

Medium

Low

The performance of a verification method on different sizes and types of models 
determines its scalability. Some methods like logic equivalence checking may be 
limited to RTL models or below. Similarly, model checking is constrained by the 
number of state variables in the model. Compared to other techniques, simulation 
scales very well in this department. Almost any executable model at any level of 
abstraction can be simulated.
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Evaluating Verification Techniques

Metric
Technique

Coverage Cost and Effort Scalability

Pseudo random simulation L L H
Simulation w/ assertions M M H
Symbolic simulation M L L
Equivalence checking H M M
Model checking H M L
Theorem proving H H M

• Well accepted techniques in industry
Simulation with assertions
Equivalence checking

If we look at the trend in the acceptance of verification techniques in the industry, we 
find that methods with a severe drawback have been generally avoided. Model 
checking suffers from poor scalability and theorem proving is way too expensive, 
thereby making equivalence checking the most commonly used technique in the 
industry.

Similarly, assertion based techniques may require extra cost but they are replacing 
pseudo random simulation because of their better coverage. A number of new 
verification and assertion languages are testimony to this fact.
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New Verification Challenges for SoC Design

• Design complexity
Size
− Verification either takes unreasonable time (eg. Logic simulation)
− Or takes unreasonable memory (eg. Model Checking)

Heterogeneity
− HW / SW components on the same chip
− Interface problems
− Interdependence of both design teams

• Possible directions
Methodology
− Unified HW/SW models
− Model formalization
− Automatic model transformations

The new challenges to verification of systems comes from the growth in size and 
complexity of designs. Individually verified components do not work together due to 
interface issues. Also the sheer size of designs makes modeling and verification too 
expensive and time consuming.

To answer this challenge, we look towards system design methodology. To design 
systems on chip, the level of model abstraction has been raised. If the semantics of 
system level models is well defined, then they can be formalized. Consequently, we 
can define transformations from models at one abstraction level to another. The 
transformations can be proven to produce equivalence models. Thus, the traditional 
methods can still be used at higher levels of abstraction while correct transformations 
will avoid the need to verify lower level models as well.
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System Level Methodology

• Well defined specification
Complete
Just another model

• Well defined system models
Several possible models
Well defined semantics 
Formal representation

• Model verification
Design decisions => transformations
Formally defined transformations
Automatic model generation possible
Equivalence by construction

System Specification 
model

Intermediate models

Cycle accurate 
implementation model

A system level methodology starts with a well defined executable specification model 
that serves as the golden reference. The specification is gradually refined to a cycle 
accurate model that can be fed to traditional simulation and synthesis tools. The 
gradual refinement produces some intermediate models depending on the choice of 
methodology.

The details that are added to models during refinement depend on the designer 
decisions. Each decision corresponds to one or more model transformations. If all the 
transformations are formally defined, the refinement process can be automated.
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System Level Models

• Models based on time granularity of computation and communication
• A system level design methodology is a path from model A to F

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Component model
C. Bus-arbitration model
D. Bus-functional model
E. Cycle-accurate computation model
F. Implementation model

E

Cycle-
timed

Source: Lukai Cai, D. Gajski. “Transaction level modeling: An overview”, ISSS 2003

In general, system level models can be distinguished by the accuracy of timing for 
their communication and computation. In the graph, the two axes represent the 
granularity of communication and computation. The functional specification at the 
origin is untimed, with only a causal ordering between tasks. On the other end is the 
cycle accurate model.

A system level methodology takes the untimed specification to its cycle accurate 
implementation. The path through the intermediate models determines the 
refinements that need to be performed.
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Model Definition

• Model = < {objects}, {composition rules} >
• Objects

Behaviors 
− tasks / computation / function

Channels
− communication between behaviors

• Composition rules
Sequential, parallel, FSM
Behavior / channel hierarchy
Behavior composition also creates 
execution order
− Relationship between behaviors in the 

context of the formalism
• Relations amongst objects

Connectivity between behaviors and 
channels

B2 B3

B1

Formally, a model is a set of objects and composition rules defined on the objects. A 
system level model would have objects like behaviors for computation and channels 
for communication. The behaviors can be composed as per their ordering . The 
composition creates hierarchical behaviors that can be further composed. Interfaces 
between behaviors and channels or amongst behaviors themselves can be visualized 
as relations.
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Model Transformations (1/2)

• Design Decision
Map behaviors to PEs

• Model Transformations
Rearrange object composition
− Distribute computation over PEs

Replace objects
− Import IP components

Add / Remove synchronization
− Transform sequential composition to 

parallel and vice-versa

a*(b+c) = a*b + a*c
Distributivity of multiplication 

over addition

analogous to……

B1

B2
B3=

Distribution of behaviors (tasks)
over components

PE IP

B2 B3

B1

A transformation on a model can be expressed using the concept of rearranging and 
replacing objects. For instance, in order to distribute the behaviors in a specification 
onto components of the system architecture, we need to rearrange the behaviors into 
groups. In order to use IP components, we need to replace behaviors in the model 
with an IP from the library. Each of these transformations has to be proven correct in 
a formal context.

Intuitively, we can draw an analogy between distributive law for natural numbers and 
distribution of behaviors on components as shown in the figure. Just as the expression 
on LHS is equal to that on RHS in the distributive law equation, we have a model on 
the LHS equal to a model on the RHS. The equality is determined by the order in 
which the behaviors execute. 
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Model Transformations (2/2)

• Design Decision
Map channels to buses

• Model Transformations
Rearrange object composition
− Group channels according to bus 

mapping
− Slice complex data into bus words

Replace objects
− Import bus protocol channels

a+b+c+d = (a+b) + (c+d)
Associativity of addition

analogous to……

=

Mapping of channels to buses

PE IP PE IP

Another designer decision would be to map the abstract data channels to system 
buses in order to implement the inter-component communication. To reflect these 
decisions, we need to perform certain model transformations. These transformations 
would include the grouping on abstract channels as per the bus mapping and 
creation of hierarchical channels. The hierarchical channels represent the system 
level bus architecture. Eventually, these hierarchical channels need to be replaced 
with bus protocol channels and drivers need to be added in components to 
implement the data transfer. 
The grouping transformation can be seen as analogous to associative rule for 
addition of natural numbers. No matter how we group the summation terms, the 
result would always be the sum of all the numbers. Similarly, no matter how the 
abstract channels are grouped in the transformed model, they would perform the 
same data transfer as in the original model.
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Model Refinement

• Definition
Ordered set of transformations < tm, … , t2, t1 > is a refinement
− model B = tm( … ( t2( t1( model A ) ) ) … )

• Equivalence verification
Each transformation maintains functional equivalence
The refinement is thus correct by construction

• Derives a more detailed model from an abstract one
Specific sequence for each model refinement
Not all sequences are relevant

• Refinement based system level methodology
Methodology := < {models}, {refinements} >

A model refinement can be expressed as a well defined sequence of transformations. 
Since each transformation is shown to be correct, the refinement also produces an 
output model equivalent to the input model.
A refinement based methodology can be defined as a set of well defined models and 
the refinements between them.
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System Verification through Refinement

• Set of models
• Designer Decisions => transformations

Select components / connections
− Import behaviors / protocols

Map behaviors / channels
− Synchronize behaviors / slice data

• Transformations preserve equivalence
Same partial order of tasks
Same input/output data for each task
Same partial order of data transactions
Equivalent replacements

• All refined models will be “equivalent” to 
input model

Still need to verify
First model
Correctness of replacements

Refinement
Tool

t1
t2
…
tm

Model A

Model B

Designer
Decisions

Library of
objects

In a refinement based system level methodology, each model produced by a 
refinement is equivalent to the input model. As shown in the figure, designer 
decisions are used to add details to a model to refine it to the next lower level of 
abstraction. Each designer decision corresponds to a transformation in the model. The 
transformations would either rearrange the computation and communication objects 
or replace an object in the model with one from the library.

The notion of model equivalence comes from the simulation semantics of the model. 
Two models are equivalent is they have the same simulation results. This translates to 
the same (or equivalent) objects in both models and the same partial order of 
execution between them. Correct refinement, however, does not mean that the output 
model is bug free. We also need to use traditional verification techniques on the 
specification model and prove equivalence of objects that can be replaced with each 
other.
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Conclusion

• Variety of verification techniques available
Several tools from industry and academia
Each technique works well for specific kind / level of models

• Challenges for verification of large system designs
Simulation based techniques take way too long
− Time to market issues

Most formal techniques cannot scale
− Memory requirement explosion
− Too much manual effort required

• Modeling is pushed to system level
• Future design and verification

Complete and executable functional specification model
Well defined semantics for models at different abstraction levels
Well defined transformations for design decisions
− Verify transformations
− Automate refinements

• Formalism helps system verification !

In conclusion, we have looked at several verification techniques available from both 
the industry and the academia. As the size and complexity of designs increase, 
traditional techniques might not be able to keep pace. A system design methodology 
will well defined model semantics may be a possible solution to the problem. 

Specifying the design at a higher level of abstraction would make traditional 
verification and debugging tractable because of smaller model size. Well defined 
model semantics would make it possible to define and prove correct transformations 
for automatic model refinement. Therefore, formalisms would make complete system 
verification much faster.
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