Provably Correct Architecture Refinement

Samar Abdi and Daniel Gajski

Technical Report CECS-03-29
September 30, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{sabdi,gajski@cecs.uci.edu

Abstract

This paper presents a formal approach to correctly generate an architecture level model of a system from its specification
model. We define the notion of equivalence of models based on their execution semantics. A formalism is then presented,
which can be used to model systems and perform correct transformations on them. Architecture refinement is described, as a
sequence of such transformations on the specification model, that results in an equivalent architecture model. This method of
deriving one model from another through well defined rules can alleviate the problem of validating every model at different
abstraction levels in system design.

Contents

1. Introduction 1
2. System level models and equivalence 2
2.1. Specification model e
2.2.EXecution SEmMAantiCS i e e
2.3. Model Equivalence
3. Model Algebra 3
3.1. Algebraic representationof models e
3.2. Axioms of Model Algebra
4. Architecture Refinement 5
4.1. Deriving the architecture model e
4.2. Correctness of architecturerefinement e
5. Experimental Results 6
6. Conclusions 7

List of Figures

Architecture refinementin systemdesign. e
A Specificationmodel. e e
Unfolded execution graph for specificationmodel
Partial order of actionsinatimestep
Architecture refinement appliedto a single behavior
Architecture modeing L e

OO, WN PP

Provably Correct Architecture Refinement

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems
University of California, Irvine

Abstract handling large designs and is not designed for asynchronous
models that are used at system level. Moreover, checking
This paper presents a formal approach to correctly gen- functional equivalence of two independently written high

erate an architecture level model of a system from its speci-level language programs is not feasiblée only solution
fication model. We define the notion of equivalence of mod-to the problem is deriving the refined model from the
els based on their execution semantics. A formalism is thernspecification model through correct well defined refine-
presented, which can be used to model systems and perforriment steps
correct transformations on them. Architecture refinement A methodology based on well defined refinements [5] re-
is described, as a sequence of such transformations on theguires formalisms to represent the system level models and
specification model, that results in an equivalent architec- proofs for all refinement steps. Formalisms based on pro-
ture model. This method of deriving one model from another cess algebra [4], like CSP [6], CCS [7] and ACP [1] have
through well defined rules can alleviate the problem of val- been around for quite some time and are suitable for rep-
idating every model at different abstraction levels in system resenting system models. However, there were two prob-
design. lems we faced while evaluating these formalisms for our
use. Firstly, we could not find a way to move processes
across hierarchies, which was essential for our refinement
steps. Secondly, our design methodology required clear
separation of communication objects and computation ob-
jects. Formalisms such ascalculus [8], although devel-
‘oped for communication between processes, do not have

1. Introduction

The continuous increase in size and complexity of SoC
designs has raised the abstraction level of system specifi

ﬁatlon. Wi are thuhs faced W'tr; a new thaIIen?e, namely, e, vjicit communication objects like channels for synchro-
ow to make sure that abstract functional models written in yi; o 4 4ata transfer. To solve the problem, we developed a

languages like C++ can be synthesized to equivalent cycle,ajism calledviodel Algebrathat can be used for repre-

accurate implementations. _ senting system models and their transformations.
One approach is to use a system synthesis tool and use

formal verification techniques to check for equivalence. In
this approach, the designer specifies some properties that he
or she expects to hold in the system. Techniques like model
checking [2] and theorem proving [3] are then employed to
check for these properties in the model. If a “golden” spec-
ification model of the system is available, techniques like
FSM equivalence checking [10] may be used to compare
the implementation model against the specification model.
Although these techniques work well for abstraction levels
of RTL and below, there are several problems in applying Specification Model Architecture Model

them to system level. Model checking requires a state tran-

sition system representation of the model, which may not Figure 1. Architecture refinement in system design
always be available. Besides, it suffers from the state ex-

plosion problem. Theorem proving, though applicable at Figure 1 shows how a specification model, with arbitrary
any abstraction level and on any kind of design, comes with hierarchical organization of tasks, is refined to an architec-
minimal automation and requires extensive training and ex- ture level model with components communicating using ab-
pertise. FSM equivalence checking also has problems instract data transaction channels. The semantics of the archi-

Designer
Decisions

Architecture
Refinement

tecture model ensures a parallel composition of components ms
at the top level. The behavior inside each of these compo-
nents can be either compiled to assembly code (for a SW
component) or synthesized to RTL (for a HW component).
Abstract data channels can be synthesized to system busses
and bus interfaces on components through communication
synthesis. The rest of the paper is organized as follows.
Section 2 will cover system model semantics and the no-
tion of model equivalence. Section 3 will introduce model
algebra and its axiomatization. Section 4 will present the
architecture refinement step and proof of its correctness in
the context of model algebra. We will finally wind up with
conclusions and future work.

2. System level models and equivalence

A system level methodology may be defined as a set of
models with different semantics at different levels of ab-
straction. If the semantics are well defined, an abstract
model may be refined to a more detailed one through a
sequence of transformations. However, we must guaran-
tee that this refinement produces a functionally equivalentperform any computation. In other words, an identity be-
model. We also need to define the notion of functional havior has the same input and output. Such behaviors may
equivalence to establish the correctness of model transforbe used for synchronization or retransmission of data. The
mations. start andterminatebehaviors in ordered compositions are

identity behaviors.

Figure 2. A Specification model

2.1. Specification model
2.2. Execution semantics

Informal specification in natural languages are not exe-
cutable and are often ambiguous. Therefore, they cannot The execution of a model is best understood by unfold-
be used as an input to a refinement tool. In our methodol-ing it as shown in figure 3. We construct a (possibly infinite)
ogy, a specification is written as an executable model with directed acyclic graph representing execution of the model.
well defined execution semantics. A model may be definedThe square nodes represent leaf level behaviors (indivisi-
as a set of objects and their compositions. The two objectsble tasks in the model) and oval nodes represent channels.
that we use are behaviors (representing computation) andrhe label on the arcs connecting behavior nodes are boolean
channels (representing communication between behaviors)variables or boolean constants, representing conditions for
Behaviors may be composed hierarchically using composi-a behavior to execute. A behavior node will execute if all
tion rules oforderedandparallel. Behaviors can exchange its predecessors in the DAG have executed and all the in-
data either through data variables or channels. Channelsoming condition arc labels evaluate to TRUE. Input and
encapsulate data with synchronization to ensure sanity ofoutput data associated with behaviors is also shown with in-
data transaction between concurrent behaviors. Figure Zoming and outgoing variable arcs respectively. The subset
shows a specification model. Ordered behaviors are con-of this DAG, consisting of behavior nodes and conditional
nected by broken conditional arcs and can represent conarcs only, is topologically sorted and divided into time steps.
ditional execution, loops or any arbitrary FSM execution. Each time step consists of at least one behavior that may be
They also have a unique start and terminate sub-behaviorexecuted in that time step. Behaviors executing in the same
Behaviors composed in parallel do not have any conditional step exchange data through channels.
arcs amongst them, and are shown as separated by dotted A behavior execution is further divided into three par-
lines. Data transactions are shown as arcs labeled with dataially ordered sets of actions. First, the behaviors reads all
variables. Note that the specification model requires the be-the input data (represented by b.rd(v)). Then the behavior
haviors to have a clean hierarchy, which allows us to treatexecutes its main body (represented by b.ex()). Any data
the leaf level behaviors as indivisible units of computation. transactions on the connected channels also take place con-

Further, we introduce the notion of identity behaviors. currentto b.ex(). Finally, the behavior writes to all its output
An identity behavior is a leaf level behavior that does not variables (represented by b.wr(v)). The actions in a typical

3 v2 v3
4]
5 E
v2
6 s

[}
9 i [= [E
1
1 vl
10 i [bt]=e2]
v

V2 v3
2

! !

i i

i i

Figure 3. Unfolded execution graph for specification
model

time step are shown in figure 4. Note that the channel write

and read actions are ordered as write followed by read.

N-1)
v2 / Ve

N) b1.rd(v2) b wr(ud) b2.rd(v4)

v wr(v:

< bLex) poray P20

bl.wr(v3) b2.wr(v5)
\ Ld v
N+1 v3 V5

Figure 4. Partial order of actions in a time step

2.3. Model Equivalence

of actions of behaviors il (written aspot(m, Qn)). Two
modelsmy andmy, arepartial order trace equivalent if

2. my andmp have the same conditional arc variables

3. VQm, = Qm,, pot(m1, Qm,) = pot(my, Qm,)

We will write my <> mp if modelsm; andn, are partial

order trace equivalent.

3. Model Algebra

We can now define our task as deriving an architecture
level modelm, from a specification modeis such that
my > Ms. It can be seen that because of the (possibly) in-
finite size of the execution graph, comparing two indepen-
dently written models is not possible. We,therefore, define
a formalism calledModel Algebrafor expressing models.
The signature of model algebra is as follows

MA =<B,C,A,0,R >

B is the set of behaviors,

C is the set of channels,

A is the set of synchronization points,
O ={o,p} (Set of Operations)

R = {~,—}(Set of Relations)

We also define the class of identity behaviors as the sub-
setB¢ of B. The intuitive explanation of the formalism is
as follows. The operations of model algebra are defined on
the set of behaviors and are used to create a behavioral hi-
erarchy. The terno(b,...bn), whereb;, ...b, € B, creates
an ordered composition of behaviors. Similarly, the term
p(by,...bn), whereby, ...b, € B creates a parallel composi-
tion of behaviors. We also define the relation sub-behavior
(<) as follows. Lefa,b,t € B, thenb<aif

1. a=p(..b...)
2. a=o0(...b...)
3. teaandb«t

The relations oM A are used to create control flow and
data flow between behaviors. The relation
g.by ~ by, whereby,b, € B,q is a boolean variable, im-
plies that behavidp, may start executing aftés completes

Using the execution semantics as explained above, weandq evaluates td RUE The purpose of synchronization
can derive a partial order of actions for any simulation run points () is to force execution of a behavior only after all
of the model. A simulation run of the model is nothing but its predecessor behaviors (in the unfolded execution graph)
a valuation of the (possibly infinite) set of conditional arc have executed. For instance, the set of relations

variables in the execution graph. L@, be the valuation
of the conditional arc variables ang, be the set of non-
identity leaf level behaviors in model. We definepartial

order trace of m, with valuationQ, as the partial order

{a1.b1 ~ d,02.b2~ 8,6~ bz}, where

b1,b2,b3 € B,d € A implies thathz can start executing only
afterb; is complete andyj; is TRUE AND b is complete
andg is TRUE

Data flow between behaviors, either directly through MA5 a3 :p(s1,..,a2: p(S,...12),..t1) =
variables or through channels, is represented usingthe a;: p(si,..,%,.,12,..,t1)
relation. The relationv.b; — by, where v is a data vari-
able implies the actionby.wr(v) andby.rd(v) in the re- MA6 {d1.x~ e 0.~ y} = (Q1AG2)-X~ Y}
spective order in execution trace. The pair of relations
{v.b; = c,v.c — by}, wherec € C implies data write and MA 7 {Q1.X~>Y,02.X~> Y} = (01 V g2) X~ Y}
read through a channel. MA 8 e~ e = {@.e - C,0.C— &)

3.1. Algebraic representation of models MA9 {e;~ e, v.e — &} ={ve — cV.Cc— &}
For proving equivalence of models and formulas for re- MA 10 {vx—eve—y}l={vx—y}
finement, algebraic representations are often times conve-
nient. Using the notions of hierarchy, control flow and data MA 11 a: ofs,..,b1,eby,.t) = a: o(s,..,b1, by, ..t) iff e
flow of system models, we can represent a model as a 3-has no relations.

tuple in model algebra.
Soundness oy, o means that the equality relation be-

m:< H(m),C(m),D(m) > tween models implies that they are partial order trace equiv-
alent. Soundness is a must for the transformations to be cor-
rect. Completeness @f, o implies that if any two models

are equivalent, then their equality can be derived using the
axioms of&, o. Completeness is a highly desirable prop-
erty because it ensures that all correct refinements can be
proven to be correct. However, for the scope of this report,
H(ms) = o(sy,as:p(by,b2), completeness is n(_)t necessary_to be shown. _The soundness
of &y a can be easily proved using the execution graph and
partial ordered actions of models.

H(m) is the expression for hierarchical composition of be-
haviors inm, C(m) is the set of control relations im and
D(m) is the set of data flow relations m. The model alge-
braic representation of the specification maaiein figure

2 is as follows.

az: 0(Sp,ba, ba, 1), 11)

C(ms) = {lsi~ag,lai~ ap,qraz~ ai,
dy.a2 ~ t1, 1.5~ b, 0 - bp ~» bg, Theorem 1 &y is sound modulo partial order trace
0p-b2 ~ t2,03.b3 ~ b3, 03.b3 ~ t2} equivalence.
D(ms) = {vi.b1 — c1,v1.Cc1 — by, vo2.by — bg, Proof
v3.bp — by} The first five axioms are essentially definitive. The execu-
tion graph is derived from the leaf level behaviors of the
3.2. Axioms of Model Algebra model. Since we restrict the model to clean hierarchies only,

the composite behaviors are simply an encapsulation of the

We axiomatize model algebra modulo partial order trace leaf behaviors. Models (and terms) on the LHS and RHS
equiva|ence_ The axiomatizati(&MA induces an equa|_ of axiomsM A1 thl’OUghM A5 define how the execution
ity relation on models that can be used to define correctgraph is constructed from the hierarchical model.
transformations on models. For the following axioms, we ~ The LHS of axiomM A6 implies that if both conditions
assume{a,a;,b,bi} € B, 8 € A, {st,e g} e Bt ceC, g1 andq, are TRUE, then the behavioxse, andy are exe-
{x,y} € B x A, qj is boolean variable ang is data variable. cuted in that order. Since the actions of identity behaviors
@is a special data variable. If an object does not appear inare notincluded in the partial order trace, it will be the same
C(m) or D(m), then it is said to have no relations. Control as the trace for RHS, wheseis executed aftex if g1 A d

relations 1x~-» y are written ax~» y. is TRUE.
The LHS of axiomM Ar+has two control relations, both
MA1 f(.a:p(by,...,bn)..),C(m),D(m) = leading fromx to y. If either of the condition variableg;
f(..a:o(sby,...,bn,t)..),C(M UUL,{S~ bi, b ~ &} or g evaluate to true, thepwill be executed aftex. This
U{delta~ t},D(m) is equivalent to a single control conditiéay V go). X~ yin
_ the RHS.
MA2 x~a:o(s,..t)=x~s The special data variablgis used to replace a control
MA3 a:0(s,..t)~ X=t~sX relation with a data channel. According to channel seman-
tics, the RHS term ifM A8 would ensure thagy.ex) is
MA 4 a;:0(sy,..,a2:0(S,...12), ..t1) = followed bye;.wr(@) ande,.rd(@). Thuse, does not com-
ap:0(st,..,%,..12,..,t1) iff a2 has no relations. plete befores; starts. Since the actions of identity behaviors

are not included in the partial order trace, the trace for RHS Let gji ,e’ji eB&1<j<nl<i<k
will be the same as that for LHS.

The LHS inM A9 implies that actiore;.wr(v) is fol- bj = ofeji,bj,€j) if bj € comp
lowed bye,.rd(v) due to the ordering of behaviors. For the = p(eji,e’ji) otherwise
RHS, the same order of actions is maintained. Since the — f(b1.boi. ..o
) ']) . . pa = fs(by,bai,...bni)
identity actions are not included in the partial order trace, H _
the trace for RHS will be the same as that for LHS. (Me) = p(pey, pey, .., P&

The soundness & A10 follows from the same concept The control and data flow relations can be obtained as fol-
as above. Both the LHS and the RHS represent a partiallows. Start withC(m,) andD(m,) as empty sets and per-
order trace with actiom.wr(v) followed byy.rd (v). form the following steps.

In axiom M Al11, we assume tha has no relations. 1V c c ok _ _
Thus for the RHS, identity behavi@r does not have any - Yax~y € C(ms), C(Ma) = {Ui=1 X~ ¥i}
actions. Thus the partial order trace for RHS will be the o C(ma) = C(Mma) U {UT:l{eji ~ by, bj ~ € }}
same as that for LHS. wherebj € comp

We have thus proven the soundnes&gh .

3. Yv.bj = bj € D(ms), whereb; € comp,bj € comp
if | =r,D(mg) = D(mg) U{v.bj — bj}
if 1 7 1,D(mg) = D(Ma)U
{v.bj — ej,v.€j — cy,v.Ccy — €jr,V.€jy — bj}

4. Architecture Refinement

The architecture refinement task, as depicted in figure 1 4. if bj € comp,D(my) = D(ma)U
is to generate a model that represents the mapping of system {Uin:l{UIj(:l,jyél {@.8] — cij,9.cij — 6,
tasks to architectural components. The specification model @€ — G, 9.cp — e.{j 1}
is an arbitrary hierarchy of behaviors representing the sys-
tem functionality. Architecture refinement would distribute Intuitively, the architecture refinement process can be de-
the behaviors onto components that run concurrently in thesctibed as follows. In step 1, we copy over the control re-
system. It must be noted that refinement does not in anylations from the specification model to each component. In
way influence the mapping decision. The designer is freeStep 2, we introduce the control relations for the ordered
to choose any mapping of behaviors to components and rePlace holder behaviors in each component. One such ex-
finement would produce a model that represents it. How-2ample is shown in figure 5, where the control relations for

ever, each leaf behavior in the specification model must bePehaviorbij must ensure execution efj, bj ande; in that
mapped to only one component. order. In step 3, we introduce channels to carry all data

transfer across components. Finally, in step 4, we introduce
synchronization channels to maintain the execution order to

4.1. Deriving the architecture model be the same as in the specification model.

bj mapped to componentpe;

In order to derive an architecture moaej from a spec-
ification modelms, we use the semantics of the two mod-
els and the designer decision of behavior mapping . The
designer decision can be written as a grouping of non-
identity leaf behaviors ims. Let {bs,by,...by} be the non-
identity leaf behaviors inLy,. We can writeH(ms) =
fs(b1,b2,...bn), wherefs is some function using the oper-
ations in model algebra. Let the system architecture consist
of k components. Letomp C Ly, be the mapping td"
component. We can derive the architecture madglas
follows.

Copy the hierarchy irmg onto behaviorspe; through

pe. Rename sub-behaviors such that H(ms), there is a Figure 5. Architecture refinement applied to a single
corresponding; < pa,1 <i < k. Modify behaviors inLm, behavior
as follows.

control relations inC(m) are then reduced to control rela-
tions only between leaf level behaviors by using axioms MA
Pe2 12 2and MA 3. The hierarchy is then flattened by optimizing
away the composite sub-behaviorstdfm) using axioms
MA 4 and MA 5. We thus get an equivalent modelin the
canonical form.

We start with modelsns andmy, and derive their canoni-
cal formsmy, andn, respectively. So, we have, = ms and
m, = my. Now consider modaet,.

Givenbj,bj € Lms,q.bi ~ bj € C(m)
Letb; € comp,bj € comp,| #r.
By definition of the refinement steps in section 4.1, we have
{bi ~ €,q.€) ~ ej, e ~ b} C C(n),
@.ej — e € D(m,)
= {bi~ €),0.€j ~ ej,ej ~ e, e ~ bj} CC(m),
D(my) = D(ny) — {p.e5 — ejr }[MA 8]

<

°

@
iy

i

31

<
N

c31

However,{b; ~ €} ,0.€} ~ €ji, € ~ €jr,ej ~ bj}
=Qq.bj ~ €j1,€j ~ bj} [MA 6]
= 0.bj ~ bj [MA 6]
g Letbi,b; € comp.
12 By definition of the refinement steps in section 4.1, we have
{bi ~ €,0.6) ~ €ji, € ~ bj} C C(m,).

. . However,{b; ~ e,(, ,q.e{l ~ €j|,€j| ~ bj}
Figure 6. Architecture modet, = {q.bi~ €, ~ bj} [MA 6]
=q.bj ~ bj [MA 6]
The refinement function as applied to a single behavior ~ Using the above rules, we can reduce all conditional re-

is shown in figure 5. The complete architecture model for lations and synchronization channelsng to those inm.

the specification model in figure 2 is shown in figure 6. In We now try to reduce the data flow relations across compo-

this particular model, the designer choose two componentgents.

PE1 and PE2 for the system architecture. Behawgend Givenbi, bj € Ly, v.bi — bj € D(mb)

bs are mapped to PE1, whil® andb, are mapped to PE2. Let bi € comp,bj € comp,| # r. By definition of the
refinement steps in section 4.1, we have

4.2. Correctness of architecture refinement {vbi — ey, v.ej — cy,v.0y — €jr, V.6 — bj} C D(my),
&ji ~ €jr € C(Ma)

The proof of correct refinement involves showing that = {V.bi — €ji,v.ejy — ejr,v.ejr — bj} C D(mp)

the architecture model derived using the above steps isusing [MA 9,MA 7]

equivalent to the specification model. To prove equivalence,

we reduce both models to a flat canonical form. The canon- However{v.b; — ej,v.ej — ejr,v.ejr — bj}

ical representation of the architecture model is then sim- = {V.bi — &jr,v.ejr — bj} [MA 10]

plified to optimize away redundant identity behaviors and = {V.bi = bj} [MA 10]

channels. After optimization, the algebraic representation Using the above rules, we can reduce all data flow rela-

of the architecture model is shown to be same as that of thelions innm, to those inmg. Since all the identity behaviors

specification model. added during architecture refinement do not have any rela-
tions anymore, we can optimize them away by using trans-

Theorem 2 my = mg formation of axiom MA 11. We thus havel, = mL. Using

Proof the equality of canonical form , we get, = ms.

We present here an intuitive and simplified version of the)

proof. 5. Experimental Results

The canonical form of a given model is derived by
converting all parallel compositions in the behavior hierar- The theory of model algebra has shown us how to con-
chyH(m) to ordered compositions using axiom MA 1. All struct proofs for refinement algorithms. In order to demon-

Table 1. Experimental results for different system architectures

Design Number of Number qf Number of | Lines of Refi.nement Sim.ulation
Componentdy Leaf Behaviors| Channels| Code time time

2 45 6 2841 0.164s 445s
Jpeg 3 62 12 4155 0.259s 520s
4 71 13 4342 0.285s 640s
2 117 8 12650 0.746s 2277s
\Vocoder 3 124 18 12874 2.156s 2351s
4 142 59 18648 10.679s 2963s

strate the validity of these claims, an architecture refinementcycle accurate model refinements.
tool was written using the algorithm presented in 4. The

unambiguous semantics of the models can be used to defingeferences

refinement steps which can be automated.

The architecture refinement algorithm was implemented
in C++ and experiments were done with specification mod-
els for Jpeg Encoder and GSM Vocoder. The JPEG speci-
fication had 2695 lines of code and consisted of 28 leaf be-
haviors. The Vocoder specification had 7992 lines of code [2] E. Clarke, O. Grumberg, and D. Peleddodel Check-
and 62 leaf behaviors. Three architecture models were gen- ing. MIT Press, 2000.
erated per design for architectures with 2, 3 and 4 process-
ing elements. Table 1 shows the user times for refinement [3] D. Cyrluk, S. Rajan, N. Shankar, and M. Srivas. Ef-
and simulations done with 1000 random test vectors for fective theorem proving for hardware verification. In
each model on a 2 GHz Pentium 4 machine. Note thatasthe ~ Theorem Provers in Circuit Desigpages 203-222,
number of components increase, the size and average simu- ~ September 1994.
lation time of the architecture model increases.Even though [4] W. Fokkinik.
these simulations are faster than those at cycle accurate
level, exhaustive simulations for each intermediate model
in the system design process would be a huge overkill. [5] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[1] J. Bergstra and J. Klop. Process algebra for syn-
chronous communication. Imformation and Con-
trol, pages 109-137, 1984.

Introduction to Process Algebra
Springer, January 2000.

6. Conclusions

[6] C. Hoare. Communicating Sequential Processes

We presented a method for generating an architecture ~ Prentice Hall, 1985.
level model from a specification model in a formal setting. . o
We established a reasonable notion of equivalence in the [7] z Mllner.lgﬂéOCalculus of Communicating Systems
form of partial order traces. A formalism was developed pringer, :
with the goal of .creating correct transformations on mod- [g] R. Milner. Communicating and Mobile Systems: the
els_. Finally, grchnecture refmer_nentwas shown to be correct reCalculus Cambridge University Press, 1999.
using the axioms of our formalism.

This approach, based on correct model transformations, [9] J. Peng, S. Abdi, and D. Gajski. Automatic model
shows a lot of promise in generation of equivalent system refinement for fast architecture exploration. -
level models. It does not suffer from the memory explo- ceedings of the Asia-Pacific Design Automation Con-
sion problem of state based approaches and also enables de- ~ ference pages 332-337, January 2002.
signers to define unam_blguous s_emantlcs of model; in the|r[1O] T M.S. Devadas and R. Newton. On the verification
methodology. Developing the refinement steps and its proof : . .

:) . e of sequential machines at different levels of abstrac-
is a one time effort compared to functional verification of . . .)
: . . tion. In Proceedings of the Design Automation Con-
every model in every design. This effort has already been
. . ; . X ference pages 271-276, June 1987.
used in developing tools for automatic generation of refined
models in our system design methodology [9]. Future work
in this direction would involve extending the theory to in-
clude data types and develop proofs for communication and

