
Greedy and Heuristic-based Algorithms for Synthesis of
Complex Instructions in Heterogeneous-Connectivity-based

DSPs

Partha Biswas Nikil Dutt
partha@cecs.uci.edu dutt@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES) Laboratory
Center for Embedded Computer Systems

School of Information and Computer Science
University of California, Irvine, CA 92697-3425

http://www.cecs.uci.edu/˜aces

CECS Technical Report #03-16
Dept. of Information and Computer Science

University of California, Irvine, CA 92697, USA

May 1, 2003

Abstract
VLIW DSP architectures can have heterogeneous connections between functional units and register
files for speeding up special tasks. Such architectural characteristics can be effectively exploited
through the use of complex instruction set extensions (ISEs). Although VLIWs are increasingly
being used for DSP applications to achieve very high performance, such architectures are known
to suffer from increased code size. This paper addresses how to generate ISEs that can result
in significant code size reduction in VLIW DSPs without degrading performance. Unfortunately,
contemporary techniques for instruction set synthesis fail to extract legal ISEs for heterogeneous-
connectivity-based architectures. We propose a Greedy algorithm and a Heuristic-based algorithm
to synthesize ISEs for a generalized heterogeneous-connecitivity-based VLIW DSP architecture.
We achieve an average code size reduction of 25 % on the MiBench suite with no penalty in
performance by applying our ISE generation algorithms on the TI TMS320C6xx, a representative
VLIW DSP.

1

Contents

1 Introduction 4

2 Related Work 5

3 Motivation 6
3.1 Poor Code Density in TMS320C6xx 6
3.2 Legal Instruction Set Extensions. 6
3.3 Opportunities for Improvement in TMS320C6xx 7

4 HCDSP Architecture 9
4.1 TMS320C6xx: An HCDSP 9
4.2 HCDSP Architecture Model . .. 9
4.3 Architectural Assists 11

5 Our Approach 11
5.1 Our Methodology .. 11
5.2 Derivation of Connectivity Constraint 12
5.3 Important Considerations for our Algorithms. 13
5.4 ISE Synthesis Algorithms 15

5.4.1 Greedy Algorithm 15
5.4.2 Heuristic-Based Algorithm 16
5.4.3 Complexity Analysis . .. 20

6 Experimental Results 21
6.1 Code Size Reductions 21
6.2 Impact of Our Work. 24

7 Summary and Future Directions 26

8 Acknowledgments 26

List of Figures

1 VLIW DSPs: (a) Execution Time on Complex Block FIR (b) Memory Usage on
FSM Benchmark .. 6

2 An example of HCDSP architecture 7
3 Possible combinations 7
4 Instruction pipeline for (a) add.A1 Dependent on mul.M1 (b) Complex Instruction

mul.M1;add.A1 . 8
5 Heterogeneous Connectivity in TI TMS320C6xx Architecture 9
6 Heterogeneous Connectivity Model and Connectivity Constraint 10

7 Our Framework . .. 12
8 Instruction Sequence: (a) Candidate Pair�I1,I2� (b) Complex Instruction Gener-

ated from�I1,I2� . 13
9 An Example (a) Restricted Data Dependence Graph (b) Output of the Greedy Al-

gorithm . 17
10 Running Heuristic-based Algorithm (a) DCG (b) Output of the Heuristic-based

Algorithm . 20
11 Comparison of Code Size Reduction on Mibench Benchmarks 22
12 # of New Complex Instructions . 23
13 Comparison of Memory Usage with new TMS320C6xx Instruction Set Extensions 25

List of Tables

1 Instruction formats in TMS320C67x 8
2 Experimental Results on mibench Benchmarks 24

1 Introduction

The embedded application domain is the fastest growing market segment in the microprocessor
industry. An application-specific instruction-set processor (ASIP) is particularly suited for appli-
cations having common characteristics like embedded control or digital-signal processing. These
applications demand good performance, low power and reduced code size. The datapath of an
ASIP is optimized for an application class by addition of special functional units for frequently-
used operations and elimination of infrequently-used units. Unlike ASICs, ASIPs retain the benefit
of flexibility by being a programmable processor.

A digital signal processor (DSP) is a common class of ASIP designed to perform common
operations on digital encodings of analog signals. The operations carried out are signal processing
tasks and are generally math-intensive. In order to boost performance, a new class of DSPs are
employing VLIW-style architectures that can execute more instructions in parallel. A VLIW DSP,
by virtue of having a regular instruction set presents a compiler-friendly processor model at the
cost of larger code size. When these processors are embedded on a chip together with instruction
memory, the code size has to be limited. The problems that VLIW architectures have with code size
often confine their application to time-critical code segments. We present two different algorithms
to augment the instruction set of a VLIW DSP with complex instructions that can significantly
reduce the code size. Both the algorithms guarantee that the performance realizable by the compiler
is preserved. In the rest of the report, we will refer to the complex instructions, asInstruction Set
Extensions or ISEs.

We call the VLIW DSP architecture with functional units having restricted accesses to register
files, aHeterogeneous-Connectivity-based DSP or simply anHCDSP. The TI TMS320C6xx
[10] processor is an example of an HCDSP that issues 8 instructions per cycle to 8 functional
units partitioned into 2 clusters. Conceptually, the TMS320C6xx architecture contains 2 register
files with any functional unit in each cluster able to access one or both register files based on the
connectivity.

There has been a large body of work on synthesizing ISEs for special purpose DSPs. However,
in the presence of heterogeneous connectivity between the register files and the functional units,
contemporary techniques used for synthesizing ISEs fail to exploit and generate legal extensions to
the instruction set. In this report, we present a Greedy algorithm and a Heuristic-based algorithm
that synthesize new complex instructions for extending the instruction set of HCDSPs with the
goal of code size reduction. The Greedy algorithm is easy to implement while the Heuristic-based
algorithm is more efficient in generating effective ISEs. Using the architecture, TMS320C6xx [10],
we demonstrate the ability of our algorithms to achieve significant code size reduction (upto 37 %)
over the base instruction set architecture through synthesized ISEs with no loss in performance.

The rest of the report is organized as follows: In Section 2, we discuss related research work.
Section 3 presents the motivation for our work. Section 4 demostrates TMS320C6xx as a HCDSP
and discusses our model of an HCDSP architecture. Section 5 describes the complete flow of
our approach as well as the algorithms (greedy and heuristic-based) for synthesizing complex
instructions. Section 6 shows the efficacy of our approach on the MiBench suite. Finally, Section 7
concludes the report.

2 Related Work

We discuss related research work in two domains: code size reduction in VLIW DSP processors
and application-specific instruction set synthesis.

The hardware solutions ([15],[16],[12],[14],[13]) developed for minimizing code size in VLIW
processors mainly focus on changing the instruction formats to incorporate new templates which
can lead to compressed code. A typical approach stores instructions in a compressed form in
both memory and instruction cache. The instructions are expanded each time they are fetched
from cache. The code size reduction thus comes at a cost of increased complexity in the control
path. The software solution ([17]) to the same problem is integrated in a compiler which trades-
off code size for performance while scheduling code for the VLIW processor. Our approach is
complementary to these previous approaches, since we reduce code size by synthesizing ISEs with
no penalty in performance.

Several research efforts have studied instruction set synthesis. One of the important steps
used in automatic synthesis of ISEs isClustering of atomic instructions (i.e., instructions that
cannot be further subdivided). This clustering step can take two flavors: clustering dependent
instructions and clustering parallel instructions. In the context of pipelined RISC processors, a
complex instruction obtained by clustering instructions connected through a dependency chain in
the data flow graph results in increased performance by exercising forwarding paths between the
execution units. This is exemplified by a recent work [9] that generated ISEs for a pipelined RISC
processor under bitwidth constraints and demonstrated a significant increase in performance over
the native instruction set. The other kind of clustering (that groups independent instructions) was
used in architectures containing parallel execution units with the goal of minimizing code size in
DSP processors [5] [3].

The ISEs were also used as specialized instructions in coprocessors, which are extensions to
the main processor instruction set. The main goal in [8], [5], [18], [7] and [6] was to maximize
performance of the system in the presence of coprocessor(s) supporting specialized ISEs. Both
kinds of clustering were employed in synthesizing ISEs with a bound on the number of read/write
ports in the register file.

To the best of our knowledge, no work has yet been done to synthesize complex instructions
for HCDSP processors. A complex instruction in the context of a VLIW processor is an instruction
occupying a VLIW instruction slot. If two parallel instructions are combined to form a complex in-
struction, the number of operands in the generated instruction is the sum of the number of operands
in the constituent instructions. In that case, the bitwidth allocated for each instruction slot may not
be sufficient to accommodate the new instruction. For example, in TMS320C6xx, combining two
parallel 3-operand instructions results in a 6-operand instruction which is impractical to be repre-
sented in a 32-bit instruction format. A VLIW instruction in our model of TMS320C6xx consists
of 8 32-bit instructions, each of which can be a base instruction or a complex instruction.

Due to its heterogeneous connectivity between the register files and the functional units, the
HCDSP presents a more generalized model of a VLIW DSP than a simple VLIW architecture.
We define complex instruction (that can occupy one of the VLIW slots) as a composition of base
instructions connected with each other by a read-after-write dependency chain. Our goals are to
minimize the generated code size as well as to minimize the number of new ISEs generated. The

second goal ensures that there is maximum reuse of the ISEs.

3 Motivation

We now discuss the different factors that motivated our work.

3.1 Poor Code Density in TMS320C6xx

The TMS320C6xx was tuned for DSP applications by matching them with right kind of func-
tional unit. In 0.25um technology, it was very practical to have several multipliers, adders and
other functional units on the chip. The resulting architecture was an HCDSP architecture.

m
ic

ro
se

co
nd

s

Lower is better

B
yt

es

Lower is faster45

 15

A
D

S
P

-2
18

9

D
S

P
16

20

D
S

P
56

31
1

’3
20

C
54

90

30
T

M
S

32
0C

62
02

0

 40

120

160

200

 80

A
D

S
P

-2
18

9

D
S

P
16

20

D
S

P
56

31
1

’3
20

C
54

9

T
M

S
32

0C
62

02
(a) Execution Time (b) Memory Usage

Source: BDTi

Figure 1. VLIW DSPs: (a) Execution Time on Complex Block FIR (b) Memory Usage on FSM
Benchmark

Figure 1 shows the execution time and memory usage in a representative benchmark for differ-
ent VLIW DSPs. Out of these DSPs, TMS320C6xx is the only one with an HCDSP architecture
and is the fastest. However, it also has the highest program memory bandwidth requirements. If we
can extend the instruction set of the TMS320C6xx with useful complex instructions, the memory
requirement can be decreased substantially to make the architecture comparable with other VLIW
DSPs in terms of memory usage, without sacrificing performance.

3.2 Legal Instruction Set Extensions

We present in Figure 2, a typical scenario of an HCDSP architecture. Instructions add.A1,
add.A2, mul.M1 and mul.M2 can only be executed by functional units A1, A2, M1 and M2 re-
spectively. The instruction add.A2 cannot read registers written by mul.M1 because M1 can only
write into the register file X and A2 can read source operands only from the register file Y. Sim-
ilarly, mul.M2 writes into registers which cannot be read by add.A1 based on the connections of
functional units A1 and M2 to register files X and Y. The only legal combinations allowed are:
mul.M1;add.A1 and mul.M2;add.A2.

Figure 3 shows the possible legal and illegal combinations of instructions that are allowed based
on the connectivity of functional units to specific register files. Clustering instructions just on the

YX

A1 M1

add.A1 mul.M1 mul.M2

M2 A2

add.A2

Figure 2. An example of HCDSP architecture

*

+

mul.M1

add.A1

(a)

*

+

mul.M2

add.A2

(b)

*

+

mul.M1

add.A2

(c) (d)

*

+ add.A1

mul.M2

Legal Combinations Illegal Combinations

Figure 3. Possible combinations

basis of data-flow in an application results in spurious instruction combinations: mul.M2;add.A1
and mul.M1;add.A2. Therefore, connectivity information is an important parameter in sythesizing
valid ISEs for HCDSPs.

3.3 Opportunities for Improvement in TMS320C6xx

In a VLIW DSP architecture, the instructions, after dispatch may finish execution in varied time
intervals. During the execution of an instruction, a functional unit reads the operands from register
file(s), performs execution and writes the result into a register file. We call the difference between
the finish time and the dispatch time of an instruction, theexecution latency of the instruction.
After waiting for a time equal to the execution latency of an instruction, the dependent instruction
can start execution.

In TMS320C6xx, the execution latencies of multiply and add instructions are 2 cycles and 1
cycle respectively. Applying these values to the sample architecture shown in Figure 2, we show
the pipeline with a mul.M1 instruction followed by a dependent add.A1 instruction in Figure 4(a).
The instruction add.A1 begins execution after waiting 2 cycles for mul.M1 to finish execution.

Figure 4 (b) shows the pipeline for mul.M1;add.A1, a complex instruction formed by combin-
ing mul.M1 and add.A1. It is assumed that the other instruction on which add.A1 is dependent has
been scheduled before mul.M1 and there are no resource conflicts for dispatching add.A1 along
with mul.M1.

It is important to note that the execution of mul.M1;add.A1 terminates exactly at the same
point where mul.M1 followed by add.A1 finishes. This clearly shows that using mul.M1;add.A1
compacts two instructions into one without affecting the performance. Therefore, we conclude
here that clustering instructions into a complex instruction in a VLIW architecture does not affect
performance.

When adding new compact instructions to the existing instruction set, it is also important to

mul.M1 pipeline

add.A1 pipeline

mul.M1 finishes

add.A1 finishes

....... E1 E2 E3 E4 E5

....... E1 E2 E3 E4 E5

....... E1 E2 E3 E4 E5

mul.M1;add.A1 finishes

pipeline
mul.M1;add.A1

(a)

(b)

Figure 4. Instruction pipeline for (a) add.A1 Dependent on mul.M1 (b) Complex Instruction
mul.M1;add.A1

consider the decoder complexity and the available bandwidth to support new instruction formats.
Table 1 presents the existing instruction formats in TMS320C67x instruction set.

Table 1. Instruction formats in TMS320C67x

Units Instruction Types Bits
6 5 4 3 2

L all - - 1 1 0
M all 0 0 0 0 0
D most 1 0 0 0 0
D LD/ST w/ 15-bit off - - - 1 1
D LD/ST baseR + off - - - 0 1
S most - 1 0 0 0
S ADDK (16 bit cst) 1 0 1 0 0
S Field ops(imm forms) - 0 0 1 0
S MVK, MVKH - 1 0 1 0
S Bcond, disp 0 0 1 0 0

Each instruction in TMS320C6xx is 32-bit wide, in which 5 format-select bits (bit positions 6,
5, 4, 3 and 2) are used for selecting one of 10 available formats. Entries marked ’-’ indicate some
of the bit positions taken by opcode field. Using the format-select bits, it is possible to implement
32 different formats. Therefore, the bandwidth is sufficient to accomodate 22 additional formats.
By accomodating the complex instructions in the unused format space, the decoder does not have
to be entirely redesigned.

Enhancement of the instruction set of heterogeneous architectures will need careful considera-

tion of available resources and combinations of instructions allowed under non-trivial connectivity
constraints. Because of code size improvement in a VLIW architecture without compromising
performance, our work strives to have tremendous impact on embedded systems community.

4 HCDSP Architecture
With the background presented in Section 1 and Section 3, we present the TMS320C6xx archi-

tecture as an example of HCDSP in Section 4.1. Section 4.2 presents a generalized model of the
heterogeneous connectivity in an HCDSP architecture. Our ISE synthesis approach requires some
architectural assists from the HCDSP architecture, which are discussed in Section 4.3.

4.1 TMS320C6xx: An HCDSP

In this report, we use the TMS320C6xx architecture as an exemplar for illustrations and exper-
iments. TMS320C6xx is an 8-issue VLIW machine with two register files A and B, each having
16 32-bit registers. The register file connectivity in the architecture is shown below:

A
B

1X

2X

L1

S1

M1

D1

L2

S2

M2

D2

s1

s2

d

s1

s1

s1

s1

s1

s1

s1

s2

s2

s2

s2

s2

s2
d

d

d

d

d

d

d

s2

Figure 5. Heterogeneous Connectivity in TI TMS320C6xx Architecture

The eight functional units (L1, L2, S1, S2, M1, M2, D1 and D2) in the datapaths can be
divided into two groups of four each. A functional unit, X1 in one group has an almost identical
corresponding unit, X2 in the other, where X is L, S, M or D. Each unit is capable of running
one instruction out of an 8-instruction VLIW packet. An instruction run in unit X1 is of the form,
mnemonic.X1 and that in unit X2 has the form,mnemonic.X2.

There are 8 functional units available for executing 8 different instructions. Each VLIW
execution packet to be fed to the functional units is decided statically by a compiler targeting
TMS320C6xx. A packet consisting of instructions to be executed in parallel, should be free of
resource conflicts.

4.2 HCDSP Architecture Model

We now propose a generalized model of the heterogeneous connectivity in an HCDSP archi-
tecture (shown in Figure 6).

XXX

1 2 3

Register Files

Functional Units

F-1 F

1 2 R

Y Y Y Y Y
s1 s2 d s1 s2 d s1 s2 d s1 s2 ds1 s2 d

Figure 6. Heterogeneous Connectivity Model and Connectivity Constraint

The architecture has a set of R register files,X = �X1, X2, ...,XR� and a set of F functional units,
Y = �Y1, Y2, ...,YF�, where F� R. The heterogeneity is in the connection between the register files
and the functional units.

The relation between a functional unitYi (1� i � F) and a register fileXj (1� j � R) can be
represented as follows:

Yi � Xj � �P1, P2, ...,Pm� operator �Q1, Q2, ...,Qn�,
where

� impliesYi ”writes into” Xj, operator defines the operation to be performed by the instruction,
the first source operand is a register in�P1, P2, ..., Pm� � X , the second source operand is a reg-
ister in�Q1, Q2, ..., Qn� � X , and 1� m,n� R. A base instruction run in unitYi is of the form,
mnemonic�Yi.

We define three functions that are used in deriving the connectivity constraints:

� Writes(Yi): returns the register file written byYi based on connectivity.

� WrittenBy(Xj): returns a set of functional units that can write into the register fileX j.

� Binds(Yi): returns a set of operations bound toYi.

In order to legally combine two instructions, the following connectivity constraint must be
obeyed.

An instruction i1.X can be combined with another instruction i2.Y dependent on the former
through a source ’si’, where i = 1 or 2 and X,Y 	 Y , iff there exist paths from output ’d’ of X to
a register file and from the same register file to input ’s j’ of Y, where j = 1 or 2. (The output port
’d’ and the input ports ’s1’ and ’s2’ are shown in Figure 6.) We represent the resultant complex
instruction asi1.X;i2.Y.

Using this formulation of the HCDSP architecture model, we show the derivation of connec-
tivity constraints in Section 5.2.

4.3 Architectural Assists

In order to apply our ISE synthesis approach, the generic HCDSP model defined above needs
some architectural assists that are discussed below.

A complex instruction of the form B1;B2 (where B1 and B2 are base instructions) is processed
through the pipeline as follows:

1. After decoding, the instruction B1;B2 residing in a VLIW instruction slot expands into two
constituent instructions B1 and B2 (in decode or dispatch phase).

2. In dispatch phase, dispatcher issues B1 and B2 to respective functional units.

3. In execute phase, B2 starts execution after B1 has written its result.

This ensures that a synthesized complex instruction retains the performance achievable by the
constituent base instructions (as shown in Figure 4).

The bit 0 in the TMS320C6xx instruction format (called thep-bit) determines whether the
instruction executes in parallel with another instruction. All instructions executing in parallel con-
stitute anexecute packet. A compiler targeting TMS320C6xx ensures that the execute packet
is free of resource conflicts. When the instruction set is extended with complex instructions, the
execute packet having one or more complex instruction(s) results in fewer than 8 instructions per
packet because each complex instruction accounts for 2 instructions. With the aid of the p-bit, it is
possible to have any number of instructions in the packet.

5 Our Approach

Our goal is to generate new legal ISEs which are frequently used by the application domain
and contribute to the code size improvement. Our framework (Section 5.1) takes as inputs, an
architecture description and an application, and generates ISEs that can improve the code density
for the given application. We explain the derivation of connectivity constraints from the general-
ized HCDSP model (Section 4.2) in Section 5.2. Further important considerations for selection of
complex instructions are discussed in Section 5.3.

5.1 Our Methodology

Figure 7 shows the flow of our framework.
The architecture description consists of datapath connectivity and instruction set architecture

(ISA). The DSP architecture model, presented in Section 4.2 can be derived from the connectiv-
ity information. This involves evaluation of functions Binds(), Writes() and WrittenBy(). The
derivation of connectivity constraints is later covered in the next section.

An input application is converted into an Intermediate Representation (IR) suitable for compiler
optimizations. The IR is in Static Single Assignment (SSA) form so that there are only Read-After-
Write (RAW) dependencies. The instruction selection phase transforms each generic instruction
into all possible target instructions. For example, multiplication operation is mapped to MPY.M
which encompasses two target instructions MPY.M1 and MPY.M2. The instruction scheduler
schedules the target instructions to appropriate functional units based on the resources available.

Instruction Selection

Scheduling

Gen Complex Op

IR

Application

Complex Ops

ConnectivityISA

Connectivity
Constraints

Architecture Description

Figure 7. Our Framework

The Gen Complex Op phase (Figure 7) generates new complex instructions, which are legal and
profitable combinations of the base instructions. All the characteristic applications are run and new
instructions are added to a growing list. The selection of the final set of instructions to be added
to the instruction set is based on maximum reuse of instructions and available instruction format
bandwidth.

5.2 Derivation of Connectivity Constraint

Our goal is to compact 3-operand instructions of the form I1: x = a op1 b and I2: y = x op2
c into a 4-operand instruction, y = (a op1 b) op2 c, where x and y are register operands; a, b and
c can be register or immediate operands, and op1 and op2 are operators. The operations op1 and
op2 to be executed by instructions I1 and I2 respectively, are bound to functional unitsY1 andY2 	
Y (Refer to the HCDSP model presented in Section 4.2). For the model presented in Figure 6, the
connectivity constraint for operation in I2 can be expressed as:
Y2 � Writes(Y2) � �P1, P2, ...,Pm� op2�Q1, Q2, ...,Qn�

 Y2 � YY1, YY2

where

YY1 �
m�

i�1

WrittenBy�Pi�

YY2 �
n�

j�1

W rittenBy�Q j�

The instruction I2 executing in functional unitY2 can legally get the first and the second source
operands from the outputs of any of the functional units inYY1 andYY2 respectively. Thus in-

struction I2 can be coupled as a second instruction only with any instruction in Binds(YY1) and
Binds(YY2) supplying first and second sources respectively for I2. This specifies the connectivity
constraint for instruction I2. Similarly, we derive the connectivity constraints for all the other in-
structions. The TMS320C6xx architecture fits into the HCDSP model with
Y � �L1�L2�S1�S2�M1�M2�D1�D2� andX � �A�B�.

5.3 Important Considerations for our Algorithms

One of the most important considerations for instruction set synthesis is the bit-width available
for representation of complex instruction formats. In TMS320C6xx, each operand field consumes
5 bits for accessing 32 registers (16 registers in either of the two register files). Therefore, with
a p-bit (discussed in Section 4.3, a 5-bit wide format-select field, and an opcode field varying in
length depending on the instruction, we can allow only upto 4 operands in the instruction format.
This essentially means that our algorithm should look for opportunities to combine two instructions
only, each having at the most 3 operands.

While the connectivity constraints help prune illegal combinations, latency constraints are im-
portant for preserving the performance of the VLIW DSP architecture. Figure 8 shows a sequence
of regular instructions which will be subject to the following dependency and latency considera-
tions for valid combinations:

y = (a op1 b) op2 d

y = a op1 b
y = y op2 d

x = a op1 b
...
y = x op2 d

...
d = ...pc-n2

pc

pc+n1

z = ...
...

.. = z ...
nop cnst

(I1)

(I2)

(I3) pc

(b) (a)

Figure 8. Instruction Sequence: (a) Candidate Pair �I1,I2� (b) Complex Instruction Generated
from �I1,I2�

� Primary Constraint: Within a basic block, an instruction, I1 atpc and another dependent
instruction, I2 at(pc + n1) can be combined to form a complex instruction if (1) I2 does
not have a second source operand or the second source is dependent on an instruction, I3 at
(pc - n2), where n1,n2� 0 and (2) I2 does not have any resource conflict with the execute
packet atpc. The condition (1) is a dependency constraint and the condition (2) is a resource
constraint. All the subsequent considerations are latency constraints (Figure 8(a)).

� For two instructions, I1 and I2 to be combined there must be an empty slot atpc. When
combination takes place, the instruction I2 moves up topc. If there is any other instruction
residing at(pc + n1), the latency constraints for all other instructions are maintained by

default and this combination is allowed. Else, all the subsequent constraints must be imposed
to meet the latency constraints and to ensure profitability:

� If (latency(I3)� (n2 + latency(I1))), only then it is legal to combine I1 and I2 so that I2
gets the result of I3 well in time (Figure 8(a)).

� Figure 8(b) shows the execution semantics of the complex instruction obtained by combining
instructions I1 and I2 shown in Figure 8(a)). If the result x produced by I1 is used in an
instruction at(pc + n3) such that n3� 0, then I1 cannot be combined with I2 because x does
not exist in the complex instruction.

� In TMS320C6xx, a multi-cycle nop instruction,nop cnst can replacecnst number ofnop
instructions and save space for (cnst-1) instructions. When I2 moves up topc, it leaves
behind an empty slot. If all the other slots are empty, this might result in violation of latency
constraints for other instructions. If a multi-cyclenop instruction is present in the vicinity, it
can be used to satisfy the latency constraint without consuming any extra space. Otherwise,
the combination is not profitable. The profitability of combination of instructions I1 and I2
in the presence of multi-cyclenop can be tested using the code shown in Algorithm 1. (Refer
to Figure 8(a))

Algorithm 1 Combination in the presence of a multicyclenop
foreach i � �MAX LAT ENCY �n1� downto 0do

L� Latency�Instruction�pc� i��
if L� n1 then

foreach j � �pc� i�1�to�pc� i�L� do
if Instruction� j� is a multi-cyclenop then
�Combination is profitable�

else
�Combination isnot profitable�

end if
end for

end if
end for

In the above pseudo-code, MAXLATENCY refers to the maximum of latencies of all the
instructions in the instruction set. In Figure 8(a), if I1 can be profitably combined with
I2, nop cnst can simply be converted intonop (cnst+1) without losing any code size for
preserving the latency constraints.

The worst-case complexity of checking the dependency and the latency constraints for all the
instructions is O(MAX LAT ENCY 2n), where n is the total number of instructions.

5.4 ISE Synthesis Algorithms

We present a greedy algorithm and a heuristic-based algorithm with an objective of generating
complex instructions that would result in maximum code size reduction. One of the most important
constraints for the algorithm is the connectivity constraint that ensures generation of legal instruc-
tions. The other constraints are latency and dependency constraints that preserve the performance
of the given instruction set architecture. The heuristic-based algorithm has an additional objective
of minimizing the number of new complex instructions generated.

Algorithm 2 Main��
foreach InstructionI 	 Instruction Setdo

DeriveConnectivityConstraints�I�
end for
foreach BasicBlockBB 	 CFGdo

Synthesize�BB�
end for

The main procedure for the connectivity-aware generation of complex instructions is shown
in Algorithm 2. We first derive the connectivity constraints for every instruction in the instruc-
tion set from the HCDSP model. This is done by theDeriveConnectivityConstraints procedure
shown in Algorithm 3. For a given instruction I, this procedure determines a set of legal instruc-
tions that can generate results to be used as first and second source operands of I, designated as
LegalSourceInstructions[I,1] andLegalSourceInstructions[I,2] respectively.

Algorithm 3 DeriveConnectivityConstraints��
�P1�P2� ����Pm�� GetSource1RegFiles�I�
�Q1�Q2� ����Qm�� GetSource2RegFiles�I�
YY 1�

�m
i�1W rittenBy�Pi�

YY 2�
�n

j�1W rittenBy�Q j�
LegalSourceInstructions�I�1�� Binds�YY 1�
LegalSourceInstructions�I�2�� Binds�YY 2�

The SynthesizeISE procedure then synthesizes ISEs at a basic-block-level granularity. When
the greedy algorithm is used, theSynthesizeISE procedure is calledSynthesizeISE Greedy (Al-
gorithm 5), while the heuristic-basedSynthesizeISE procedure is calledSynthesizeISE Heuristic
(Algorithm 6). Both algorithms useSatisfyConnectivityConstraints procedure (shown in Algo-
rithm 4)to determine if two instructions i and j can be legally combined based on the connectivity
constraints. The algorithms also useSatisfyLatDepConstraints procedure for evaluating the la-
tency and connectivity constraints. This procedure encapsulates the considerations discussed in
the previous section.

5.4.1 Greedy Algorithm
The rationale for the Greedy Algorithm is to quickly find ISEs that satisfy the connectivity and
the latency constraints dictated by the architecture and the dependency constraints imposed by the

Algorithm 4 Satis f yConnectivityConstraints��
Input: InstructionI1, InstructionI2, IntegersrcNum
Returns: True�False

if I1 	 LegalSourceInstructions�I2�srcNum� then
returnTrue

else
returnFalse

end if

application. This ensures that the performance remains unaltered when using complex instructions
instead of the base instructions.

The pseudo-code for the Greedy Algorithm is presented in Algorithm 5. The algorithm im-
plemented bySynthesizeISE Greedy procedure progressively marches through each instruction I
in each VLIW instruction (not shown in the figure) in the basic block, BB and explores greed-
ily the possibilities of combining with all the instructions in the Definition-Use Chain of I. For
each instruction pair�I,J� connected by a data dependency, theWhichSource() procedure finds the
position of the source operand of J, which uses the result produced by I. Each possible complex
instruction is immediately added to a growing list, CI if the constraints allow legal and profitable
combination. The base instructions constituting the complex instruction are marked so that there is
no overlap between the generated complex instructions. This ensures that the generated complex
instructions can be potentially used in the given application without losing performance. At the
end of the algorithm, we obtain a list of complex instructions accumulated in CI.

We define aRestricted Data Dependence Graph (RDDG), GRDDG(N,E) where each node
	 N is an instruction and an edge	 E exists between two nodes in N only if the pair of nodes
satisfies the latency and dependency constraints. The RDDG is actually a restricted subset of the
Data Dependence Graph (DDG). Figure 9(b) shows the output of executing Greedy Algorithm on
an RDDG shown in Figure 9(a). The bold edges in the final graph indicate the complex instructions
chosen when all the nodes further satisfy the connectivity constraints.

In Figure 9(a), the instructions are labeled using alphabets a through j. In the solution presented
in Figure 9(b), instruction a can be combined with either c or d. This choice can be made as a
second pass by prioritizing the complex instructions based on their frequencies of occurrence. In
this example, the number of complex instructions that can contribute to code size reduction is 3 -
corresponding to the edges 1 or 2, 6 and 9. This is not an optimal solution because marking all
the possible combinations originating from each instruction jeopardizes other likely combinations.
For instance, edge 1 is preferrable to edge 2 for achieving maximum code size reduction because
choosing edge 2 discards the possibilities of choosing edges 1, 3, 4 and 5, while choosing edge
1 discards only edge 2. The Heuristic-based algorithm circumvents this problem by employing a
heuristic to maximize the code size reduction.

5.4.2 Heuristic-Based Algorithm
The Heuristic-based algorithm has two main objectives: To maximize the reduction in code-size
without affecting the performance and to minimize the number of new complex instructions gen-

Algorithm 5 SynthesizeISE Greedy��
Input: BasicBlockBB

foreach InstructionI 	 Instructions�BB� do
Mark�I�� 0

end for
CI � NULL
foreach InstructionI 	 Instructions�BB� do

if Mark�I� �� 1 then
continue

end if
foreach InstructionJ 	 De fUseChain�I� do

if Satis f yLatDepConstraints�I�J�dep�I�J�� then
�Whether result ofI feeds source1 or source2 ofJ�
srcNum�WhichSource�dep�I�J��J�
if Satis f yConnectivityConstraints�I�J�srcNum� then
��I,J� is a complex instruction�
CI �CI

�
�I�J�

Mark�J�� 1
end if

end if
end for

end for

1

2

3

4

5
6

7
8

910

1

2

3

4

5
6

7
8

910

a

b

c

d

e

f

g

h

i

j

(a) (b)

Figure 9. An Example (a) Restricted Data Dependence Graph (b) Output of the Greedy Algo-
rithm

erated. Before getting into the details of the algorithm, we introduce a notion ofDependence
Conflict Graph (DCG). Each data dependence edge between two instructions I1 and I2 in RDDG
represents a complex instruction combining I1 and I2 through one of the sources of I2. We say two
data dependencies conflict when using one dependency as a complex instruction invalidates the
possibility of the other becoming a complex instruction. A DCG is a graphGDCG(Nd ,Ec) where
Nd is a set of nodes representing data dependencies andEc is a set of edges connecting two nodes
with conflicting dependencies.

Algorithm 6 SynthesizeISE Heuristic��
Input: BasicBlockBB

CI � NULL
G�CreateDCG�BB�
while G �� NULL do

n� SelectCandidateNode�G�CI�
CI �CI

�
n

Deleten from GraphG
Delete nodes adjacent ton from GraphG

end while

Finding the Maximum Independent Set (MIS) forGDCG can yield the solution to the first ob-
jective - getting maximum code size reduction without hampering the performance. Unfortunately,
MIS is known to be NP-complete [19]. So, any heuristic employed for getting a maximal solution
should pay heed to the second objective i.e., minimizing the number of new instructions gener-
ated. Our Heuristic-based algorithm, shown as Algorithm 6 strives to meet both the objectives.
The algorithm usesSatisfyConnectivityConstraints procedure (Algorithm 4) to determine if two
instructions I and J can be legally combined based on the connectivity constraints. It also uses
SatisfyLatDepConstraints procedure for evaluating the latency and dependency constraints which
ensures a profitable composition (as discussed in Section 5.3).

The algorithm, embedded inSynthesizeISE Heuristic procedure starts by creating the DCG
from the DDG usingCreateDCG procedure (Algorithm 7). By checking whether the latency and
the dependency constraints are satisfied, this procedure effectively generates the DCG from the
RDDG. The algorithm then callsSelectCandidateNode procedure (Algorithm 8), which selects a
candidate node representing a profitable complex instruction to be added to a growing list called
CI. TheSelectCandidateNode procedure selects a node in DCG with minimum degree in order to
maximize the chances of combination to form complex instruction and also checks for the connec-
tivity constraints to ensure a legal combination. When there are more than one nodes having the
minimum degree, the heuristic breaks the tie by selecting the node having the complex instruction
that has already been encountered before and increments its frequency. This guarantees maximum
reuse of the selected complex instruction.

The selected node and all its adjacent nodes are then deleted from the DCG. The process of
selection and deletion is continued till the graph becomes empty. The list CI finally contains
the nodes representing newly generated complex instructions with frequencies of their occurrence

Algorithm 7 CreateDCG��

Input: BasicBlockBB
Returns: GraphG�N�E�

N � E � NULL
foreach I 	 Instructions�BB� do

foreach J 	 DefUseChain�I� do
if Satis f yLatDepConstraints�I�J�dep�I�J�� then
��I,J� represents a complex instruction�
ciNode�CreateNode�G��I�J��
Instr1�ciNode�� I
Instr2�ciNode�� J
sn�ciNode��WhichSource�dep�I�J��J�
N � N

�
ciNode

end if
end for

end for
foreach Noden 	 N do

I1� Instr1�n�
I2� Instr2�n�
foreach I 	 UseDefChain�I1�

�
UseDefChain�I2� do

if Node��I� I1�� 	 N then
e�CreateEdge�G�n�Node��I� I1���

else if Node��I� I2��isinN then
e�CreateEdge�G�n�Node��I� I2���

end if
E � E

�
e

end for
foreach I 	 DefUseChain�I1�

�
DefUseChain�I2� do

if Node��I1� I�� 	 N then
e�CreateEdge�G�n�Node��I1� I���

else if Node��I2� I��isinN then
e�CreateEdge�G�n�Node��I2� I���

end if
E � E

�
e

end for
end for
returnG

Algorithm 8 SelectCandidateNode��
Input: GraphG, SetCI
Returns: Noden

N � Set of nodes with minimum degree
foreach n 	 N do

if �n1 	CI such that CmplxInstr�n1� � CmplxInstr�n� then
Frequency�CmplxInstr�n����
returnn

else
if Satis f yConnCons�Instr1�n�� Instr2�n��sn�n�� then

returnn
else

returnNULL
end if

end if
end for

stored inFrequency. The DCG generated from Figure 9(a) is shown in Figure 10(a). A possible
output of the Heuristic-based algorithm is presented in Figure 10(b) as bold edges. The complex
instructions are generated in the order: 1,3,6,9. This algorithm is better than the Greedy algorithm
and is able to generate 4 complex instructions for the same application.

2

5

6

3

4

8

7

10

9

1

2

3

4

5
6

7
8

910

1

(a) (b)

Figure 10. Running Heuristic-based Algorithm (a) DCG (b) Output of the Heuristic-based Algo-
rithm

5.4.3 Complexity Analysis
Let us first analyze the algorithms when the connectivity constraints are not checked. The greedy
algorithm is a fairly simple algorithm that does a quick pass of generating complex instructions in

O(n) time, where n is the total number of instructions in the application. The algorithm generates
all possible complex instructions and leaves the user to select a desired set of complex instructions
based on the maximum bit-width available for instruction representation.

The running time of the Heuristic-based algorithm is linear in terms of the number of depen-
dency edges in the RDDG. Each node representing a base instruction in RDDG has two incident
edges for the two source operands. So, the RDDG for a given application has 2*n number of edges.
Consequently, the time complexity of the Heuristic-based algorithm is also O(n). In addition to be-
ing a practical algorithm for generating complex instructions, the heuristic used for minimizing the
number of new instructions generated, presents an automated way to synthesize new ISEs. In case
of tight bit-width constraints, the user can ponder over theFrequency of each complex instruction
to consider addition to the current instruction set.

TheSatisfyConnectivityConstraints procedure takes two instructions I1 and I2 and checks if I1
is present in theLegalSourceInstructions list of I2. The worst-case complexity of this procedure
is O(n). So, both the algorithms when checking for connectivity constraints have the worst-case
complexity, O(n2). The greedy algorithm is easier to implement, while the heuristic-based algo-
rithm is more effective in generating minimum number of new ISEs and at the same time leading
to lesser code size.

Both algorithms are integrated with other complex phases of the compiler like Instruction Se-
lection and Scheduling. So, the time taken to perform synthesis of new instructions is dominated
by the time taken by the complex phases.

6 Experimental Results

We conducted our experiments on MiBench [11] benchmarks from University of Michigan.
We implemented the flow presented in Section 5.1 on EXPRESSION [1] framework used for gen-
erating retargetable compiler and simulator. For our purpose, we modified the compiler targeted
for TI TMS320C6xx architecture to explore opportunities for compacting instructions.

6.1 Code Size Reductions

The results of our experiments are presented in Table 2. The leftmost column shows the bench-
marks in the order of different areas in Embedded applications: Telecommunications, Security,
Consumer, Automotive and Industrial Control, Office Automation and Network applications. The
next column shows the number of base instructions in memory. From the table, it is evident that
the heuristic-based algorithm finds more opportunities than the greedy algorithm for combining
instructions legally to form complex instructions. On an average, the heuristic-based algorithm
achieves 25 % reduction in code size, 1 % more than that obtained by the greedy algorithm.

Both the algorithms are restricted to finding complex instructions within a basic block. There-
fore, the chances of combination are higher in applications having larger basic blocks, as is demon-
strated inrijndael benchmark. The efficacy of using an extended instruction set (generated by
greedy or heuristic-based algorithm) over the base instruction set is depicted in Figure 11. The
extended instruction set generated by the heuristic-based algorithm proves to be better than the
greedy algorithm in terms of code size reduction. The heuristic-based algorithm also results in
lesser number of new complex instructions than the greedy algorithm. (as shown in Figure 12)

Figure 11. Comparison of Code Size Reduction on Mibench Benchmarks

Figure 12. # of New Complex Instructions

Table 2. Experimental Results on mibench Benchmarks

BM # Base Ins Greedy Heuristic
Oppor. % Impr. # Oppor. % Impr.

FFT 736 179 24 181 24
crc 32 150 35 23 36 24
adpcm 417 75 17 75 17
gsm 9855 2763 28 2806 28

pgp 40886 7750 18 8107 19
rijndael 3674 1378 37 1385 37
blowfish 3015 827 27 897 29

sha 410 109 26 110 26

mad 13230 3274 24 3369 25
gif2tiff 36983 8473 22 8814 23
jpeg 32827 8602 26 8756 25

susan 7232 2065 28 2217 30
qsort 247 49 19 49 19

bitcount 612 166 27 169 27
basicmath 994 171 17 172 17

sphinx 56097 12720 22 13170 23
rsynth 6318 1378 21 1408 22

stringsearch 997 274 27 282 28

dijkstra 292 75 25 76 26

Thus, using the heuristic-based algorithm, the base instruction set needs augmentation with fewer
new instructions and at the same time the augmented instruction set achieves more code size re-
duction than that obtained using the greedy algorithm.

The largest benchmark issphinx having 56097 instructions from the base instruction set. For
this application, the greedy algorithm synthesizes 332 new instructions, which when used as ex-
tensions to the instruction set yields 22 % reduction in code size. The heuristic algorithm for the
same application brings 23 % code size reduction with only 274 new instructions. Given that there
is bandwidth available for adding 22 more instruction formats, each accommodating upto 32 in-
structions, we can easily incorporate the newly generated complex instructions into the existing
instruction set.

6.2 Impact of Our Work

With an average 25 % improvement in code size (as obtained by the heuristic-based algorithm),
the memory usage of TMS320C6xx (as shown in Figure 13) becomes comparable with the other
VLIW DSPs.

The performance of a VLIW DSP is essentially attributed to the Instruction Scheduler of the

compiler. The opportunity to find legal combinations of instructions is affected by the work done
by the scheduler: If fewer VLIW slots are utilized by the Instruction Scheduler, then there are more
opportunities for combination. This enables us to do a trade-off between the performance achiev-
able by optimally scheduling instructions and the code-size reduction obtainable by exploiting the
opportunities of using complex instructions. Our retargetable framework also allows us to vary the
number of parallel resources and enforce any kind of heterogeneous connectivity constraints. The
work presented in this report is extensible to any architecture that exhibits heterogeneous connec-
tivity for VLIW-style DSPs (HCDSPs).

A complex instruction utilizes one register less than the number of registers used by the con-
stituent base instructions. Consequently, there is an overall reduction in register pressure for every
combination of base instructions. Therefore, it is likely that a spilled code can be freed of spilling
just by efficiently combining instructions. As a result, the performance cannot degrade but at the
best can increase.

B
yt

e
s

VLIW DSPs

Lower is better

ADSP-2189
DSP1620

DSP56311
’320C549

TMS320C6202

Memory Usage on FSM Benchmark

0

 40

120

160

200

 80

25%

Figure 13. Comparison of Memory Usage with new TMS320C6xx Instruction Set Extensions

We gained a decrease in code size at the expense of slightly increasing the complexity of the
dispatch unit. The dispatcher with the help of the format-specifier bits will identify a complex in-
struction and divide it into two regular instructions. The regular instructions will then be dispatched
one after another. For example, MUL.M1.ADD.S1 will be broken into MUL.M1 and ADD.S1 and
respectively dispatched into units M1 and S1 one after the other. Because of a dependency between
MUL.M1 and ADD.S1, ADD.S1 should begin execution in S1 after MUL.M1 has finished writing
the result.

One might argue that adding complex instructions to a regular instruction set of a VLIW ma-
chine can lead to increase in compiler complexity. It is important to note that the same (greedy or
heuristic-based) algorithm for synthesizing complex instructions can be used to generate code for a
VLIW machine having these complex instructions. This algorithm can be added as a back-end to a
compiler which normally targets an HCDSP architecture such as the TMS320C6xx with a regular
instruction set.

7 Summary and Future Directions

We presented a Greedy and a Heuristic-based algorithm to synthesize Instruction Set Exten-
sions (ISEs) that reduce code size for a Heterogeneous-Connectivity-based DSP (HCDSP) archi-
tecture like TMS320C6xx. By modeling the architecture in a retargetable framework, the con-
nectivity and latency constraints were derived from the architecture description. Based on these
constraints and the dependency constraints derived from the application, our framework was able
to generate profitable complex instructions as extensions to the existing instruction set. On an
average, the heuristic-based algorithm achieved 25 % reduction in code size, 1 % more than that
obtained by the greedy algorithm. The heuristic-based algorithm also resulted in lesser number
of new complex instructions than the greedy algorithm. Neither of the algorithms caused any
degradation in performance. In order to apply our technique to HCDSPs, a generalized super-
set of a simple VLIW DSP, we augmented the generic connectivity model of HCDSP with a few
architectural assists. We also assumed that it is possible to implement those architectural assists
obeying timing and area constraints; future work will study this issue further and also quantify the
performance improvements attainable using the generated ISEs.

8 Acknowledgments

This work was supported in part by grants from NSF (CCR 0203813 and CCR 0205712). We
thank Jong-eun Lee and other members of the ACES laboratory (http://www.ics.uci.edu/ aces) for
their input.

References

[1] A. Halambi et al. EXPRESSION: A language for architecture exploration through compiler/simulator retar-
getability. DATE, 1999.

[2] R. Leupers et al. Instruction Set Extraction from Programmable Structures.ACM, 1994.

[3] R. Leupers et al. Instruction Selection for Embedded DSPs with Complex Instructions.EURO-DAC with EURO-
VHDL, 1996.

[4] A.K. Verma et al. Automatic Application-Specific Instruction-Set Extensions under Microarchitectural Con-
straints.In proceedings of the 1st Workshop on Application Specific Processors, Istanbul, November 2002.

[5] H. Choi et al. Synthesis of Application Specific Instructions for Embedded DSP Software.IEEE Transactions
on Computers, 1999.

[6] A.K. Verma et al. Optimal Algorithm for Determining Speedup-Driven Instruction-Set Extensions under
Register-File Port Constraints.CASES, 2002.

[7] L. Pozzi et al. Automatic Topology-Based Identification of Instruction-Set Extensions for Embedded Processors.
Technical Report CS 01/377, Swiss Federal Institute of Technology Lausanne, Switzerland, 2001.

[8] M. Arnold et al. Instruction Set Synthesis Using Operation Pattern Detection.5th Annual Conference of ASCI,
1999.

[9] J. Lee et al. Efficient Instruction Encoding for Automatic Instruction Set Design of Configurable ASIPs.ICCAD,
2002.

[10] http://www.ti.com.TI TMS320C6xx user manual.

[11] M. Guthaus et al. MiBench: A Free Commercially Representative Embedded Benchmark Suite.
http://www.eecs.umich.edu/jringenb/mibench/.

[12] S. Aditya et al. Code Size Minimization and Retargetable Assembly for EPIC and VLIW Instruction Formats.
Technical Report, HPL PL-2000-141.

[13] S.Y. Liao et al. Code Density Optimization for Embedded DSP Processors using Data Compression Techniques.
IEEE TCAD, 17(7):601-608, 1998.

[14] M. Kozuch et al. Compression of Embedded System Programs.IEEE ICCD, pages 270-277, 1994.

[15] S. Hanono et al. Instruction Selection, Resource Allocation and Scheduling in the AVIV Retargetable Code
Generator.35th DAC, pages 510-515, 1998.

[16] T.M. Conte et al. Instruction Fetch Mechanisms for VLIW Architectures with Compressed Encodings.29th
MICRO, pages 201-211, 1996.

[17] H. Zhou et al. Code Size Efficiency in Global Scheduling for ILP Processors.6th Annual Workshop on ICCA,
2002.

[18] F. Sun et al. Synthesis of Custom Processors Based on Extensible Platforms.ICCAD, 2002.

[19] M.R. Garey et al. Computers and Intractability: A Guide to the Theory of NP-Completeness.New York: W.H.
Freeman, 1983.

