
HDLGen: Architecture Description Language driven HDL

Generation for Pipelined Processors

Arun Kejariwal Prabhat Mishra Jonas Astrom Nikil Dutt

akejariw@cecs.uci.edu pmishra@cecs.uci.edu astrom@cecs.uci.edu dutt@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES) Laboratory

Center for Embedded Computer Systems, University of California, Irvine, CA, USA

CECS Technical Report #03-04

Center for Embedded Computer Systems

University of California, Irvine, CA 92697, USA

February, 2003

Abstract

As embedded systems continue to face increasingly higher performance requirements, deeply pipeli-

ned processor architectures are being employed to meet desired system performance. System archi-

tects critically need modeling techniques to rapidly explore and evaluate candidate architectures

based on area, clock frequency, power, and performance constraints. We present an exploration

framework for pipelined processors. We use the EXPRESSION Architecture Description Language

(ADL) to capture a wide spectrum of processor architectures. The ADL has been used to enable

performance driven exploration by generating a software toolkit from the ADL specification. In

this paper, we present how to automatically generate synthesizable RTL from the ADL specification

using a functional abstraction technique. Automatic generation of RTL enables rapid exploration

of candidate architectures under given design constraints such as area, clock frequency, power,

and performance. Our exploration results demonstrate the power of reuse in composing heteroge-

neous architectures using functional abstraction primitives allowing for a reduction in the time for

specification and exploration by at least an order of magnitude.

Contents

1 Introduction 4

2 The EXPRESSION ADL 5

3 Related Work 7

4 Functional Abstraction 8

5 Our Approach 10

6 Synthesizable HDL Generation 11

6.1 Instruction Fetch . 12

6.2 Instruction Decoder . 12

6.3 Data Path . 12

6.4 Control Logic . 13

7 Synthesis-based Optimizations 13

7.1 Resource Sharing . 13

7.2 Bit-width Optimizations . 14

7.3 Communication Overhead . 14

8 Experiments 15

8.1 Experimental Setup . 15

8.2 Results . 17

9 Summary 19

10 Acknowledgments 19

2

List of Figures

1 The EXPRESSION ADL . 6

2 A Fetch Unit Example . 9

3 Modeling of MAC operation . 10

4 Architecture Exploration Framework . 11

5 A Multiplication Example . 14

6 An example illustrating potential bit-width optimizations 15

7 The DLX Processor . 16

List of Tables

1 Synthesis Results: RISC-DLX vs PEAS-DLX . 18

2 Hardware Synthesis Results . 18

3

1 Introduction

Embedded systems present a tremendous opportunity to customize designs by exploiting the

application behavior. Shrinking time-to-market, coupled with short product lifetimes create a crit-

ical need for rapid exploration and evaluation of candidate System-on-Chip(SOC) architectures.

System architects critically need tools, techniques, and methodologies to perform rapid architec-

tural exploration for a given set of applications to meet the diverse requirements, such as better

performance, low power, smaller silicon area, higher clock frequency etc.

Recent advances on language driven software toolkit (including compiler and simulator) gener-

ation enables performance driven exploration. The software simulator produces profiling data and

thus may answer questions concerning the instruction set, the performance of an algorithm and

the required size of memory and registers. However, the required silicon area , clock frequency,

and power consumption, can only be determined in conjunction with a synthesizable HDL model.

Manual or semi-automatic generation of synthesizable HDL model for the architecture is a time

consuming process. This can be done only by a set of skilled designers. Furthermore, the in-

teraction among the different teams viz., specification developers, HDL designers, and simulator

developers makes rapid architectural exploration infeasible. As a result, system architects rarely

have tools or the time to explore architecture alternatives to find the best-in-class solution for the

target applications. This situation is very expensive in both time and engineering resources, and

has a substantial impact on time-to-market. Without automation and unified development environ-

ment, the design process is prone to error and may lead to inconsistencies between hardware and

software representations.

Automatic generation of synthesizable HDL design along with software toolkit from a single

specification language will be an effective solution for early architectural exploration. The EX-

PRESSION [1] architecture description language (ADL) was developed for the automatic genera-

tion of software toolkit, including compiler, simulator, and assembler. The ADL is used to specify

the architecture. The software toolkit is generated automatically from the ADL specification. The

application programs are compiled and simulated, and the feedback is used to modify the ADL

specification of the architecture. In this paper, we focus on automatic generation of synthesizable

HDL along with software toolkit for a wide variety of pipelined architectures.

The contribution of this work is a methodology for automatic generation of synthesizable HDL

models from a specification language to enable rapid exploration of pipelined architectures. The

existing approaches are either semi-automatic (expects designers to write datapath components

manually) or covers a restricted set of architectures. However, none of these approaches are able

4

to capture a wide spectrum of processor features present in DSP, VLIW, EPIC and Superscalar

processors, and generate synthesizable RTL from the ADL specification. The main bottleneck

has been the lack of an abstraction (covering a diverse set of architectural features) that permits

the reuse of the primitives to compose the heterogeneous architectures. We are able to generate

synthesizable HDL description for a wide range of pipelined architectures using a functional ab-

straction technique. Due to our single specification driven exploration approach the hardware and

software representations are consistent.

The rest of the paper is organized as follows. Section 2 briefly describes the EXPRESSION

ADL. Section 3 presents related work addressing language driven HDL generation approaches.

Section 4 presents the functional abstraction technique that permits reuse of abstraction primitives

to compose heterogeneous architectures. Section 5 outlines our approach and the overall flow of

our ADL driven exploration environment. The synthesizable HDL generation method is described

in Section 6. Section 8 presents preliminary experiments using our system. Section 9 concludes

the paper.

2 The EXPRESSION ADL

The EXPRESSION framework allows verification, automatic software toolkit generation, and

design space exploration for a wide range (DSP, VLIW, EPIC, Superscalar) of programmable em-

bedded systems (processor, co-processor, and memory subsystem). The EXPRESSION ADL has

been used to generate compiler, simulator, and assembler for the TI C6x [25], PowerPC [5], ARM

[26], Hitachi SH3 [27], ST100 [28], Sun UltraSparc-III [7], and MIPS R10K [6] architectures. The

ADL can be used to perform top-down validation of programmable embedded systems ([15], [20],

[17]). In this paper, we demonstrate the capability of the framework to perform rapid exploration

through automatic generation of synthesizable RTL. We briefly describe the key aspects of the

EXPRESSION ADL in this section. The complete reference of the language is provided in [1].

The EXPRESSION ADL captures the structure, behavior, and mapping (between structure and

behavior) of the programmable architecture as shown in Figure 1

The structure of a processor can be viewed as a graph with the components as nodes and the

connectivity as the edges of the graph. We consider four types of components: units (e.g., ALUs),

storages (e.g., register files), ports, and connections (e.g., buses). There are two types of edges:

pipeline edges and data transfer edges. The pipeline edges specify instruction transfer between

units via pipeline latches, whereas data transfer edges specify data transfer between components,

typically between units and storages or between two storages. Each component has a list of at-

5

EXPRESSION

Operations Specification

Instruction Specification

Operation Mappings

Architecture Components

Pipeline/Data-transfer Paths

Memory Subsystem

Structure SpecificationBehavior Specification

Figure 1. The EXPRESSION ADL

tributes. For example, a functional unit will have information regarding latches, ports, connections,

opcodes, timing, capacity etc. For example, the timing attribute will have information regarding

the timing of each opcode supported by the unit.

The behavior is organized into operation groups, with each group containing a set of operations

having some common characteristics. Each operation is then described in terms of it’s opcode,

operands, behavior, and instruction format. Each operand is classified either as source or as des-

tination. Furthermore, each operand is associated with a type that describes the type and size of

data it contains. The instruction format describes the fields of the operation in both binary and

assembly. The binary format for the following add operation has opcode (0101) field from 26th bit

to 29th bit.

(OPCODE add

(OP_TYPE DATA_OP)

(OPERANDS (SRC1 int_rf) (SRC2 int_32) (DST int_rf))

(BEHAVIOR DST = SRC1 + SRC2)

(FORMAT cond(31-30) 0101 dest(25-21) src1(20-16))

.......

)

The mapping functions map components in the structure to operations in the behavior. It defines,

for each functional unit, the set of operations supported by that unit (and vice versa). For example,

the operation add is mapped to ALU unit.

6

3 Related Work

Two major approaches to synthesizable HDL generation have been proposed. The first one is a

generic parameterized processor core based approach. These cores are bound to a single processor

template whose tools and architecture can be modified to a certain degree. Another approach is

based on processor specification languages. The language based approaches permit specification

of the processor at the expense of restrictions on the quality and/or availability of the tools.

Examples for processor template based approaches are Xtensa [24], Jazz [8], and PEAS [12].

Xtensa [24] is a scalable RISC processor core. Configuration options include the width of the

register set, caches, memories etc. New functional units and instructions can be added using the

Tensilica Instruction Language (TIE). A synthesizable hardware model along with software toolkit

can be generated for this class of architectures. Improv’s Jazz [8] processor is a VLIW processor

that permits the modeling and simulation of a system consisting of multiple processors, memo-

ries, and peripherals. It allows modifications of data width, number of registers, and the depth of

hardware task queue. It is also possible to add functional units and add custom functionality in

Verilog. The PICO-NPA [22] system automatically synthesizes nonprogrammable accelerators to

be used as co-processors for functions expressed as loop nests in C. PEAS [12] is a GUI based

hardware/software codesign framework. It generates HDL code along with software toolkit. It has

support for several architecture types and a library of configurable resources. Instruction set and

micro-operations are separately described.

Processor description language based HDL generation frameworks can be divided into envi-

ronments based on the type of information the language can capture. nML [10] and ISDL [4]

languages capture the instruction set (IS) of the processor. In nML, the processor IS is described

as an attributed grammar with the derivations reflecting the set of legal instructions. The architec-

tural scope is limited to DSPs and ASIPs for nML based specification. In ISDL, constraints on

parallelism are explicitly specified through illegal operation groupings. As the generation of func-

tional units is the result of an analysis and optimization process of the HDL generator HGEN, the

designer has only indirect influence to the generated HDL model. Itoh et al. [11] have proposed a

micro-operation description based synthesizable HDL generation. The structure of the processor

is derived by analyzing the micro-operation descriptions. It can handle a very simple processor

model with no hardware interlock mechanism or multi-cycle operations. It relies on compiler to

insert necessary NOP instructions. As a result, it does not support instructions related to interrupt,

cache control, co-processor etc.

MIMOLA [21] captures the structure of the processor wherein the net-list of the target processor

7

is described in a HDL like language. Extracting the instruction set from the structure may be

difficult for complicated instructions.

More recently, languages that capture both the structure and the behavior (instruction set) of the

processor, as well as detailed pipeline information have been proposed. LISA [29] is one such

language that captures operation-level description of the pipeline. The synthesizable HDL gen-

eration approach based on LISA language ([2], [13], [14]) is closest to our approach. The LISA

machine description provides information consisting of model components for memory, resource,

instruction set, behavior, timing, and micro-architecture. It can model only DSP and VLIW archi-

tectures. It generates HDL model of the processor’s control path and the structure of the pipeline.

However, the designer has to manually implement the datapath components. A major problem

here is verification since operations have to be described and maintained twice - on the one hand

in the LISA model and on the other hand in the HDL model (hand written datapath) of the target

architecture. Due to the need of manual intervention, this method is not suitable for rapid design

space exploration.

The methodology we present in this paper combines the advantages of the processor template

based environments and the language based specifications. In fact, we have taken template based

design one step ahead using our functional abstraction technique. Thus unlike previous approaches,

we are able to efficiently explore a wide range of pipelined architectures exhibiting heterogeneous

architectural styles, as well as the memory subsystems.

4 Functional Abstraction

While contemporary ADLs can effectively capture one class of architecture, they are typically

unable to capture a wide spectrum of processor and memory features present in DSP, VLIW, EPIC

and Superscalar processors. The main bottleneck has been the lack of an abstraction (covering

a diverse set of architectural features) that permits the reuse of the primitives to compose the

heterogeneous architectures. In this section, we briefly describe the functional abstraction needed

to capture such wide variety of programmable architectures. The complete reference is available

in [16].

The notion of functional abstraction comes from a simple observation: different architectures

may use the same functional unit (e.g., fetch) with different parameters, the same functionality

(e.g., operand read) in different functional unit, or new architectural features. The first differ-

ence can be eliminated by defining generic functions with appropriate parameters. The second

difference can be eliminated by defining generic sub-functions, which can be used by different

8

architectures at different points in time. The last one is difficult to alleviate since it is new, unless

this new functionality can be composed of existing sub-functions (e.g., multiply-accumulate opera-

tion by combining multiply and add operations). We have defined the necessary generic functions,

sub-functions and computational environment needed to capture a wide variety of processor and

memory features. We first explain the functional abstraction needed to capture the structure and

behavior of the processor and memory subsystem, then we discuss the issues related to defining

generic controller functionality.

FetchUnit (# of read/cycle, res-station size,)
{
 address = ReadPC();
 instructions = ReadInstMemory(address, n);

}

 WriteToReservationStation(instructions, n);
outInst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outInst);

pred = QueryPredictor(address);
if pred {
 nextPC = QueryBTB(address);
 SetPC(nextPC);
} else
 IncrementPC(x);

Figure 2. A Fetch Unit Example

We capture the structure of each functional unit using parameterized functions. For example,

the fetch unit functionality contains several parameters, viz., number of operations read per cycle,

number of operations written per cycle, reservation station size (size==0 implies no reservation

station), branch prediction scheme, number of read ports, number of write ports etc. Figure 2 shows

a specific example of a fetch unit described using sub-functions. Each sub-function is defined using

appropriate parameters. For example, ReadInstMemory reads n operations from instruction cache

using current PC address (returned by ReadPC) and writes them to the reservation station. The

notion of generic sub-function allows the flexibility of specifying the system in finer detail. It also

allows reuse of the components. Furthermore, these components can be pre-verified. Thus the task

of verification will reduce to mainly performing interface verification at all levels.

The behavior of a generic processor is captured through the definition of opcodes. Each opcode

is defined as a function, with a generic set of parameters, which performs the intended functional-

ity. The parameter list includes source and destination operands, necessary control and data type

information. We have defined common sub-functions e.g., ADD, SUB, SHIFT etc. The opcode

functions may use one or more sub-functions. For example, the MAC (multiply and accumulate)

uses two sub-functions (ADD and MUL) as shown in Figure 3.

9

} }

MUL (src1, src2) {

MAC (src1, src2, src3) {

ADD (src1, src2) {

 return (src1 + src2); return (src1 * src2);

 return (ADD(MUL(src1, src2), src3));
}

Figure 3. Modeling of MAC operation

Each type of memory module viz., SRAM, cache, DRAM, SDRAM, stream buffer, victim cache

etc., is modeled using a function with appropriate parameters. For example, the cache function

has parameters: cache size, line size, associativity, word size, replacement policy, write policy,

read/write access times etc. These functions also have parameters for specifying pipelining, paral-

lelism, access modes (normal read, page mode read, burst read etc.) etc.

The controller is maintained by using a generic control table. The number of rows in the table is

equal to the number of pipeline stages in the architecture. The number of columns is equal to the

maximum number of parallel units present in any pipeline stage. Each entry in the control table

corresponds to one particular unit in the architecture. It also contains information specific to that

unit e.g., busy bit (BB), stall bit (SB), list of children, list of parents, opcodes supported etc. This

table is generated from the ADL specification. The control table captures all the necessary details

to perform necessary stalling and flushing of the pipelines in the presence of branches, hazards,

and exceptions.

We have also developed a generic scheme for defining interrupts, exceptions, interrupt handler,

DMA, co-processor, and external interface. The detailed description of generic abstractions for all

of the microarchitectural components are too long to describe in this section, and can be found in

[16].

5 Our Approach

Figure 4 shows our ADL driven architecture exploration framework. System designers have

initial ideas about the programmable architecture (processor, coprocessor, memory subsystem) for

the given set of applications. They develop architecture specification document based on their

expertise and available prototypes.

The first step is to specify the architecture in EXPRESSION ADL. It is necessary to validate the

ADL specification to ensure that the architecture is well-formed ([15], [18], [20]). It guarantees the

correctness of the generated software toolkit and the HDL implementation. The software toolkit,

including compiler, assembler, and simulator, is generated automatically from the ADL specifica-

10

tion. The application program is compiled and simulated to generate performance numbers. The

simulator produces profiling data and thus may answer questions concerning the instruction set, the

performance of an algorithm and the required size of memory and registers. The required silicon

area, clock frequency, or power consumption can only be determined by generating a synthesizable

HDL model.

Verify
Generic

C++
Models

Application
Programs

Compiler
Generator

Simulator
Generator

Compiler Assembler Simulator

Synthesis

ASM BIN

Automatic
Manual
Feedback

Successful

Failed

E
valuation Statistics (P

erform
ance)

Architecture Specification
(English Document)

EXPRESSION Description

E
va

lu
at

io
n

St
at

is
tic

s
(A

re
a,

 P
ow

er
, C

lo
ck

 F
re

qu
en

cy
)

Generic
VHDL
Models

HDL
Generator

Model
Hardware

Figure 4. Architecture Exploration Framework

In this paper, we present automatic generation of synthesizable HDL models (shown shaded

in Figure 4) from the ADL specification. We have developed VHDL models for each generic

function and sub-functions as described in Section 4. Our HDL generator is capable of compos-

ing heterogeneous architectures using functional abstraction primitives. The generated hardware

model (VHDL Description) is synthesized using Synopsys Design Compiler [23] to generate eval-

uation statistics: area, clock frequency, and power consumption. The hardware model can also be

used to generate performance numbers. We perform this step to validate the generated hardware

model against the simulator.

6 Synthesizable HDL Generation

We have already demonstrated the power of functional abstraction in generating simulation

models for a wide variety of architectures allowing for a reduction in the time for specification

and exploration by at least an order of magnitude [19]. In this paper we have used the functional

11

abstraction technique to automatically generate synthesizable VHDL models from the ADL spec-

ification. In fact, there is a direct relationship between generating a simulator and a hardware

model: the synthesizable VHDL model is itself a simulator.

The generated HDL description consists of four major parts: instruction fetch, instruction de-

coder, data-path, and control logic. We have implemented all the generic functions and sub-

functions (as described in Section 4) using VHDL. The following sections briefly describe the

above steps.

6.1 Instruction Fetch

We have implemented a parameterized instruction fetch unit. The fetch bandwidth between

the fetch unit and the instruction memory is specified using EXPRESSION. A Pre-fetch buffer is

modeled to facilitate large availability of instructions during a branch prediction phase for early

execution. The fetch unit feeds instructions to the decoder from the pre-fetch queue. However,

it should be noted that in case the pre-fetch queue is empty, the newly fetched instructions from

the instruction memory are directed to the decoder rather than the pre-fetch queue to performance

penalty.

6.2 Instruction Decoder

We have implemented a generic instruction decoder that uses information regarding individ-

ual instruction format and opcode mapping for each functional unit to decode a given instruction

inst. The instruction format information is available in operations section of the EXPRESSION

ADL. The decoder extracts information regarding opcode, operands etc. from input instruction

inst using the instruction format. The mapping section of the EXPRESSION captures the informa-

tion regarding the mapping of opcodes to the functional units. The decoder uses this information

to perform/initiate necessary functions (e.g., operand read) and decide where (pipeline latch) to

send the instruction. Based on the register availability information, the decoder carries out register

renaming, hence supporting multiple instruction issue.

6.3 Data Path

The implementation of datapath consists of two parts. First, compose each component in the

structure. Second, instantiate components (e.g., fetch, decode, ALU, LdSt, writeback, branch,

caches, register files, memories etc.) and establish connectivity using appropriate number of

pipeline latches, ports, and connections using the structural information available in the ADL.

12

To compose each component in the structure we use the information available in the ADL regard-

ing the functionality of the component and its parameters. For example, to compose an execution

unit, it is necessary to instantiate all the opcode functionalities (e.g, ADD, SUB etc. for an ALU)

supported by that execution unit. Also, if the execution unit is supposed to read the operands then

appropriate number of operand read functionalities needs to be instantiated unless the same read

functionality can be shared using multiplexors. Similarly, if this execute unit is supposed to write

the data back to register file, the functionality for writing the result needs to be instantiated. The

actual implementation of an execute unit might contain many more functionalities e.g., read latch,

write latch, insert/delete/modify reservation station (if applicable).

6.4 Control Logic

The controller is implemented in two parts. First, it generates a centralized controller (using

generic controller function with appropriate parameters) that maintains the information regarding

each functional unit such as busy, stalled etc. It also computes hazard information based on the

list of instructions currently in the pipeline. Based on these bits and the information available in

the ADL it stalls/flushes necessary units in the pipeline. Second, a local controller is maintained at

each functional unit in the pipeline. This local controller generates certain control signals and sets

necessary bits based on input instruction. For example, the local controller in an execute unit will

activate the add operation if the opcode is add, or it will set the busy bit in case of a multi-cycle

operation.

7 Synthesis-based Optimizations

In this section we briefly describe three synthesis-based optimizations that enable area, power,

and performance improvement.

7.1 Resource Sharing

In minimum area applications it is necessary to maximize the resource sharing under given

timing constraints. Consider a move operation that is implemented using a bus, and load and store

operations that are mutually exclusive with the move. Additionally, the move operation resides

in a different field than the load and store operations. A naive scheme would generate additional

data-paths to handle the load and store operations even though it is possible to implement these

with the same bus that implements the move.

13

Here, we carry out resource constrained scheduling where the designer specifies the number of

units available of each operator type. All the ready operations are issued as soon as the required

functional unit (FU) is made available. This avoids redundant instantiations of an operator type

in different modules of the system. However, care should be taken to check performance penalty

due to resource sharing i.e. enough FUs should be made available to extract maximum parallelism

amongst the different modules.

7.2 Bit-width Optimizations

Conventional synthesis performs the allocation of heterogeneous specifications, those formed

by operations of different types and widths, by binding operations to functional units of their same

type and width. Such implementations incur hardware overhead. This HW overhead could be

reduced by jointly allocating all compatible operations (those with a common operative kernel)

independently of their widths. This definition is transitive and considers trivial cases like the

compatibility between additions and subtractions, and more complex ones like the compatibility

between additions and multiplications.

20 bitsA = B x C10 bits 10 bits

20 bits 16 bitsG = H x I 4 bits

10 bits 6 bitsD = E x F4 bits

14 bits 8 bitsJ = K x L 6 bits

Figure 5. A Multiplication Example

Figure 5 shows four multiplications using different bit-width operands. Conventional synthesis

will instantiate four multipliers for the example in Figure 5. However, bit-width enabled synthesis

will instantiate only two multipliers as shown in Figure 6. Such, optimizations inherently reduce

the number of bit-value transitions, thus reducing the power requirements of the design.

7.3 Communication Overhead

One of the key issues in hardware/software codesign is the generation of efficient interprocess

communication interfaces by determining structure and type of communication between different

components of a digital system. In obtaining full benefit of high performance components, the

problem of communication bottlenecks is one of the main obstacles. Most of the computationally

intensive algorithms have to deal with an immense amount of data. The generation of application

specific communication structures is a time consuming and error prone task in real-time embedded

system design. Hence, ADL driven communication synthesis provides a good platform to evaluate

14

0 E
H F I

D
G

A
J

B
0 K

C
0 L

16 x 4
16 x 4

X
X

10

16 4

20

10 10

2 4

10 10

20

6 14

Figure 6. An example illustrating potential bit-width optimizations

and validate the communication overhead in large class of architectures. As a future work, we plan

to explore the same using the EXPRESSION ADL.

8 Experiments

We performed architectural design space exploration by varying different architectural features,

achieved by reusing the abstraction primitives with appropriate parameters. In this section, we

illustrate the usefulness of our approach by generating synthesizable HDL description and per-

forming rapid exploration of the DLX architecture [9].

We have chosen DLX processor for two reasons. First, it has been well studied in academia and

there are HDL implementations available for the DLX processor that we can use for comparison

purposes. Second, it has many interesting features viz., fragmented pipelines, multi-cycle units

etc., that are representative of many commercial pipelined processor architectures such as TI C6x

[25], PowerPC [5], and MIPS R10K [6].

8.1 Experimental Setup

Figure 7 shows the DLX processor pipeline that we have captured in our framework. The DLX

architecture has five pipeline stages: fetch, decode, execute, memory, and writeback. The execute

stage has four parallel paths: integer ALU, 7 stage multiplier, four stage floating-point adder, and

multi-cycle divider.

15

DIV

PC

IF

ID

EX M1

M2

A1

A2

A3

A4

IR 1, 1

IR 2, 1

IR

IR

IRIR

IRIRIR 2, 2 2, 3 2, 4

3, 1 3, 2

4, 2

5, 2

M7

IR 8, 1

MEM

WB

IR

IR

9, 1

10, 1

REGISTER FILE
MEMORY

Functional Unit

Instruction Register

Pipeline Path
Data−transfer Path

Figure 7. The DLX Processor

16

The EXPRESSION ADL captures the structure and behavior of the DLX architecture. Synthe-

sizable HDL models are generated automatically from this specification. We have not done any

manual changes to the generated HDL models to enhance results. The generated HDL model is

validated against the generated simulator using the application programs from DSP and Multi-

media domains. We have used Synopsys Design Compiler [23] to synthesize the generated HDL

description using LSI 10K technology libraries and to obtain measures in terms of power con-

sumption, clock frequency, and chip area. The following lists the commands used to obtain the

performance and power metrics using the Synopsys Design Compiler.

/* For high effort compilation */

compile -map_effort high

/* Synopsys DA command for obtaining various metrics */

report_timing -max_paths 3 -nosplit -path full > <modulename>_timing.report

report_qor > <modulename>_qor.report

report_area > <modulename>_area.report

report_power -analysis_effort high > <modulename>_power.report

Our functional abstraction approach helped us to restrict the size of individual modules, which

is critical for synthesis. Memory overflow like problems were observed for large designs. It helped

to fine tune our design for better results.

8.2 Results

We have performed extensive architectural explorations by varying different architectural fea-

tures. In this section we present three exploration experiments starting with a simple DLX archi-

tecture.

We captured the RISC version of the DLX (say RISC-DLX) architecture in the ADL and gen-

erated HDL description. We compare the quality of the generated HDL code with the results

published by Itoh et al.[11] (say PEAS-DLX), which is synthesized using VSC753d (CMOS 0.5

µm) technology library. Table 1 presents the comparative results between PEAS-DLX [11] and

VLIW-DLX (generated by our framework). The second column lists the number of words in the

specification of both designs. The third column presents the number of words in the generated HDL

code. The fourth and fifth columns describe the area (gate count) and clock frequency respectively.

The power consumption for our hardware model is 52.4 mW.

17

Spec HDL Code Area Speed

(words) (words) (gates) (MHz)

RISC-DLX 2063 6612 118 K 33

PEAS-DLX 1196 6259 105 K 5.3

Table 1. Synthesis Results: RISC-DLX vs PEAS-DLX

Next, we modified this RISC-DLX model to add several architectural features from VLIW and

Superscalar domains that would not be possible with any existing ADL based framework.

We modified the ADL specification of the DLX (say VLIW-DLX) to add support for interlocking,

stalling, flushing, and multi-cycle operations. We have obtained area (185 K gates) and power (70

mW) numbers for this model.

Finally, we modified the ADL specification to add superscalar features (say Superscalar-DLX)

and generated the HDL description. We have obtained the hand written version of the Superscalar

DLX (say Darmstadt-DLX) processor from the repository of Darmstadt University of Technology

[3]. We made necessary modifications to make it synthesizable using Synopsys Design Compiler.

Table 2 presents the comparative results between Darmstadt-DLX (modified) and Superscalar-

DLX (generated by our framework). The second, third and fourth columns describe the area (gate

count), clock frequency, and power consumption respectively.

Area Speed Power

(gates) (MHz) (mW)

Superscalar-DLX 239 K 20 108.27

Darmstadt-DLX 198 K 27.7 71

Table 2. Hardware Synthesis Results

Our generated design (without any manual intervention) is 20-40% off in terms of area, power,

and clock speed. Indeed, these are reasonable ranges for rapid system prototyping and exploration.

Each iteration in our exploration framework is in the order of hours to days depending on the

amount of modification needed in the ADL and the synthesis time. However, each iteration will be

in the order of weeks to months for manual or semi-automatic development of HDL models. The

reduction of HDL generation time is at least an order of magnitude.

We have analyzed our results and observed that the execution units are consuming 50-60% of

18

the total area and power. This is due to the fact that we have not considered the optimization and

resource sharing issues of our data path components yet.

9 Summary

We have presented a synthesizable HDL generation method for pipelined processors from an

ADL specification. The EXPRESSION ADL captures the structure and the behavior of the archi-

tecture. The synthesizable HDL description is generated automatically from the ADL specification

using the functional abstraction technique. The generated hardware model is validated against the

generated simulator. The synthesis of the generated HDL model is performed to generate evalua-

tion statistics such as chip area, clock frequency, and power consumption. The feasibility of our

technique is confirmed through experiments. The result shows that a wide varieties of processor

features can be explored in hours to days – an order of magnitude reduction in time compared with

existing approaches that employ semi-automatic or manual generation of HDL models.

Our future work will focus on generating HDL models for real world architectures. We have

not considered the optimization and resource sharing issues of our data path components yet. As a

result, the execution units consumes 50-60% of the total area and power of the generated hardware

model. Our future research includes an improved methodology to generate optimized data path

components with shared resources.

10 Acknowledgments

This work was partially supported by NSF grants CCR-0203813 and CCR-0205712. We would

like to acknowledge the members of the ACES team for their inputs.

References

[1] A. Halambi and P. Grun and V. Ganesh and A. Khare and N. Dutt and A. Nicolau. EXPRESSION: A

Language for Architecture Exploration through Compiler/Simulator Retargetability. In Proc. DATE,

Mar. 1999.

[2] A. Hoffmann et al. A Methodology for the Design of Application Specific Instruction Set Processors

(ASIP) Using the Machine Description Language LISA. In ICCAD, 2001.

[3] A Superscalar Version of the DLX Processor. http://www.rs.e-technik.tu-

darmstadt.de/TUD/res/dlxdocu/SuperscalarDLX.html.

19

[4] G. Hadjiyiannis et al. ISDL: An Instruction Set Description Language for Retargetability. In DAC,

1997.

[5] http://www.motorola.com/SPS/PowerPC. MPC7400 PowerPC Microprocessor.

[6] http://www.sgi.com/processors/r10k. MIPS R10000 Microprocessor.

[7] http://www.sun.com/microelectronics/UltraSparc-III. UltraSparc III.

[8] Improv Inc. http://www.improvsys.com.

[9] J. Hennessy and D. Patterson. Computer Architecture: A quantitative approach. Morgan Kaufmann

Publishers Inc, San Mateo, CA, 1990.

[10] M. Freericks. The nML Machine Description Formalism. Technical Report TR SM-IMP/DIST/08,

TU Berlin CS Dept., 1993.

[11] M. Itoh and Y. Takeuchi and M. Imai and A. Shiomi. Synthesizable HDL Generation for Pipelined

Processors from a Micro-Operation Description. IEICE Trans. Fundamentals, E00-A(3), March 2000.

[12] M. Itoh et al. PEAS-III: An ASIP Design Environment. In ICCD, 2000.

[13] O. Schliebusch et al. Architecture Implementation using the Machine Description Language LISA. In

VLSI Design / ASPDAC, 2002.

[14] O. Wahlen et al. Application Specific Compiler/Architecture Codesign: A Case Study. In LCTES-

SCOPES, 2002.

[15] P. Mishra and H. Tomiyama and N. Dutt and A. Nicolau. Automatic Verification of In-Order Execution

in Microprocessors with Fragmented Pipelines and Multicycle Functional Units. In DATE, 2002.

[16] P. Mishra and J. Astrom and N. Dutt and A. Nicolau. Functional Abstraction of Programmable Em-

bedded Systems. Technical Report UCI-ICS 01-04, University of California, Irvine, January 2001.

[17] P. Mishra and N. Dutt. Automatic Functional Test Program Generation for Pipelined Processors using

Model Checking. In HLDVT, 2002.

[18] P. Mishra and N. Dutt. Modeling and Verification of Pipelined Embedded Processors in the Presence

of Hazards and Exceptions. In IFIP WCC DIPES, 2002.

[19] P. Mishra et al. Functional Abstraction driven Design Space Exploration of Heterogeneous Pro-

grammable Architectures. In ISSS, 2001.

[20] P. Mishra et al. Automatic Modeling and Validation of Pipeline Specifications driven by an Architec-

ture Description Language. In ASPDAC / VLSI Design, 2002.

20

[21] R. Leupers and P. Marwedel. Retargetable Code Generation based on Structural Processor Descrip-

tions. Design Automation for Embedded Systems, 3(1), 1998.

[22] S. Aditya and B. R. Rau and V. Kathail. Automatic Architectural Synthesis of VLIW and EPIC

Processors. In ISSS, 1999.

[23] Synopsys. http://www.synopsys.com.

[24] Tensilica Inc. http://www.tensilica.com.

[25] Texas Instruments. TMS320C6201 CPU and Instruction Set Reference Guide, 1998.

[26] The ARM7 User Manual. http://www.arm.com.

[27] The SH-3 DSP RISC Embedded Processor. http://www.hitachi.com.

[28] The ST100 DSP-MCU Architecture. http://www.st.com.

[29] V. Zivojnovic et al. LISA - Machine Description Language and Generic Machine Model for HW/SW

Co-Design. In IEEE Workshop on VLSI Signal Processing, 1996.

21

