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Abstract 

Given a set of real-time tasks scheduled using earliest deadline first (EDF), we propose 
an online algorithm for dynamically reconfiguring the cache subsystem of a system-on-a-
chip (SOC) platform to meet timing requirements while minimizing power consumption. 
Our online algorithm gradually constructs a set of pseudo-Pareto-optimal cache 
configurations for each task, which it then uses to determine a low power operating point 
meeting timing requirements. We have evaluated the quality of our algorithm by 
considering the overall energy saving of an SOC platform, including the time and energy 
overhead of the scheduler and our online algorithm, as well as the cache reconfiguration 
penalties. Our results show savings of approximately 20% in overall system energy usage. 
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1 Introduction 
Minimizing energy consumption of electronic devices has become a first class system 
design concern �[1], especially, in the areas of embedded and portable devices, since such 
devices draw their current from batteries that place a limited amount of energy at the 
system’s disposal. On the other hand, in recent years, increased application demand for 
functionality �[2]�[3], market pressures, and shortening of design cycles, have led to a new 
system-on-a-chip (SOC) platform based design methodology �[4]. 

A platform is a computing system composed of artifacts such as general-purpose 
processors, hierarchy of caches, on-chip main memory, I/O peripherals, co-processors, 
and possibly FPGA fabric for post-fabrication customizations. These platforms are 
generally targeted toward a large number of applications from a specific domain (e.g., 
networking or multimedia). To address the need for energy efficiency, the artifacts within 
these SOC platforms are often designed to be dynamically configurable. Features such as 
processor and memory power modes �[5]; dynamic voltage scaling �[6]; and run-time cache 
reconfiguration (e.g., Motorola’s M*CORE �[7]�[8]) have been commercially introduced. 
Dynamic reconfiguration of the platform provides an opportunity for operating system 
(OS) and/or application tasks to carry out strategic high-level resource management and 
achieve energy savings. 

In this work, we propose an online algorithm for dynamically adapting the cache 
subsystem to the workload requirements for the purposes of saving energy. The workload 
is considered to be a set of tasks with real-time deadlines. Our online algorithm is 
invoked as part of the OS scheduler, which performs standard earliest deadline first (EDF) 
task scheduling first. Then, our online algorithm, determines an ideal cache configuration 
for the current task that is to be executed. 

In our experiments, we consider the overhead of the OS scheduler, our online algorithm, 
as well as the cache reconfiguration time and energy penalties. Furthermore, we evaluate 
the quality of our technique by measuring the global power savings (i.e., considering 
processor, memories, and buses in addition to caches). 

When invoked, our algorithm initially performs an incremental search of the cache 
configuration space and updates a set of pseudo-Pareto-optimal points for the current task 
to be executed. Subsequently, the pseudo-Pareto-optimal set is used to select a 
configuration meeting the task deadline while minimizing power consumption. 

The remainder of this paper is organized as follows. In Section 2, we outline related work. 
In Section 3, we formulate the problem and state our assumptions. In Section 4, we 
introduce our online algorithm. In Section 5, we present our experiments. In Section 6, 
we give our concluding remarks. 

2 Related Work 
One similar approach that has gained popularity is dynamic voltage scaling (DVS), where 
one can save energy with minor performance degradation by reducing the operating 
supply voltage of the processor, or even of the whole system �[9]�[10]�[11]. The premise of 
all DVS techniques is to achieve a steady/even processor speed while meeting all tasks 
deadlines. This is often accomplished by appropriately scheduling tasks and selecting 
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voltage settings that eliminate the slack. Our approach is completely complementary to 
DVS. In our approach, we do not perform task scheduling. Instead, we assume an already 
scheduled task set. The premise of our work is to tune the cache down to the working set 
of each task that is to be executed, thus saving on cache power consumption. Our aim is 
not to disturb the task timings. Thus, the advantage is the possibility of combining a DVS 
scheduler with our approach for added benefit. 

A great amount of previous work has shown that statically tuning the cache subsystem to 
the running task can result in significant energy savings �[12]�[13]. For example, 
Motorola’s recent version of an M*CORE processor IC has a configurable 4 way set 
associative unified cache, in which each way can be disabled, or used for instructions, 
data, or both. Malik et al. �[8] have shown that the best cache configuration depends 
heavily on the particular running task. Likewise, Zhang et al. �[14] analysis shows that 
having a dynamically configurable line size architecture can have a significant (up to 
50%) energy saving potential in embedded systems. 

Tang et al. �[15] have proposed an architectural scheme for dynamic cache line sizing. 
Their approach is to introduce a hardware unit along with a memory and cache protocol 
for fine grained tuning of the line size. In contrast, our approach is a software technique 
that allows the OS to take charge of cache reconfiguration, taking into account a dynamic 
workload and application requirements. 

In a similar effort, Dropsho et al. �[16] have considered disabling cache ways (i.e., 
associativity) dynamically to achieve low power. They propose cache architectures 
intended for dynamic reconfiguration. Further, they provide a hardware solution for 
adaptivity. As with the previous technique, our approach is a software technique 
performing adaptivity at the task and OS levels. 

3 Problem Description 
Our problem formulation is as follows. The system is composed of N tasks, T1, T2 … Tn. 
Each task Ti has a deadline Di and a period Pi. To generalize the solution, a non periodic 
or sporadic task Ti is assumed to have Pi = 0. Tasks are non-preemptive. One of the tasks 
that are running on the platform is the scheduler Ts. Scheduler task Ts has no deadline and 
no period, and is activated every time a task finishes execution to perform the context 
switching. As stated previously, the scheduler selects the next task Tj to be executed 
based on EDF. Then, our online algorithm, running as part of the scheduler, selects an 
appropriate cache configuration that maintains the timing of the task Tj while saving as 
much energy as possible. 

The platform’s cache subsystem is assumed to have a finite number of possible 
configurations C1, C2 … Cn. Each configuration Ci will be different than any other 
configuration Cj by at least one of the configurable parameters: cache size, line size or 
cache associativity. Among all valid configurations, one of them is the so-called 
reference configuration Cr. The reference configuration is assumed to be the default 
system configuration, or the configuration to be used if dynamic cache reconfiguration is 
not used. For schedulability testing, we assume that the worse case execution time of 
each task under the reference configuration is known ahead of time (e.g., obtained via 
offline simulation).  
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We assume a time penalty for cache reconfiguration. This penalty is for writing dirty data 
back to memory. The time penalty is captured by a function PT(Ci,Cj) of the current 
configuration Ci and the new configuration Cj. This function can be either hard coded 
statically, or learned by our online algorithm during run time. 

Figure 1 depicts the runtime behavior proposed here. Here, task Ti runs with cache 
configuration Ci, while Tj with Cj. Between these two tasks, the scheduler Ts executes 
with the same cache configuration of the last running task. Our algorithm runs as part of 
the scheduler task Ts. Note that the time penalty PT(Ci,Cj) of cache reconfiguration is also 
depicted in the figure1. 

We note that being able to select the next cache configuration without any prior 
knowledge of the currently running task is especially important, as we assume that the 
work load is dynamic and not necessarily known during design time. The main advantage 
of our algorithm is that it learns about task behavior under different cache configurations 
in a dynamic setting. 

We assume that there is a way to measure the power consumption of each task just 
executed on the platform. We assume that this power consumption is inclusive of the 
power penalty for cache reconfiguration. Checking the power consumption can be 
accomplished by reading cache access counters and applying appropriate power models. 
Alternatively, a platform may provide direct measurements of the power consumption of 
its components. 

We allow for some missed deadlines as the online algorithm is learning about the task 
behavior under different cache configuration. This is a reasonable assumption for soft 
real-time application where occasional lose of a deadline is not as critical as in a hard 
real-time application. Despite this timing relaxation, soft real time applications (e.g., 
multimedia, videoconferencing, etc.) are very common in the embedded system 
environment. 

4 Proposed Solution 

4.1 Overview 

Dynamic cache reconfiguration poses a trade-off between power and performance. 
Larger caches are supposed to reduce the number of misses, allowing a task to execute 

                                                 
1 The time line is not to scale. 

 

 

 

 

 

Figure 1 - Runtime behavior  
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faster. On the other hand, the energy needed for a read or write in a bigger cache is larger 
than in a smaller cache, leading to a higher energy consumption scenario. 

This is clearly a multi-objective function: we want to minimize power while still meeting 
a time constraint. In a multi-objective function, it is usually the case that one specific 
solution is good for one objective, but not so good for the other ones. In the universe of 
different configurations, we can identify some configurations that are better than all the 
other ones for at least one of the performance criteria. These are the so-called Pareto-
optimal solutions. 

However computing the exact set of Pareto-optimal configurations is a challenging 
problem, as the configuration space is likely to be large. Instead, we aim at computing an 
estimated Pareto-optimal set (i.e., a near-optimal set) which we refer to as the pseudo-
Pareto-optimal cache configurations. We dynamically discover the 
pseudo-Pareto-optimal cache configurations, for each task, which are used to determine 
the best cache configuration for low power. 

Our online algorithm operates in two phases. The first phase of our online algorithm is 
designed to discover the performance of each task under different cache configurations. 
This is the Pareto-discovery phase. The second phase of our online algorithm is the cache 
configuration selector. 

Figure 2 depicts the parts of the task scheduler, which includes the two phases of our 
online algorithm. Note that the execution of the two phases of our online algorithm is 
interleaved and every time the scheduler is activated one iteration is completed for each 
of phase.  

A common task configuration database is shared between discovery and selection. The 
database is build incrementally by the Pareto discovery algorithm, and is used to keep 
information about the pseudo-Pareto-optimal configurations known so far. After a finite 
number of iterations, the discovery process is considered finished and the database is 
stable. The configuration selection algorithm consults the database in order to pick the 
best cache configuration to be set for the current activation of the task. 

 

 

 

 

 

 

 

 

 

Figure 2 - The online algor ithm. 
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The complete scheduler along with our online algorithm skeleton is given in Figure 3. 

4.2 The Pareto Discovery Phase 

The main objective of the Pareto discovery phase is to converge on to a reasonable 
approximation of the actual Pareto-optimal set for each task. 

The discovery procedure starts with the reference configuration as the only member of 
the pseudo-Pareto-optimal set. Gradually, each of the cache size, line size, and 
associativity parameter are varied, individually (i.e., one change per scheduler invocation) 
in a greedy search process. Specifically, in a first stage, starting from the reference 
configuration, the cache size parameter is changed until all possible settings have been 
explored, or the task timings are affected beyond certain threshold. Then, in a similar 
fashion, during second and third stages, the cache line and associativity parameters are 
varied. 

SCHEDULER:  
 Input:  cur r ent  t ask and conf i g.  ( Ti ,  Ci )  
 Output:  next  t ask and conf i g.  ( Tj ,  Cj )  
 
 / /  comput e del t a t i me and power  
 dt i me = t i me( )  – Ti . s t ar t _t i me 
 dpower  = ( ener gy( )  – Ti . s t ar t _ener gy) / dt i me 
 
 / /  i nt r oduce new Par et o poi nt s 
 i s_par et o = t r ue 
 f or  each pk i n Ti . P 
  i f (  pk. t i me < dt i me && pk. power  < dpower  )  
   i s_par et o = f al se 
 i f (  i s_par et o )  {  
  Ti . P = Ti . P ∪ {  Ci  }  
  f or  each pk i n Ti . P 
    i f (  pk. t i me > dt i me && pk. power  > dpower  )  
     Ti . P = Ti . P – {  pk }  
 }  
 
 / /  per f or m st andar d schedul i ng 
 Tj  = EDF( )  
 
 / /  expl or e or  sel ect       
 i f (  need_t o_expl or e( Tj )  )  
   Cj  = di scover _par et o( Tj )  / /  Sect i on 4. 2 
 el se 
   Cj  = pi ck_best _conf i g( Tj )  / /  Sect i on 4. 3 
  
 / /  pr epar e f or  next  execut e 
 Tj . s t ar t _t i me = t i me( )  
 Tj . s t ar t _ener gy = ener gy( )  
 r et ur n( Tj ,  Cj )  

 

Figure 3 - Scheduler  skeleton 
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A new point pi is introduced into the pseudo-Pareto-optimal set P if it has a better time or 
power measure than every other point pj ∈ P. The newly added point pi will invalidate 
any existing point pj ∈ P if pj has an inferior time and power measures than pi. 
Invalidated points are removed from the set P. 

4.3 Configuration Selection Phase 

The configuration selection phase is based on the utilization rate of the processor. With 
smaller utilization rates, there is additional slack to change the current cache 
configuration to a lower energy at a higher execution time configuration. 

The utilization rate of the processor is calculated every time a task finishes execution, or 
whenever a task is added or removed to and from the system. At any moment, given that 
the tasks are sorted according to EDF, the utilization rate can be calculated as follows. 
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For the utilization calculation, the best case execution time (but not necessarily most 
energy efficient) of each task is used. Given this utilization rate, we calculate the target 
execution time for the next task Tj as shown below. 

util
timeexec

timeexectarget j
j

_
__ =  

Given the target execution time, our online algorithm selects the pseudo-Pareto 
configuration that has a time less (but closest) to the target time. 

Note that utilization rate of 1.0 means that there is no slack available, thus the fastest 
configuration must be used to meet the deadline. On the other extreme, a low utilization 
rate of 0.1 means that only 1/10 of the processing available is committed to task 
execution, and thus the system can shift to a much lower cache configuration, increasing 
the execution time and saving power. 

5 Experiments 
The target SOC platform used in our experiments is shown in Figure 4. The Platune 
simulator was modified for our experiments �[17]. Our platform included a MIPS 
processor with unified cache, main memory, and the associated buses. A timer peripheral 

 

 

 

 

 

 

Figure 4 - Target SOC Platform 

µP Unified $ 
Main 

Memory 

Timer 
Power 

Monitor 



 9 

was used by the scheduler for interval timing. Likewise, a hardware power monitor, 
based on models developed in Platune, was incorporated into the platform for task power 
measurements.  

For our platform, the reference configuration Cr was set to be a 8K byte, with a line size 
of 4 bytes, and a 2-way set associativity. The possible cache sizes ranged from 256 bytes 
to 8K bytes, in power of 2 increments. The possible line size ranged from 4 to 16 bytes in 
powers of 2 increments. Finally, the possible degree of associativity ranged from 1 to 4. 

An operating system scheduler was also implemented, so that (i) the real system could be 
tested and evaluated and (ii) the scheduling overhead could be taken into account. Our 
online algorithm was incorporated into this scheduler. 

For our experiments, we used typical embedded system tasks that are part of the 
PowerStone benchmark applications �[17]. These tasks included a Unix compression 
utility called compress, a CRC checksum algorithm called crc, an encryption algorithm 
called des, an engine controller called engine, an FIR filter called fir, a fax decoder called 
g3fax, a sorting algorithm called ucbqsort, an image rendering algorithm called blit, a 
POCSAG communication protocol called pocsag, and a JPEG decoder called jpeg. 

We did three sets of experiments, each set corresponding to one of high processor 
utilization, medium processor utilization, and low processor utilization. In other words, 
we selected a mix of tasks, from the Powerstone set of tasks, along with appropriate 
deadlines to result in a processor utilization of 90%, 50%, and 20%. 

Figure 5 depicts our results for the three different processor utilization experiments. In 
the figure, the steady line gives the power consumption of the overall system if 
configured to execute with the reference cache configuration. The varying plot depicts 
power consumption of the system, as a function of time, as it adapts using our approach. 

Note that during early stages, the power profile oscillates. This is due to the algorithm 
discovering the pseudo-Pareto-optimal points. During this time, we note that some 
deadlines are missed. For example, in the low processor utilization, the final power 
consumption (e.g., at 25 second marker) is higher than that corresponding to the earlier 
seen configurations (e.g., 5 second marker). However, that configuration is not used 
because of a deadline miss. 

Also, note that when the processor utilization is very high, most of the tasks need to run 
under the fastest configuration, which for us is the reference configuration, in order to 
meet the deadlines. In this case, there is as little as 1% opportunity for saving power. 
However, as the utilization goes down to medium and low, significant energy saving, 
namely 19% and 22% respectively, can be observed. We note that this is overall SOC 
platform power saving and not just the cache subsystem. 
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6 Conclusion 
We have proposed an online algorithm for dynamically reconfiguring the cache 
subsystem of a system-on-a-chip (SOC) platform to meet timing requirements while 
minimizing power consumption. Our online algorithm gradually constructs a set of 
pseudo-Pareto-optimal cache configurations for each task, which it then uses to determine 
a low power operating point meeting timing requirements. We have evaluated the quality 
of our algorithm by considering the overall energy saving of an SOC platform, including 
the time and energy overhead of the scheduler and our online algorithm, as well as the 
cache reconfiguration penalties. Our results show savings of approximately 20% in 
overall system energy usage. 
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