
Novel Techniques to Improve Branch Prediction 
Accuracy for Embedded Processors in the Presence 

of Context Switches 
 
 
 
 
 
 
 
 
 
 

Sudeep Pasricha, Alex Veidenbaum 
{sudeep, alexv} @cecs.uci.edu 

 
CECS Technical Report 03-24 

August 2003 
 

Center for Embedded Computer Systems 
School of Information and Computer Science 

University of California, Irvine,  
Irvine, CA 92697-3425, USA 

 
 
 
 
 

 
 
 
 

Abstract 
 

   Embedded processors like Intel’s XScale use dynamic branch prediction to improve performance. 
Due to the presence of context switches, the accuracy of these predictors is reduced because they 
end up storing prediction histories for several processes. This paper shows that the loss in accuracy 
can be significant and depends on predictor type and size. Several new schemes are proposed to 
save and restore the predictor state on context switches in order to improve prediction accuracy.  
The schemes differ in the amount of information they save and vary in their accuracy improvement.  
It is shown that even  for a small 1K entry hybrid predictor, 1 - 6%  improvement in prediction rate 
can be achieved (for an average context switch interval of 100K instructions) for several embedded 
applications while saving and restoring a minimal amount of state information (less than 128 bits) 
on a context switch.  



 
1. Introduction 
 
   Modern embedded processors use pipelining to exploit 
parallelism and improve performance. Conditional 
branches in the instruction stream degrade performance 
by causing pipeline flushes. Branch prediction 
mechanisms can overcome this limitation by predicting 
the outcome of the branch before its condition is 
resolved. As a result, instruction fetch is not interrupted 
as often and the window of instructions over which ILP 
can be exposed increases. In fact, accurate branch 
predictors can eliminate over 90% [13] of these pipeline 
stalls and are thus critical to realizing the performance 
potential of a processor. Improving branch prediction 
accuracy is important because the new generation of 
embedded processors have deeper pipelines, which 
result in larger misprediction penalties. In the XScale 
[20] processor which has a 7 stage pipeline, the penalty 
for each misprediction is as much as 4 cycles. 
   Most processors use dynamic branch prediction [5, 6, 
11-13, 15] to predict branch directions. Dynamic 
predictors record and utilize information from previous 
runs of a static branch instruction to predict its outcome 
in the future. This requires additional hardware to store 
the branch history. These predictors dynamically adjust 
their prediction to match the changing behavior of a 
branch instruction as the program executes.  
   One aspect of branch prediction that has largely been 
ignored is the effect of context switches. In typical 
systems, several processes are in the active queue at any 
given time and they share the branch predictor structure. 
Each process runs for its allotted time slice and then 
yields the processor to allow another waiting process to 
execute. Unless steps are taken to change the state of the 
predictor structure, it will contain stale information from 
the run of the previous process when the new process 
commences execution. Since different processes 
generally have completely different branch behaviors, 
reusing the stale information will increase the 
misprediction rate. It is desirable to overcome this 
limitation. This research explores the effects of context 
switches on dynamic branch prediction schemes, in the 
context of embedded processors which have stringent 
hardware resource constraints. We find that context 
switches cause substantial decrease in prediction rate – 
as high as 10% for the hybrid predictor for some cases! 
Having established that context switches degrade 
prediction accuracy, we then propose several methods to 
alleviate this performance loss for the hybrid scheme, at 
different costs to the architect. We choose the hybrid 
predictor because it is widely used, but the proposed 
schemes work for other dynamic predictors too. 
   This paper is organized as follows: Section 2 presents 
previous work in this area. Section 3 describes various 
dynamic branch prediction schemes that we have 

considered for our experiments. Section 4 illustrates the 
effect of context switches on these dynamic branch 
predictors. Section 5 presents schemes to improve 
branch predictor performance in the presence of context 
switches. Section 6 reports the simulation results and our 
analysis for the proposed schemes. Section 7 provides 
some concluding remarks. 
 
2. Related Work 
 
   Several papers on branch prediction acknowledge the 
effects of context switching on branch prediction 
accuracy. 
   Yeh and Patt [6] examined the effect of context 
switches on two-level branch prediction schemes. They 
found that the average accuracy degradations for the 
PAp, PAg and GAg schemes are less than one percent 
for a context switch interval of 500K instructions. 
However in their experiments they did not change the 
pattern history table on a context switch, which explains 
the exceptionally small decrease in prediction accuracy 
for the large predictor structures used. In an actual multi-
programming environment, the pattern history tables for 
different processes will differ and if the PHT is kept 
unchanged, prediction accuracy will suffer. 
   Gloy, et al [7] studied dynamic branch prediction 
schemes on system workloads. They found that 
including kernel level branches with user level branches 
in experiments significantly affected branch prediction 
accuracies, increasing aliasing and thus decreasing 
prediction accuracy.  They emphasized the need to 
consider the whole system rather than just user level 
code when evaluating branch prediction schemes. This 
motivated us to study the impact of context switches on 
the performance of dynamic prediction schemes. 
   More recently, Michele Co. and K. Skadron [1] 
claimed that context switching has negligible effect on 
branch predictor performance. They measured the 
context switch interval based on the default time slice 
value for Windows NT (25 ms), and it turned out to be 
around 50M instructions. Our experiments calculate this 
interval from context switching information obtained 
from several multi-programmed systems with varying 
workloads. The interval we obtain is much smaller than 
theirs and agrees with the findings of previous studies 
[2, 3, 8, 10] that consider the effect of context switching 
on branch prediction. 
   A.S. Dhodapkar and James E. Smith [3] presented the 
case for saving predictor information on a context 
switch. They proposed (for a gshare predictor) saving 
the most significant bits of all the counters in the branch 
predictor tables on a context switch. They also proposed 
setting the predictor counters to weakly taken on a 
context switch, as an alternative. This work is the only 
one that we know of which proposes mechanisms to 



improve predictor accuracy in the presence of context 
switches. They rightly identify the need to reduce the 
‘learning time’ of the predictor after a context switch by 
restoring previously saved prediction values into the 
predictor. This paper extends this study and proposes 
several other mechanisms that will improve 
performance. 
 
3. Dynamic Branch Prediction Schemes 
 
   Dynamic branch prediction has proven to be an 
extremely powerful technique for accurately predicting 
branch direction. Several schemes have been proposed 
[5, 6, 11-13, 15] which exploit different branch 
characteristics to better predict their outcome. In the 
remainder of this section we look at five such schemes 
which we have considered in our experiments to 
determine the effect of context switches on branch 
prediction. 

 
Figure 1. Gshare predictor 

 
   The gshare [12] scheme (Figure 1) utilizes the global 
history of a branch, which works well because branches 
tend to be highly correlated in applications. A global 
history register of size n bits stores the outcomes of the 
last n branch instructions executed by the program.  
 

 
 

Figure 2. Bimode predictor 

This register is xor’ed with the branch address to access 
a table of two bit saturating counters (referred to as a 
pattern history table or PHT), which gives the direction 
prediction. The xor’ing reduces destructive aliasing by 
better distributing different branches to separate 
locations in the table.  
   The bi-mode predictor [13] tries to reduce aliasing by 
separating the “taken” branches from the “not taken”  
(Figure 2). It has a two-bit counter table for each of 
these, called the direction PHT, and another table called 
the choice PHT to select between these two tables. The 
branch address is used to access the choice PHT, while 
the direction PHTs are accessed by xor’ing global 
history to the branch address. The choice PHT selects 
from the “taken” and the “not taken” direction PHTs to 
provide the prediction. The updating mechanism ensures 
that branches that are biased to be taken will have their 
predictions in the “taken” direction PHT, while branches 
biased towards not being taken will have their 
predictions in the “not taken” branch PHT. 
 

 
 

Figure 3. Skewed predictor 
 

   The skewed branch predictor [15] attempts to reduce 
aliasing by increasing associativity in the PHTs. Instead 
of using tags which would not be cost-effective, it 
emulates associativity by using skewing functions to 
access PHT locations (Figure 3). The predictor consists 
of three PHTs, each accessed by a unique hashing 
function. The tables are simple arrays of two bit 
saturating counters. The prediction is made according to 
a majority vote among the three prediction values. 
Partial updating of these tables further reduces aliasing 
and improves prediction accuracy.    
   The hybrid predictor [12] combines multiple 
prediction strategies into a single predictor. A selection 
mechanism is used to determine the most suitable 
component predictor for predicting each branch. For two 
component hybrid predictors, a selection table of two bit 
saturating counters is used (Figure 4). The most common 
hybrid configuration combines a bimodal predictor (a 



table of two bit saturating counters) with a gshare 
predictor. 
 

 
 

Figure 4. Hybrid predictor 
 

   The alloy predictor [11] combines global and local 
history when predicting the direction of a branch (Figure 
5). Bits selected from the branch address, the global 
history register and the local history table (the branch 
history table or BHT in Figure 5) are concatenated 
together to access a two-bit counter in the PHT and 
obtain a prediction. The authors claim that this scheme 
reduces PHT aliasing because branches that alias with 
one type of history are often distinguished by the other 
type of history. 
 

 
 

Figure 5. Alloy predictor   
 
4. Effect of Context Switches 
 
   Context switches can occur during program execution 
for several reasons such as I/O requests, system calls, 
page faults, expiration of time slice etc. The frequency 
of these context switches depends on factors like the 
number of applications active on a system, the types of 
these applications, the operating system used and the 
scheduling scheme. We performed experiments to 
determine context switch intervals on several different 

systems, with varying workloads and running different 
operating systems such as UNIX, Linux and Windows 
2K. For UNIX and Linux we used the vmstat utility 
while for Windows we used the ntimer utility, which is 
part of the Windows 2000 Resource Kit. Our results 
indicate a context switch frequency varying from 
100/sec to 8000/sec and a context switch interval 
ranging from 75K – 1000K instructions. For instance, 
one of the machines we tested was a SUN UltraSparc-II 
workstation running SunOS 5.8 at a maximum clock 
speed of 400 MHz. The context switch frequency on it 
varied from 400/sec to 4500/sec, with a changing 
workload. If it is assumed that one instruction is 
executed every cycle, we get a context switch interval of 
90K instructions for the higher end. In another 
experiment, we tested a 996 MHz Intel PIII machine 
running Windows 2000 and found that the context 
switch frequency varied from about 1000/sec to 
8000/sec which gives a context switch interval of around 
125K instructions for the higher end, assuming an IPC 
of 1. These numbers are in line with the results obtained 
in [3] as well as other studies done previously that 
analyze branch predictor performance in the presence of 
context switches [2, 8, 10].  
   Figure 6 shows the average performance degradation 
for several commonly used dynamic branch prediction 
schemes in the presence of context switches, for 25 
benchmarks from the MiBench [21] suite. “no CS” 
represents the ideal case when no context switches 
occur. We do not modify the branch predictor tables on a 
context switch, allowing the prediction information of 
different processes to overlap. Due to the destructive 
aliasing from overlapping processes, performance 
deteriorates in all cases. We simulate this in the “CS” 
case by filling the predictor tables with spurious values 
(inverting all the bits in some cases and inserting random 
values in others) at the point when a context switch is 
scheduled to occur. We chose to compare predictors 
with a small size of 1K entries (except for the gshare and 
2bit counter predictors which have more entries so that 
the hardware budget is same for all predictors) because it 
is typical for embedded processors to have small 
predictor sizes. Results are shown for the intervals of 
100K, which gives a lower bound of the performance for 
the predictors, in the presence of context switches.  
   One point to note from the figure is that the prediction 
accuracy of certain predictors like skew and hybrid is 
more than that of the simple 2bit counter (bimodal) 
which is used in XScale, even for small hardware 
budgets. The reason for this is that these predictors 
handle aliasing and utilize global history better than the 
simple bimodal predictor to give a marked improvement 
in performance. The main observation from Figure 6 
however is that the loss in prediction accuracy is 
significant for all of the predictors, due to the presence 
of context switches.  



84

86

88

90

92

94

96

98

ske
w

hy
bri

d

bim
od

e

gs
ha

re allo
y

2b
itco

un
ter

P
re

di
ct

io
n 

ra
te

s 
(%

)

no CS 

CS

 
 
Figure 6. Predictor accuracy in the presence of 
context switches (6K bit budget, 100K CS interval) 
  
  Figure 7 shows the performance degradation for the 
dynamic branch prediction schemes discussed in the 
previous section with changing context switch intervals. 
We chose a direction predictor table budget of 6K bits 
corresponding to 1K entries for all predictors except 
gshare and the 2bit counter as explained above, and 
context switch intervals of 100K, 250K, 500K and 
1000K instructions, keeping in mind the numbers 
obtained for the context switch interval range from our 
experiments.   
   It is apparent from the figure that with an increase in 
context switch interval, performance for all the 
predictors improves. However the loss in prediction 
accuracy is still significant for many of the benchmarks 
even when the context switch interval is increased. Also 
low context switch intervals are quite frequently 
encountered in systems, and for these intervals the 
degradation in performance is large.  
   All of the predictors except the bimodal predictor rely 
heavily on the global history register to distribute 
prediction entries for branches and it takes time to train 
the predictors after a context switch, before correct 
predictions can be obtained. From Figure 7 it can be 
seen that for a context switch interval of 100K 
instructions, the misprediction rate for certain 
benchmarks like patricia, gsmt, fft and basicmath can be 
very high regardless of the dynamic predictor used, 
ranging from 5 to 17%! This shows how important it is 
to address the effect of context switches on prediction 
accuracy. The alloy predictor concatenates the address 
bits with the local and global history bits to index into 
the predictor table. Since a lot more address bits are used 
(7) compared to local (2) and global (2) history bits, the 

effect of erroneous entries in the history registers is not 
as much of a problem as it is with the skew and gshare 
predictors where the entire history register contents are 
xor’ed with the address. Therefore the decrease in 
prediction accuracy is slightly less for the alloy 
predictor. The prediction accuracy for the bimode 
predictor decreases comparatively less when compared 
to the alloy scheme because it uses a concatenation of 
address and global history bits to index into the predictor 
tables. Since there is no local history pattern for the 
bimode predictor, it is not affected by incorrect values in 
the local history predictor at the time of a context switch 
and the prediction accuracy does not decrease as much 
as for the alloy predictor. Studies [8, 9] confirm that the 
performance of single-scheme predictors, like the ones 
discussed above, deteriorates when branch history 
information is destroyed periodically. Hybrid predictors 
outperform these schemes because they have a bimodal 
component which takes very little time to warm up after 
a context switch. The longer warm-up time for the other 
component – the gshare predictor, does not affect 
performance because on a misprediction by gshare, the 
meta predictor table gets biased towards the fast training 
bimodal component, and this gives better prediction. 
However, as Figure 7(a) indicates, hybrid predictors still 
incur a substantial decrease ranging from 1 to 9% in 
their prediction rate. Finally, the 2 bit counter (bimodal) 
predictor is least effected by context switches because of 
reasons discussed earlier – since it is basically a table of 
2 bit counters, it takes very little time to train it after a 
context switch, and consequently its prediction accuracy 
is not affected too much due to context switches. 
   An interesting observation from Figure 7 is that for a 
few benchmarks like pgpz and dijkstra, performance 
does not decrease very much. This is because they 
contain a small number of static branches that are 
executed over and over again. As a result, predictors can 
be quickly trained to give accurate predictions after a 
context switch, and the loss in performance is negligible. 
We are more interested in benchmarks that have large 
static and dynamic signatures [5]. 
   Figure 8 shows the decrease in average prediction 
accuracy for the cases when context switches are absent 
and when they are present, for different predictor sizes – 
3k, 6k, 12k and 24k bits. Although increasing predictor 
size improves performance because larger predictor 
tables result in lesser destructive aliasing, the effect of 
context switches become more prominent with 
increasing predictor size and causes the prediction rate 
to decrease with increasing predictor size. 



hybrid

0
1
2
3
4
5
6
7
8
9

10

ad
pc

mc

ad
pc

md

ba
sic

math cjp
eg

dijk
str

a
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az pg
pz

qs
ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne
tiff2

bw

tiff2
rgb

a

tiffd
ith

er

(av
era

ge
)D

ec
re

as
e 

in
 P

re
di

ct
io

n 
R

at
e 

(%
)

CS 100k

CS 250k

CS 500k

CS 1000k

 
(a) Decrease in Prediction Rate for the Hybrid predictor for varying CS intervals 

 

skew

0
2
4
6
8

10
12
14
16

ad
pc

mc

ad
pc

md

ba
sic

math cjp
eg

dijk
str

a
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az pg
pz

qs
ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne
tiff2

bw

tiff2
rgb

a

tiffd
ith

er

(av
era

ge
)

D
ec

re
as

e 
in

 P
re

di
ct

io
n 

R
at

e 
(%

)

CS 100k
CS 250k

CS 500k
CS 1000k

 
(b) Decrease in Prediction Rate for the Skew predictor for varying CS intervals  

 

bimode

0
1
2
3
4
5
6
7
8
9

10

ad
pc

mc

ad
pc

md

ba
sic

math cjp
eg

dijk
str

a
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az
pg

pz
qs

ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h

su
sa

nc

su
sa

ne
tiff

2b
w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)D

ec
re

as
e 

in
 P

re
d

ic
ti

o
n

 R
at

e 
(%

)

CS 100k

CS 250k

CS 500k

CS 1000k

 
(c) Decrease in Prediction Rate for the Bimode predictor for varying CS intervals 



alloy

0
2
4
6
8

10
12
14

ad
pc

mc

ad
pc

md

ba
sic

math cjp
eg

dij
ks

tra
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az
pg

pz
qs

ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h

su
sa

nc

su
sa

ne
tiff

2b
w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)

D
e
c
re

a
s
e
 i
n

 P
re

d
ic

ti
o

n
 R

a
te

 (
%

)

CS 100k

CS 250k

CS 500k

CS 1000k

 
(d) Decrease in Prediction Rate for the Alloy predictor for varying CS intervals 

 

gshare

0
2
4
6
8

10
12
14
16
18

ad
pc

mc

ad
pc

md

ba
sic

math cjp
eg

dij
ks

tra
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az
pg

pz
qs

ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h

su
sa

nc

su
sa

ne
tiff

2b
w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)

D
ec

re
as

e 
in

 P
re

d
ic

ti
o

n
 R

at
e 

(%
)

CS 100k

CS 250k

CS 500k

CS 1000k

 
(e) Decrease in Prediction Rate for the Gshare predictor for varying CS intervals 

 

bimodal (2bit counter)

0
1
2
3
4
5
6
7
8
9

ad
pc

mc

ad
pc

md

ba
sic

math cjp
eg

dij
ks

tra
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az pg
pz

qs
ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne
tiff
2b

w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)

D
e
c
re

a
s
e
 i

n
 P

re
d

ic
ti

o
n

 R
a
te

 (
%

)

CS 100k
CS 250k

CS 500k
CS 1000k

 
(f) Decrease in Prediction Rate for the Bimodal (2bit counter) predictor for varying CS intervals 

 
 

Figure 7. Decrease in Prediction Rate for different dynamic predictors with varying Context Switch Intervals 
 



0

1

2

3

4

5

6

7

8

9

10

3k 6k 12k 24k

D
e
c
re

a
s
e
 i
n

 P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

hybrid

skew

bimode

alloy

gshare

2bit counter

 
 
Figure 8. Percentage decrease in average prediction 
accuracy due to context switches for dynamic 
predictors with varying hardware budgets (100K CS 
interval) 
 
Future generations of embedded processors are expected 
to have deeper pipelines to exploit parallelism and 
consequently larger predictor sizes to improve prediction 
rates, since misprediction penalty with deeper pipelines 
will be more. As predictor sizes increase, the 
degradation in performance due to context switches will 
become more pronounced as can be clearly seen in 
Figure 8. In the next section we propose schemes to 
overcome this performance loss due to context switches. 
 
5. New Schemes to Improve Accuracy 
 
   On a context switch, the predictor structure contains 
information for the process that just finished execution. 
This information does not accurately represent 
predictions for other processes, as was shown in Figure 
6. One existing scheme is to flush the predictor bits to 
zero every time a context switch occurs [20]. Another 
scheme [3] sets all the predictor table entries to weakly 
taken. This section describes new schemes we use to 
improve on the above.  
   An "alternating" scheme sets the counter bits 
alternatively to weakly taken and not-taken (Figure 9) 
for successive counters in the table. This scheme has 
been used for initializing a predictor but has not been 
applied in the presence of context switches. The weakly 
taken and alternating schemes are effective because 
studies [16-18] show that more than half of all branches. 
tend to be taken, and branches in general tend to be 
biased towards either being taken or not-taken. By 
setting the counters to a weak bias (01 or 10) instead of a 
strong bias (00 or 11), we allow a branch to quickly 
revert to the opposite prediction if it is biased in that 
direction. For instance, if a branch is biased towards not-
taken and we set the counter to weakly taken after a 
context switch, it will take just one misprediction before 

we can get a correct prediction for that branch. However 
if we had set the counter to strongly taken after the 
context switch, it would take two mispredictions before 
we could get a correct prediction. All of these schemes 
require very little overhead and can be considered to be 
static in nature because they bias the predictor tables 
based on decisions which do not take into account the 
dynamic state of the predictor when executing. 
   If there were a way to save the entire prediction 
information from the predictor tables for a process, and 
then restore the predictions into the predictor structure 
when the process resumes execution, there would be no 
loss in performance. However, saving and restoring 
entire predictor structures as was done in [3] can be 
prohibitive both in terms of time and memory space. 
Therefore we investigate several schemes for saving 
"representative" portions of the prediction information. 
For instance, one simple scheme we propose saves 1 bit 
per table for each process when a context switch occurs. 
This bit is the predominant bias of the predictor tables – 
either taken or not taken. When the process resumes 
execution, the bit is used to bias the counters in the 
predictor tables based on its value. We call this the 
majority bias scheme. 
   Another scheme "compresses" the predictor state and 
saves N bits per process. The value of N is selected so as 
to achieve a desired accuracy improvement without large 
overhead. A compression algorithm partitions a 
predictor table into blocks of k entries and stores the 
state information for each block.  The state can be the 
dominant bias bit for a block. Alternatively, 2 bits of 
state can be saved per block (the scheme evaluated in 
this paper). On a context switch, the number of entries in 
the block set to strongly not-taken, weakly not-taken, 
weakly taken and strongly taken is used to save the state 
of a block as following: 
? ? 00: if there are more strongly not-taken entries than 

strongly taken entries in the block. If these are equal 
then the weakly not-taken and weakly taken entries 
are compared and a 00 is saved if there are more 
weakly not-taken entries.  

? ? 01: if there are more strongly taken entries than 
strongly not-taken entries. If these are equal then the 
weakly taken and weakly not-taken entries are 
compared and a 01 is saved if there are more weakly 
taken entries. 

? ? 10: otherwise if the overall number of taken and 
not-taken entries is the same, we save a 10.  

   When the process is resumed and before it commences 
execution, the two saved bits for each block of the 
predictor table are used to restore the state as follows: If 
00 was stored, we bias all the counters in the block to 
weakly not-taken. If the saved value was 01, we bias all 
the counters to weakly taken. For the case of a 10, we 
bias successive counters in the tables alternately to 
weakly taken and not-taken. To implement this scheme, 



hardware counters are used together with some 
combinational logic to route and store the data.   

 
Figure 9: States of a 2-bit counter 

 
   Another way to reduce the amount of predictor 
information saved would be to save just the most 
significant bit of the two bit counters in the tables as 
proposed in [3]. This snapshot of the most significant 
bits of the counters in the tables reduces the information 
stored by half. Instead of saving snapshots for all the 
tables, a partial snapshot can be taken for a subset of the 
tables in the predictor. This further reduces the 
information stored, at the cost of reduced prediction 
accuracy. 
   To save and restore the predictor information, we 
propose the use of an L2 cache, bypassing the smaller 
L1 caches, or alternately we can also use a small 
dedicated buffer for the purpose. The results in the next 
section show that schemes which require saving as little 
as 96 bits for a 1K entry predictor can achieve a 
significant improvement in prediction rate (up to 6%) for 
the hybrid predictor which has one the best prediction 
rate in the absence of context switches compared to the 
other dynamic predictors selected for study. The time 
penalty for doing this is a few extra cycles for saving 
and restoring the information, including the 
combinational logic delay for compression. This is a 
small price to pay when compared with the large 
improvement in performance gained from more accurate 
branch prediction. It is also very small compared to the 
overall context switch overhead and can be done entirely 
in hardware. Recall that the minimum penalty on a 
branch misprediction for the Xscale processor is 4 
cycles. Thus if a scheme exhibits even a marginal 
improvement in prediction rate, it can justify the 
overhead of saving and restoring the predictor 
information. 
 
6. Performance Evaluation 
 
   Our goal was to reduce the prediction accuracy loss 
due to context switches for dynamic branch predictors.  
We choose the hybrid predictor [12] because it provides 
one of the best performances for the 1K entry predictors 

considered and because it is widely used, but the 
proposed schemes work for other dynamic predictors 
too. 
   All simulations were performed on a modified version 
of the sim-outorder simulator from SimpleScalar [19] 
version 3.0. The processor modeled uses a configuration 
similar to the Xscale [20] processor: 32KB data and 
instruction L1 caches with 32 byte lines and 1 cycle 
latency, no L2 cache and 50 cycle main memory access 
latency. The machine is in-order and a 32 entry 
load/store queue, with an issue width of 2. It has one 
integer unit, one floating point unit and one 
multiply/divide unit. The branch predictor has 128 
entries, and the instruction and data TLBs are 32 entry 
and fully associative.  
   We selected 24 benchmarks from the MiBench [21] 
suite which is designed to be representative of several 
embedded systems domains. These include benchmarks 
from various embedded systems domains: basicmath, 
qsort, susan (automotive and control), djpeg, lame, 
tiff2bw, tiff2rgba, tiffdither (consumer), ghostscript, 
ispell, stringsearch (office automation), sha, dijkstra, 
patricia (network), pgp, rijndael (security), fft, adpcm 
and gsm (telecommunications).  
   A context switch interval of 100K instructions was 
chosen to represent a lower bound on performance when 
context switches are present. A small 1K entry hybrid 
predictor was used. All simulations were run till 
termination.  
 
6.1. Results 
 
   Figure 6 showed the hybrid predictor to have a 
significant loss of accuracy with context switches for 
several benchmarks. This section shows the effect of 
various schemes that change the predictor state on a 
context switch.  
   First, the schemes that do not save or restore predictor 
information are evaluated. They are referred to as 
"negligible overhead" schemes. Figure 10(a) shows the 
improvement in predictor accuracy for the hybrid 
predictor when these schemes are used. The “no CS” 
case is an upper bound on the improvement and 
corresponds to saving all of the (6K) bits of the hybrid 
predictor. As expected, biasing the predictor tables to 
weakly taken [3] is better than flushing them to zero 
because branches in general are more inclined towards 
being taken. One of the schemes proposed in this paper 
is also shown.  It sets the table counters alternately to 
weakly taken (10) and weakly not-taken (01) and 
provides a slightly better performance than the weakly 
taken scheme. The weakly taken scheme mispredicts the 
case when a branch is highly biased towards not being 
taken – for instance the branch condition in a for loop. 



 

-2

0

2

4

6

8

10

12

ad
pc

mc

ba
sic

math cjp
eg

dij
ks

tra
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az
pg

pz
qs

ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h

su
sa

nc

su
sa

ne
tiff

2b
w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)

Im
p

ro
v
e
m

e
n

t 
in

 P
re

d
ic

ti
o

n
 R

a
te

 (
%

)

no CS

zero

alternate

taken

 
(a) “negligible overhead” schemes 

 

-2

0

2

4

6

8

10

12

ad
pc

mc

ba
sic

math cjp
eg

dij
ks

tra
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az
pg

pz
qs

ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne

tiff
2b

w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)Im

p
ro

ve
m

en
t 

in
 P

re
d

ic
ti

o
n

 R
at

e 
(%

)

no CS

majority bias

bias (48 bits)

bias (96 bits)

bias (192 bits)

 
(b) “low overhead” schemes 

 

0

2

4

6

8

10

12

ad
pc

mc

ba
sic

math cjp
eg

dijk
str

a
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az pg
pz

qs
ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne
tiff2

bw

tiff2
rgb

a

tiff
dit

he
r

(av
era

ge
)

Im
pr

ov
em

en
t i

n 
P

re
di

ct
io

n 
R

at
e 

(%
)

no CS

meta_s

bimod_s

gshare_s

bias (1k bits)

 
(c) “medium overhead” schemes 

 



0

2

4

6

8

10

12

ad
pc

mc

ba
sic

math cjp
eg

dijk
str

a
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az pg
pz

qs
ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne
tiff

2b
w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)

Im
p

ro
ve

m
en

t 
in

 P
re

d
ic

ti
o

n
 R

at
e 

(%
)

no CS

met_bim_s

met_gsh_s

bim_gsh_s

bias (2k bits)

 
(d) “high overhead” schemes 

 

0

2

4

6

8

10

12

ad
pc

mc

ba
sic

math cjp
eg

dijk
str

a
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az pg
pz

qs
ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne
tiff

2b
w

tiff
2rg

ba

tiff
dit

he
r

(av
era

ge
)

Im
p

ro
ve

m
en

t 
in

 P
re

d
ic

ti
o

n
 R

at
e 

(%
)

no CS

snapshot_all

bias (3k bits)

 
(e) “very high overhead” schemes 

 
Figure 10. Improvement in prediction rates for the proposed schemes, in the presence of context switches (1K 

entry hybrid predictor, 100K CS interval)  
 
   Next we demonstrate the effect of saving1 predictor 
information to improve prediction accuracy. Depending 
upon the amount of information saved, the schemes are 
divided into four categories – low, medium, high and 
very high overhead schemes. Figure 10(b) shows the 
performance improvement for the “low overhead” 
schemes. The majority bias scheme saves one bit per 
table. The other three schemes save 2 bits for a block of 
k entries as explained earlier. For a 1K entry table the 
value of k is 64 when one word per table (32 bits/table 
or 96 bits overall) is saved, 32 when 2 words are saved 
(192 bits overall) etc. The prediction accuracy improves 
when more bits are saved. These schemes perform better 
than all of the “negligible overhead” schemes because 
they use dynamic information.  
   Figure 10(c) shows the improvement of “medium 
overhead” schemes. A partial snapshot scheme is used 
                                                
1 In this and all subsequent schemes that involve saving predictor 
information for the gshare component of the hybrid predictor, we will 
assume that the 10 bits of the global history register are also saved. 

(compared to the snapshot-all scheme from [3]) for one 
table while the weakly taken scheme is used for the 
other two tables. These schemes require saving and 
restoring 1K bits of information for each process. The 
scheme that stores the snapshot of the bias bits of the 
bimodal table is better than the other schemes. This 
indicates that the bimodal component is more important 
and predicts branch direction for more branches than the 
gshare component. The bias scheme with a budget of 1K 
bits is shown as well.  This scheme saves information for 
all three tables and thus uses compression and looses 
accuracy. It does not perform as well as the bimodal 
snapshot scheme. It is also interesting to note that the 
performance for the case when we save the bias bits of 
the meta table (1K bits) is the same as the case when we 
save just 1 word/table (96 bits overall)! This shows how 
important it is to carefully select the bits to save for 
maximum performance gain. 
 
 



0
1
2
3
4
5
6
7
8
9

ad
pc

mc

ba
sic

math cjp
eg

dijk
str

a
djp

eg fft ffti gs
gs

mt
isp

ell
lam

e

pa
tric

ia

pg
ps

az pg
pz

qs
ort

rijn
da

eld

rijn
da

ele sh
a

str
ing

se
arc

h
su

sa
nc

su
sa

ne
tiff2

bw

tiff2
rgb

a

tiffd
ith

erIm
pr

ov
em

en
t i

n 
P

re
di

ct
io

n 
R

at
e 

(%
)

taken
alternate T/NT
majority bias (3 bits)
bias (96 bits)
bias (192 bits)
bimod_s (1k bits)
snapshot_all (3k bits)

 
 

Figure 11. Improvement in prediction rate for selected schemes and benchmarks 
 
   Next the change in performance for the snapshot 
scheme with bias bits of two tables is analyzed. The bias 
scheme with a comparable budget is also presented in 
Figure 10(d). 2K bits are now saved and restored. This is 
a large amount of information and these schemes are 
classified as “high overhead” schemes. The maximum 
performance is achieved for the case where we save a 
snapshot of the bimodal and meta tables. This is in line 
with the previous results where the bimodal component 
was found to be the more important component of the 
two. The bias scheme performs well but slightly worse 
than the bimodal meta snapshot scheme which is the best 
scheme in the category. 
   Finally, Figure 10(e) shows the performance of the 
“very high overhead” schemes which save and restore 
one half of the predictor structure (3K bits).  Not 
unexpectedly, this is enough information to be very 
accurate as the snapshot scheme in [3] has shown. The 
bias scheme with a similar budget does not perform as 
well. 
   An interesting observation from Figure 10 is that the 
bias scheme works well for small budgets and does not 
scale well below a certain block size k.  Overall, the 
“low overhead” bias schemes saving less than 200 bits, 
give an average improvement of 1.9%. If more 
information can be saved, the partial snapshot scheme is 
preferable over the bias scheme. Saving a snapshot of 
the bimodal table and setting the counters to weakly 
taken for the other two tables results in an improvement 
of around 2.4%.  This is within 0.5% of the case when 
no context switches occur. 
   Figure 11 compares the weakly taken and snapshot-all 
schemes from [3] with five schemes proposed in this 
paper: the alternate weakly taken/not-taken scheme, the 
majority bias scheme with a budget of 1 bit/table, the 
bias scheme with a budget of 96 bits (1 word/table) and 
192 bits (2 words/table) and the partial snapshot scheme 
for the bimodal table. These schemes are chosen as the 
best representatives in the "practical" overhead 

categories – the bias scheme saving 96 bits is included 
since it is very close in performance to the bias scheme 
which saves 192 bits. It can be seen that on an average, 
the alternate taken/not-taken scheme outperforms the 
weakly taken scheme. For the benchmarks shown, the 
low overhead bias schemes are better than the two 
negligible overhead schemes by 0.5 – 1% in several 
cases. The bimode snapshot scheme is better than this 
bias scheme by 0.5 – 1% on average, and is within 0.3% 
of the improvement from snapshot-all on an average. 
This shows how useful the proposed schemes are in 
improving performance for certain applications – they 
save and restore a small amount of information in a few 
cycles to achieve significant improvement in 
performance. The variation in the gain in performance 
on using these schemes implies that the designer must 
carefully consider the performance/overhead ratio before 
deciding to implement any of the proposed schemes.  
 
7. Summary and Conclusion 
 
   This paper evaluated the loss of prediction accuracy in 
the presence of context switches for several branch 
predictors. The loss of accuracy was shown to be 
significant for all the considered predictors.  Several new 
mechanisms to restore the lost accuracy for the hybrid 
predictor were presented. The hybrid predictor was 
selected because it is widely used and the new schemes 
evaluated assuming a 100K instructions context switch 
interval.  The latter is a lower bound on observed context 
switch interval size.  
   Most of the proposed schemes involve saving and 
restoring varying amounts of predictor information on a 
context switch. This entails an overhead which needs to 
be considered in selecting a practical scheme. It was 
shown that for the bias scheme, saving 96 (table)+10 
(global register) bits can improve the prediction rate 
from 1 - 6%. The majority bias scheme performs slightly 



worse than this scheme on the average, but saves just 3 
(table)+10(global register)  bits to achieve improvement. 
Both these schemes perform significantly better then the 
previously-proposed low-overhead schemes - flush to 
zero and weakly taken. Overall, we do not consider the 
snapshot schemes practical to implement or their 
additional performance improvement worthwhile. 
   This paper concentrates on prediction accuracy and 
does not evaluate the impact on overall CPU 
performance.   Thus we do not describe the design of the 
new schemes or their latency in much detail.  We believe 
that it can be done efficiently for the low overhead 
schemes where the information to be stored is 
continuously generated from the predictor data by 
dedicated logic. Therefore only saving/restoring the 
compressed information takes time. This may be doable 
purely in hardware without executing additional 
instructions. 
   These proposed mechanisms are not limited to the 
hybrid scheme and can be used effectively with other 
dynamic prediction schemes. Similar performance 
improvements can be expected for the skew, bimode, 
and gshare predictors. In fact, any dynamic predictor 
using a bimodal table structure can benefit from our 
schemes. Schemes that involve large pattern history 
tables such as the alloy predictor are harder to deal with 
when it comes to reducing the information saved and 
restored on a context switch.  This remains subject of 
future research.  
 
8. References 
 
[1] Michele Co., K. Skadron “The Effects of Context 
Switching on Branch Predictor Performance”. In Proceedings 
of the 2001 IEEE International Symposium for Performance 
Analysis of Systems and Software, November, 2001, Tuscon, 
AZ 
 
[2] Marius Evers, Po-Yung Chang, Yale N. Patt “Using Hybrid 
Branch Predictors to Improve Branch Prediction Accuracy in 
the Presence of Context Switches”. In Proceedings of the 23rd 
Intl. Sym. on Computer Architecture, pp. 3-11, 1996. 
 
[3] Ashutosh S. Dhodapkar and James E. Smith “Saving and 
Restoring Implementation Contexts with co-Designed Virtual 
Machines”. In Workshop on Complexity-Effective Design, June 
30 2001, Goteborg, Sweden. 
 
[4] P.-Y. Chang, M. Evers, and Y. Patt. “Improving Branch 
Prediction Accuracy by Reducing Pattern History Table 
Interference”. Proc. Int. Conf. on Parallel Architectures and 
Compilation Techniques, Oct. 1996. 
 
[5] A. N. Eden and T. Mudge, “The YAGS Branch Prediction 
Scheme”, In Proceedings of the 31st Annual ACM/IEEE 
International Symposium on Microarchitecture, pages 69-77, 
1998. 
 

[6] Tse-Yu Yeh, Yale N. Patt, “Alternative Implementations of 
Two-Level Adaptive Branch Prediction” In Nineteenth 
International Symposium on Computer Architecture, 1992 
 
[7] Nicolas Gloy, Cliff Young, J. Bradley Chen, Michael D. 
Smith, “An Analysis of Dynamic Branch Prediction Schemes 
on System Workloads”, In Proc. 23rd Annual Intl. Symp. on 
Computer Architecture, 1996 
 
[8] R. Nair. “Dynamic Path-Based Branch Correlation”. In 
28th International Symposium on Microarchitecture, pages 15-
-23, November 1995. 
 
[9] C. Perleberg and A. Smith, “Branch Target Buffer Design 
and Optimization”, In IEEE Transactions on Computers, 
42(4): pages 396-412, 1993. 
 
[10] T.Juan, S.Sanjeevan and J.J.Navarro, “Dynamic History-
Length Fitting: A third level of adaptivity for branch 
prediction”, In Proceedings of the 25th Annual Intl. 
Symposium on Computer Architecture, pp 155-166, June 1998. 
 
[11] K. Skadron et al., "A taxonomy of branch mispredictions, 
and alloyed prediction as a robust solution to wrong-history 
mispredictions," In PACT 2000, pp. 199-206. 
 
[12] S. McFarling. “Combining branch predictors”. In DEC 
WRL TN-36, June 1993. 
 
[13] C.-C. Lee, I.-C. Chen, and T. Mudge. “The bi-mode 
branch predictor”. In Proceedings of the 30th Annual 
International Symposium on Microarchitecture, Dec 1997. 
 
[14] S. T. Pan, K. So, and J. T. Rahmeh. “Improving the 
accuracy of dynamic branch prediction using branch 
correlation” In Proceedings of ASPLOS V, pages 76–84, 
Boston, MA, October 1992. 
 
[15] P. Michaud, A. Seznec, and R. Uhlig, "Trading conflict 
and capacity aliasing in conditional branch predictors," in 
Proceedings of the 24th Annual International Symposium on 
Computer Architecture, pp. 292--303, 1997 
 
[16] P. Chang, E. Hao, T. Yeh, and Y. Patt. “Branch 
classification: a new mechanism for improving branch 
predictor performance”. In MICRO-27, November 1994. 
 
[17] J. Smith. “A study of branch prediction strategies”. In 
Proceedings of the 8th Annual International Symposium on 
Computer Architecture, May 1981. 
 
[18] Johny Lee and Alan Smith. “Branch prediction strategies 
and branch target buffer design” In Computer, 17(1):6-22, 
1984. 18 
 
[19] D. Burger and T. M. Austin. “The SimpleScalar tool set, 
version 2.0.” Technical Report 1342, Computer Sciences 
Department, University of Wisconsin-Madison, June 1997 
 
[20] Intel, Intel Xscale Microarchitecture, 2001 
 
[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, 



T. Mudge, and R. B. Brown. Mibench: A free, commercially 
representative embedded benchmark suite. In IEEE 4th Annual 
Workshop on Workload Characterization, pages 83–94, 2001. 


