
Provably Correct Architecture Refinement

Samar Abdi and Daniel Gajski

Technical Report CECS-03-29
September 30, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fsabdi,gajskig@cecs.uci.edu

Abstract

This paper presents a formal approach to correctly generate an architecture level model of a system from its specification
model. We define the notion of equivalence of models based on their execution semantics. A formalism is then presented,
which can be used to model systems and perform correct transformations on them. Architecture refinement is described, as a
sequence of such transformations on the specification model, that results in an equivalent architecture model. This method of
deriving one model from another through well defined rules can alleviate the problem of validating every model at different
abstraction levels in system design.

1

Contents

1. Introduction 1

2. System level models and equivalence 2
2.1. Specification model . 2
2.2. Execution semantics . 2
2.3. Model Equivalence . 3

3. Model Algebra 3
3.1. Algebraic representation of models . 4
3.2. Axioms of Model Algebra . 4

4. Architecture Refinement 5
4.1. Deriving the architecture model . 5
4.2. Correctness of architecture refinement . 6

5. Experimental Results 6

6. Conclusions 7

i

List of Figures

1 Architecture refinement in system design . 1
2 A Specification model . 2
3 Unfolded execution graph for specification model . 3
4 Partial order of actions in a time step . 3
5 Architecture refinement applied to a single behavior . 5
6 Architecture modelma . 6

ii

Provably Correct Architecture Refinement

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

This paper presents a formal approach to correctly gen-
erate an architecture level model of a system from its speci-
fication model. We define the notion of equivalence of mod-
els based on their execution semantics. A formalism is then
presented, which can be used to model systems and perform
correct transformations on them. Architecture refinement
is described, as a sequence of such transformations on the
specification model, that results in an equivalent architec-
ture model. This method of deriving one model from another
through well defined rules can alleviate the problem of val-
idating every model at different abstraction levels in system
design.

1. Introduction

The continuous increase in size and complexity of SoC
designs has raised the abstraction level of system specifi-
cation. We are thus faced with a new challenge, namely,
how to make sure that abstract functional models written in
languages like C++ can be synthesized to equivalent cycle-
accurate implementations.

One approach is to use a system synthesis tool and use
formal verification techniques to check for equivalence. In
this approach, the designer specifies some properties that he
or she expects to hold in the system. Techniques like model
checking [2] and theorem proving [3] are then employed to
check for these properties in the model. If a “golden” spec-
ification model of the system is available, techniques like
FSM equivalence checking [10] may be used to compare
the implementation model against the specification model.
Although these techniques work well for abstraction levels
of RTL and below, there are several problems in applying
them to system level. Model checking requires a state tran-
sition system representation of the model, which may not
always be available. Besides, it suffers from the state ex-
plosion problem. Theorem proving, though applicable at
any abstraction level and on any kind of design, comes with
minimal automation and requires extensive training and ex-
pertise. FSM equivalence checking also has problems in

handling large designs and is not designed for asynchronous
models that are used at system level. Moreover, checking
functional equivalence of two independently written high
level language programs is not feasible.The only solution
to the problem is deriving the refined model from the
specification model through correct well defined refine-
ment steps.

A methodology based on well defined refinements [5] re-
quires formalisms to represent the system level models and
proofs for all refinement steps. Formalisms based on pro-
cess algebra [4], like CSP [6], CCS [7] and ACP [1] have
been around for quite some time and are suitable for rep-
resenting system models. However, there were two prob-
lems we faced while evaluating these formalisms for our
use. Firstly, we could not find a way to move processes
across hierarchies, which was essential for our refinement
steps. Secondly, our design methodology required clear
separation of communication objects and computation ob-
jects. Formalisms such asπ-calculus [8], although devel-
oped for communication between processes, do not have
explicit communication objects like channels for synchro-
nized data transfer. To solve the problem, we developed a
formalism calledModel Algebrathat can be used for repre-
senting system models and their transformations.

b3b2 c
v1

b1

b4
v3

v2

q1

q2

PE1 PE3PE2

Architecture
Refinement

Designer
Decisions

Specification Model Architecture Model

Figure 1. Architecture refinement in system design

Figure 1 shows how a specification model, with arbitrary
hierarchical organization of tasks, is refined to an architec-
ture level model with components communicating using ab-
stract data transaction channels. The semantics of the archi-

1

tecture model ensures a parallel composition of components
at the top level. The behavior inside each of these compo-
nents can be either compiled to assembly code (for a SW
component) or synthesized to RTL (for a HW component).
Abstract data channels can be synthesized to system busses
and bus interfaces on components through communication
synthesis. The rest of the paper is organized as follows.
Section 2 will cover system model semantics and the no-
tion of model equivalence. Section 3 will introduce model
algebra and its axiomatization. Section 4 will present the
architecture refinement step and proof of its correctness in
the context of model algebra. We will finally wind up with
conclusions and future work.

2. System level models and equivalence

A system level methodology may be defined as a set of
models with different semantics at different levels of ab-
straction. If the semantics are well defined, an abstract
model may be refined to a more detailed one through a
sequence of transformations. However, we must guaran-
tee that this refinement produces a functionally equivalent
model. We also need to define the notion of functional
equivalence to establish the correctness of model transfor-
mations.

2.1. Specification model

Informal specification in natural languages are not exe-
cutable and are often ambiguous. Therefore, they cannot
be used as an input to a refinement tool. In our methodol-
ogy, a specification is written as an executable model with
well defined execution semantics. A model may be defined
as a set of objects and their compositions. The two objects
that we use are behaviors (representing computation) and
channels (representing communication between behaviors).
Behaviors may be composed hierarchically using composi-
tion rules oforderedandparallel. Behaviors can exchange
data either through data variables or channels. Channels
encapsulate data with synchronization to ensure sanity of
data transaction between concurrent behaviors. Figure 2
shows a specification model. Ordered behaviors are con-
nected by broken conditional arcs and can represent con-
ditional execution, loops or any arbitrary FSM execution.
They also have a unique start and terminate sub-behavior.
Behaviors composed in parallel do not have any conditional
arcs amongst them, and are shown as separated by dotted
lines. Data transactions are shown as arcs labeled with data
variables. Note that the specification model requires the be-
haviors to have a clean hierarchy, which allows us to treat
the leaf level behaviors as indivisible units of computation.

Further, we introduce the notion of identity behaviors.
An identity behavior is a leaf level behavior that does not

b2b1 c
v1

s1

t 1

a1

s2

t 2

b4

b3

a2

v3

v2 q1

q'1

q
2

q
3

q'
3

q'
2

m s

Figure 2. A Specification model

perform any computation. In other words, an identity be-
havior has the same input and output. Such behaviors may
be used for synchronization or retransmission of data. The
start and terminatebehaviors in ordered compositions are
identity behaviors.

2.2. Execution semantics

The execution of a model is best understood by unfold-
ing it as shown in figure 3. We construct a (possibly infinite)
directed acyclic graph representing execution of the model.
The square nodes represent leaf level behaviors (indivisi-
ble tasks in the model) and oval nodes represent channels.
The label on the arcs connecting behavior nodes are boolean
variables or boolean constants, representing conditions for
a behavior to execute. A behavior node will execute if all
its predecessors in the DAG have executed and all the in-
coming condition arc labels evaluate to TRUE. Input and
output data associated with behaviors is also shown with in-
coming and outgoing variable arcs respectively. The subset
of this DAG, consisting of behavior nodes and conditional
arcs only, is topologically sorted and divided into time steps.
Each time step consists of at least one behavior that may be
executed in that time step. Behaviors executing in the same
step exchange data through channels.

A behavior execution is further divided into three par-
tially ordered sets of actions. First, the behaviors reads all
the input data (represented by b.rd(v)). Then the behavior
executes its main body (represented by b.ex()). Any data
transactions on the connected channels also take place con-
current to b.ex(). Finally, the behavior writes to all its output
variables (represented by b.wr(v)). The actions in a typical

2

s1

t3

b4

t2b4

b3

s2

b2b1

s3

t2 s3

b2

t3

b1

t1s3

t1

1

10

9

8

7

6

5

4

3

2

11

c
v1

v3v2

v2

v3

v3

c
v1

q2(6) q2'(6)

q3(7) q3'(7) q1(7) q1'(7)

q1(8) q1'(8)

v3v2

Figure 3. Unfolded execution graph for specification
model

time step are shown in figure 4. Note that the channel write
and read actions are ordered as write followed by read.

b2b1 c
v1

v5

N-1

N+1

N

v2

v3

v4

b1.rd(v2)

b2.wr(v5)

b2.ex()
b2.rd(v4)

b1.wr(v3)

b1.ex()
b2.rd(v1)
b1.wr(v1)

Figure 4. Partial order of actions in a time step

2.3. Model Equivalence

Using the execution semantics as explained above, we
can derive a partial order of actions for any simulation run
of the model. A simulation run of the model is nothing but
a valuation of the (possibly infinite) set of conditional arc
variables in the execution graph. LetQm be the valuation
of the conditional arc variables andLm be the set of non-
identity leaf level behaviors in modelm. We definepartial
order trace of m, with valuationQm as the partial order

of actions of behaviors inLm (written aspot(m;Qm)).Two
modelsm1 andm2 arepartial order trace equivalent if

1. Lm1 = Lm2

2. m1 andm2 have the same conditional arc variables

3. 8Qm1 = Qm2; pot(m1;Qm1) = pot(m2;Qm2)

We will write m1 $ m2 if models m1 and m2 are partial
order trace equivalent.

3. Model Algebra

We can now define our task as deriving an architecture
level modelma from a specification modelms such that
ma $ ms. It can be seen that because of the (possibly) in-
finite size of the execution graph, comparing two indepen-
dently written models is not possible. We,therefore, define
a formalism calledModel Algebrafor expressing models.

The signature of model algebra is as follows

M A =< B ;C ;4;O;R >

B is the set of behaviors,
C is the set of channels,
4 is the set of synchronization points,
O = fo;ρg (Set of Operations)
R = f;;!g(Set of Relations)

We also define the class of identity behaviors as the sub-
setBε of B . The intuitive explanation of the formalism is
as follows. The operations of model algebra are defined on
the set of behaviors and are used to create a behavioral hi-
erarchy. The termo(b1; :::bn), whereb1; :::bn 2 B , creates
an ordered composition of behaviors. Similarly, the term
ρ(b1; :::bn), whereb1; :::bn 2 B creates a parallel composi-
tion of behaviors. We also define the relation sub-behavior
(/) as follows. Leta;b; t 2 B , thenb/a if

1. a= ρ(:::b:::)

2. a= o(:::b:::)

3. t /a andb/ t

The relations ofM A are used to create control flow and
data flow between behaviors. The relation
q:b1; b2, whereb1;b2 2 B ;q is a boolean variable, im-
plies that behaviorb2 may start executing afterb1 completes
andq evaluates toTRUE. The purpose of synchronization
points (4) is to force execution of a behavior only after all
its predecessor behaviors (in the unfolded execution graph)
have executed. For instance, the set of relations
fq1:b1; δ;q2:b2; δ;δ; b3g, where
b1;b2;b32B ;δ24 implies thatb3 can start executing only
afterb1 is complete andq1 is TRUE AND b2 is complete
andq2 is TRUE.

3

Data flow between behaviors, either directly through
variables or through channels, is represented using the!
relation. The relationv:b1 ! b2, where v is a data vari-
able implies the actionsb1:wr(v) and b2:rd(v) in the re-
spective order in execution trace. The pair of relations
fv:b1 ! c;v:c! b2g, wherec 2 C implies data write and
read through a channel.

3.1. Algebraic representation of models

For proving equivalence of models and formulas for re-
finement, algebraic representations are often times conve-
nient. Using the notions of hierarchy, control flow and data
flow of system models, we can represent a model as a 3-
tuple in model algebra.

m :< H(m);C(m);D(m)>

H(m) is the expression for hierarchical composition of be-
haviors inm, C(m) is the set of control relations inm and
D(m) is the set of data flow relations inm. The model alge-
braic representation of the specification modelms in figure
2 is as follows.

H(ms) = o(s1;a1 : ρ(b1;b2);

a2 : o(s2;b3;b4; t2); t1)

C(ms) = f1:s1; a1;1:a1; a2;q1:a2; a1;

q0
1:a2; t1;1:s2; b2;q2 : b2; b3;

q0
2:b2; t2;q3:b3; b3;q

0
3:b3; t2g

D(ms) = fv1:b1! c1;v1:c1! b2;v2:b2! b3;

v3:b2! b4g

3.2. Axioms of Model Algebra

We axiomatize model algebra modulo partial order trace
equivalence. The axiomatizationξM A induces an equal-
ity relation on models that can be used to define correct
transformations on models. For the following axioms, we
assumefa;ai;b;big 2 B , δ 2 4, fs; t;e;eig 2 Bε, c 2 C ,
fx;yg2B�4, qi is boolean variable andvi is data variable.
φ is a special data variable. If an object does not appear in
C(m) or D(m), then it is said to have no relations. Control
relations 1:x; y are written asx; y.

MA 1 f (::a : ρ(b1; :::;bn)::);C(m);D(m) =
f (::a : o(s;b1; :::;bn; t)::);C(m)[

Sn
i=1fs; bi ;bi ; δg

[fdelta; tg;D(m)

MA 2 x; a : o(s; :::t) = x; s

MA 3 a : o(s; :::t); x= t; x

MA 4 a1 : o(s1; ::;a2 : o(s2; :::t2); ::t1) =
a1 : o(s1; ::;s2; ::; t2; ::; t1) iff a2 has no relations.

MA 5 a1 : ρ(s1; ::;a2 : ρ(s2; :::t2); ::t1) =
a1 : ρ(s1; ::;s2; ::; t2; ::; t1)

MA 6 fq1:x; e;q2:e; yg= (q1^q2):x; yg

MA 7 fq1:x; y;q2:x; yg= (q1_q2):x; yg

MA 8 e1; e2 = fφ:e1! c;φ:c! e2g

MA 9 fe1; e2;v:e1! e2g= fv:e1! c;v:c! e2g

MA 10 fv:x! e;v:e! yg= fv:x! yg

MA 11 a : o(s; ::;b1;e;b2; ::t) = a : o(s; ::;b1;b2; ::t) iff e
has no relations.

Soundness ofξM A means that the equality relation be-
tween models implies that they are partial order trace equiv-
alent. Soundness is a must for the transformations to be cor-
rect. Completeness ofξM A implies that if any two models
are equivalent, then their equality can be derived using the
axioms ofξM A . Completeness is a highly desirable prop-
erty because it ensures that all correct refinements can be
proven to be correct. However, for the scope of this report,
completeness is not necessary to be shown. The soundness
of ξM A can be easily proved using the execution graph and
partial ordered actions of models.

Theorem 1 ξM A is sound modulo partial order trace
equivalence.

Proof
The first five axioms are essentially definitive. The execu-
tion graph is derived from the leaf level behaviors of the
model. Since we restrict the model to clean hierarchies only,
the composite behaviors are simply an encapsulation of the
leaf behaviors. Models (and terms) on the LHS and RHS
of axiomsM A1 throughM A5 define how the execution
graph is constructed from the hierarchical model.

The LHS of axiomM A6 implies that if both conditions
q1 andq2 are TRUE, then the behaviorsx;e; andy are exe-
cuted in that order. Since the actions of identity behaviors
are not included in the partial order trace, it will be the same
as the trace for RHS, wherey is executed afterx if q1^q2

is TRUE.
The LHS of axiomM A 7 has two control relations, both

leading fromx to y. If either of the condition variablesq1

or q2 evaluate to true, theny will be executed afterx. This
is equivalent to a single control condition(q1_q2):x; y in
the RHS.

The special data variableφ is used to replace a control
relation with a data channel. According to channel seman-
tics, the RHS term inM A8 would ensure thate2:ex() is
followed bye1:wr(φ) ande2:rd(φ). Thuse2 does not com-
plete beforee1 starts. Since the actions of identity behaviors

4

are not included in the partial order trace, the trace for RHS
will be the same as that for LHS.

The LHS in M A9 implies that actione1:wr(v) is fol-
lowed bye2:rd(v) due to the ordering of behaviors. For the
RHS, the same order of actions is maintained. Since the
identity actions are not included in the partial order trace,
the trace for RHS will be the same as that for LHS.

The soundness ofM A10 follows from the same concept
as above. Both the LHS and the RHS represent a partial
order trace with actionx:wr(v) followed byy:rd(v).

In axiom M A11, we assume thate has no relations.
Thus for the RHS, identity behaviore does not have any
actions. Thus the partial order trace for RHS will be the
same as that for LHS.

We have thus proven the soundness ofξM A .

4. Architecture Refinement

The architecture refinement task, as depicted in figure 1
is to generate a model that represents the mapping of system
tasks to architectural components. The specification model
is an arbitrary hierarchy of behaviors representing the sys-
tem functionality. Architecture refinement would distribute
the behaviors onto components that run concurrently in the
system. It must be noted that refinement does not in any
way influence the mapping decision. The designer is free
to choose any mapping of behaviors to components and re-
finement would produce a model that represents it. How-
ever, each leaf behavior in the specification model must be
mapped to only one component.

4.1. Deriving the architecture model

In order to derive an architecture modelma from a spec-
ification modelms, we use the semantics of the two mod-
els and the designer decision of behavior mapping . The
designer decision can be written as a grouping of non-
identity leaf behaviors inms. Let fb1;b2; :::bng be the non-
identity leaf behaviors inLms. We can writeH(ms) =
fs(b1;b2; :::bn), where fs is some function using the oper-
ations in model algebra. Let the system architecture consist
of k components. Letcompi � Lms be the mapping toith

component. We can derive the architecture modelma as
follows.

Copy the hierarchy inms onto behaviorspe1 through
pek. Rename sub-behaviors such that8x/H(ms), there is a
correspondingxi / pei;1� i � k. Modify behaviors inLms

as follows.

Let eji ;e0
ji 2 Bε;1� j � n;1� i � k.

bji = o(eji ;bj ;e
0
ji) if bj 2 compi

= ρ(eji ;e
0
ji) otherwise

pei = fs(b1i ;b2i ; :::bni)

H(ma) = ρ(pe1; pe2; :::; pek)

The control and data flow relations can be obtained as fol-
lows. Start withC(ma) andD(ma) as empty sets and per-
form the following steps.

1. 8q:x; y2C(ms);C(ma) = f
Sk

i=1q:xi ; yig

2. C(ma) =C(ma)[f
Sn

j=1feji ; bj ;bj ; e0
jigg

wherebj 2 compi

3. 8v:bi ! bj 2 D(ms); wherebi 2 compl ;bj 2 compr
if l = r;D(ma) = D(ma)[fv:bi ! bjg
if l 6= r;D(ma) = D(ma)[
fv:bi ! ejl ;v:ejl ! cv;v:cv! ejr ;v:ejr ! bjg

4. if bi 2 compl ;D(ma) = D(ma)[
f
Sn

i=1f
Sk

j=1; j 6=lfφ:ei j ! ci j ;φ:ci j ! eil ;

φ:e0
il ! cil ;φ:cil ! e0

i j gg

Intuitively, the architecture refinement process can be de-
scribed as follows. In step 1, we copy over the control re-
lations from the specification model to each component. In
step 2, we introduce the control relations for the ordered
place holder behaviors in each component. One such ex-
ample is shown in figure 5, where the control relations for
behaviorbi j must ensure execution ofei j ;bi ande0

i j in that
order. In step 3, we introduce channels to carry all data
transfer across components. Finally, in step 4, we introduce
synchronization channels to maintain the execution order to
be the same as in the specification model.

e' ij

e ij

b i

q'
3

e
ir

e'
ir

b ir

cij

b ij

b i mapped to componentpej

perpej

cir

Figure 5. Architecture refinement applied to a single
behavior

5

s22

t 22

a22

v2

q
2

q
3

q'
2

b12

s12

t12

a12

q
1

q'
1

pe2

e
12

e'
12

e'42

e42

b
4

b42

q'
3

s21

t 21

a21
v2

v2

q
2

q
3

q'
3

q'
2

b21b11

s11

t 11

a11

q
1

q'
1

pe1

e
21

e'
21

e'11

e11

b 1

e'31

e31

b
3

b31

e
41

e'
41

b41

q'
3

b22

e'22

e22

b 2

q'
3

e
32

e'
32

b32

v3

c

v
1

c12

c41

c31

c32

c11

cv2

c21

v2

v2

c42

ma

Figure 6. Architecture modelma

The refinement function as applied to a single behavior
is shown in figure 5. The complete architecture model for
the specification model in figure 2 is shown in figure 6. In
this particular model, the designer choose two components
PE1 and PE2 for the system architecture. Behaviorsb1 and
b3 are mapped to PE1, whileb2 andb4 are mapped to PE2.

4.2. Correctness of architecture refinement

The proof of correct refinement involves showing that
the architecture model derived using the above steps is
equivalent to the specification model. To prove equivalence,
we reduce both models to a flat canonical form. The canon-
ical representation of the architecture model is then sim-
plified to optimize away redundant identity behaviors and
channels. After optimization, the algebraic representation
of the architecture model is shown to be same as that of the
specification model.

Theorem 2 ma = ms

Proof
We present here an intuitive and simplified version of the
proof.

The canonical form of a given modelm is derived by
converting all parallel compositions in the behavior hierar-
chyH(m) to ordered compositions using axiom MA 1. All

control relations inC(m) are then reduced to control rela-
tions only between leaf level behaviors by using axioms MA
2and MA 3. The hierarchy is then flattened by optimizing
away the composite sub-behaviors ofH(m) using axioms
MA 4 and MA 5. We thus get an equivalent modelm0 in the
canonical form.

We start with modelsms andma and derive their canoni-
cal formsm0

s andm0
a respectively. So, we havem0

s = ms and
m0

a = ma. Now consider modelm0
a.

Givenbi ;bj 2 Lm0

s
;q:bi; bj 2C(m0

s)
Let bi 2 compl ;bj 2 compr ; l 6= r.
By definition of the refinement steps in section 4.1, we have
fbi ; e0

il ;q:e
0
il ; ejl ;ejr ; bjg �C(m0

a);
φ:ejl ! ejr 2 D(m0

a)
)fbi ; e0

il ;q:e
0
il ; ejl ;ejl ; ejr ;ejr ; bjg �C(m0

a);
D(m0

a) = D(m0
a)�fφ:ejl ! ejrg[MA 8]

However,fbi; e0
il ;q:e

0
il ; ejl ;ejl ; ejr ;ejr ; bjg

= q:bi ; ejl ;ejl ; bjg [MA 6]
= q:bi ; bj [MA 6]

Let bi ;bj 2 compl .
By definition of the refinement steps in section 4.1, we have
fbi ; e0

il ;q:e
0
il ; ejl ;ejl ; bjg �C(m0

a).

However,fbi; e0
il ;q:e

0
il ; ejl ;ejl ; bjg

= fq:bi; ejl ;ejl ; bjg [MA 6]
= q:bi ; bj [MA 6]

Using the above rules, we can reduce all conditional re-
lations and synchronization channels inm0

a to those inm0
s.

We now try to reduce the data flow relations across compo-
nents.

Givenbi ;bj 2 Lm0

s
;v:bi ! bj 2 D(m0

s)
Let bi 2 compl ;bj 2 compr ; l 6= r. By definition of the
refinement steps in section 4.1, we have
fv:bi ! ejl ;v:ejl ! cv;v:cv! ejr ;v:ejr ! bjg � D(m0

a);
ejl ; ejr 2C(ma)
)fv:bi ! ejl ;v:ejl ! ejr ;v:ejr ! bjg � D(m0

a)
using [MA 9,MA 7]

However,fv:bi ! ejl ;v:ejl ! ejr ;v:ejr ! bjg
= fv:bi ! ejr ;v:ejr ! bjg [MA 10]
= fv:bi ! bjg [MA 10]

Using the above rules, we can reduce all data flow rela-
tions inm0

a to those inm0
s. Since all the identity behaviors

added during architecture refinement do not have any rela-
tions anymore, we can optimize them away by using trans-
formation of axiom MA 11. We thus havem0

a = m0
s. Using

the equality of canonical form , we getma = ms.

5. Experimental Results

The theory of model algebra has shown us how to con-
struct proofs for refinement algorithms. In order to demon-

6

Table 1. Experimental results for different system architectures
Number of Number of Number of Lines of Refinement SimulationDesign

Components Leaf Behaviors Channels Code time time
2 45 6 2841 0.164s 445s

Jpeg 3 62 12 4155 0.259s 520s
4 71 13 4342 0.285s 640s

2 117 8 12650 0.746s 2277s
Vocoder 3 124 18 12874 2.156s 2351s

4 142 59 18648 10.679s 2963s

strate the validity of these claims, an architecture refinement
tool was written using the algorithm presented in 4. The
unambiguous semantics of the models can be used to define
refinement steps which can be automated.

The architecture refinement algorithm was implemented
in C++ and experiments were done with specification mod-
els for Jpeg Encoder and GSM Vocoder. The JPEG speci-
fication had 2695 lines of code and consisted of 28 leaf be-
haviors. The Vocoder specification had 7992 lines of code
and 62 leaf behaviors. Three architecture models were gen-
erated per design for architectures with 2, 3 and 4 process-
ing elements. Table 1 shows the user times for refinement
and simulations done with 1000 random test vectors for
each model on a 2 GHz Pentium 4 machine. Note that as the
number of components increase, the size and average simu-
lation time of the architecture model increases.Even though
these simulations are faster than those at cycle accurate
level, exhaustive simulations for each intermediate model
in the system design process would be a huge overkill.

6. Conclusions

We presented a method for generating an architecture
level model from a specification model in a formal setting.
We established a reasonable notion of equivalence in the
form of partial order traces. A formalism was developed
with the goal of creating correct transformations on mod-
els. Finally, architecture refinement was shown to be correct
using the axioms of our formalism.

This approach, based on correct model transformations,
shows a lot of promise in generation of equivalent system
level models. It does not suffer from the memory explo-
sion problem of state based approaches and also enables de-
signers to define unambiguous semantics of models in their
methodology. Developing the refinement steps and its proof
is a one time effort compared to functional verification of
every model in every design. This effort has already been
used in developing tools for automatic generation of refined
models in our system design methodology [9]. Future work
in this direction would involve extending the theory to in-
clude data types and develop proofs for communication and

cycle accurate model refinements.

References

[1] J. Bergstra and J. Klop. Process algebra for syn-
chronous communication. InInformation and Con-
trol, pages 109–137, 1984.

[2] E. Clarke, O. Grumberg, and D. Peled.Model Check-
ing. MIT Press, 2000.

[3] D. Cyrluk, S. Rajan, N. Shankar, and M. Srivas. Ef-
fective theorem proving for hardware verification. In
Theorem Provers in Circuit Design, pages 203–222,
September 1994.

[4] W. Fokkinik. Introduction to Process Algebra.
Springer, January 2000.

[5] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[6] C. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[7] R. Milner. A Calculus of Communicating Systems.
Springer, 1980.

[8] R. Milner. Communicating and Mobile Systems: the
π-Calculus. Cambridge University Press, 1999.

[9] J. Peng, S. Abdi, and D. Gajski. Automatic model
refinement for fast architecture exploration. InPro-
ceedings of the Asia-Pacific Design Automation Con-
ference, pages 332–337, January 2002.

[10] T. M. S. Devadas and R. Newton. On the verification
of sequential machines at different levels of abstrac-
tion. In Proceedings of the Design Automation Con-
ference, pages 271–276, June 1987.

7

