
 1

Adaptive Online Cache Reconfiguration for Low Power
Systems

Andre Costi Nacul and Tony Givargis

Department of Computer Science
University of California, Irvine

Center for Embedded Computer Systems
{ nacul, givargis} @ics.uci.edu

Technical Report #03-01
Apr il 23, 2003.

Abstract

Given a set of real-time tasks scheduled using earliest deadline first (EDF), we propose
an online algorithm for dynamically reconfiguring the cache subsystem of a system-on-a-
chip (SOC) platform to meet timing requirements while minimizing power consumption.
Our online algorithm gradually constructs a set of pseudo-Pareto-optimal cache
configurations for each task, which it then uses to determine a low power operating point
meeting timing requirements. We have evaluated the quality of our algorithm by
considering the overall energy saving of an SOC platform, including the time and energy
overhead of the scheduler and our online algorithm, as well as the cache reconfiguration
penalties. Our results show savings of approximately 20% in overall system energy usage.

Keywords

Adaptive caches, dynamic reconfiguration, low-power design, system-on-a-chip

 2

Table of Contents
1 INTRODUCTION ...3

2 RELATED WORK ..3

3 PROBLEM DESCRIPTION ..4

4 PROPOSED SOLUTION ...5

4.1 OVERVIEW ..5
4.2 THE PARETO DISCOVERY PHASE..7
4.3 CONFIGURATION SELECTION PHASE ...8

5 EXPERIMENTS..8

6 CONCLUSION ..10

REFERENCES..11

List of Figures
Figure 1 - Runtime behavior ..5
Figure 2 - The online algor ithm. ..6
Figure 3 - Scheduler skeleton ...7
Figure 4 - Target SOC Platform ..8
Figure 5 - Exper imental Results...10

 3

1 Introduction
Minimizing energy consumption of electronic devices has become a first class system
design concern �[1], especially, in the areas of embedded and portable devices, since such
devices draw their current from batteries that place a limited amount of energy at the
system’s disposal. On the other hand, in recent years, increased application demand for
functionality �[2]�[3], market pressures, and shortening of design cycles, have led to a new
system-on-a-chip (SOC) platform based design methodology �[4].

A platform is a computing system composed of artifacts such as general-purpose
processors, hierarchy of caches, on-chip main memory, I/O peripherals, co-processors,
and possibly FPGA fabric for post-fabrication customizations. These platforms are
generally targeted toward a large number of applications from a specific domain (e.g.,
networking or multimedia). To address the need for energy efficiency, the artifacts within
these SOC platforms are often designed to be dynamically configurable. Features such as
processor and memory power modes �[5]; dynamic voltage scaling �[6]; and run-time cache
reconfiguration (e.g., Motorola’s M*CORE �[7]�[8]) have been commercially introduced.
Dynamic reconfiguration of the platform provides an opportunity for operating system
(OS) and/or application tasks to carry out strategic high-level resource management and
achieve energy savings.

In this work, we propose an online algorithm for dynamically adapting the cache
subsystem to the workload requirements for the purposes of saving energy. The workload
is considered to be a set of tasks with real-time deadlines. Our online algorithm is
invoked as part of the OS scheduler, which performs standard earliest deadline first (EDF)
task scheduling first. Then, our online algorithm, determines an ideal cache configuration
for the current task that is to be executed.

In our experiments, we consider the overhead of the OS scheduler, our online algorithm,
as well as the cache reconfiguration time and energy penalties. Furthermore, we evaluate
the quality of our technique by measuring the global power savings (i.e., considering
processor, memories, and buses in addition to caches).

When invoked, our algorithm initially performs an incremental search of the cache
configuration space and updates a set of pseudo-Pareto-optimal points for the current task
to be executed. Subsequently, the pseudo-Pareto-optimal set is used to select a
configuration meeting the task deadline while minimizing power consumption.

The remainder of this paper is organized as follows. In Section 2, we outline related work.
In Section 3, we formulate the problem and state our assumptions. In Section 4, we
introduce our online algorithm. In Section 5, we present our experiments. In Section 6,
we give our concluding remarks.

2 Related Work
One similar approach that has gained popularity is dynamic voltage scaling (DVS), where
one can save energy with minor performance degradation by reducing the operating
supply voltage of the processor, or even of the whole system �[9]�[10]�[11]. The premise of
all DVS techniques is to achieve a steady/even processor speed while meeting all tasks
deadlines. This is often accomplished by appropriately scheduling tasks and selecting

 4

voltage settings that eliminate the slack. Our approach is completely complementary to
DVS. In our approach, we do not perform task scheduling. Instead, we assume an already
scheduled task set. The premise of our work is to tune the cache down to the working set
of each task that is to be executed, thus saving on cache power consumption. Our aim is
not to disturb the task timings. Thus, the advantage is the possibility of combining a DVS
scheduler with our approach for added benefit.

A great amount of previous work has shown that statically tuning the cache subsystem to
the running task can result in significant energy savings �[12]�[13]. For example,
Motorola’s recent version of an M*CORE processor IC has a configurable 4 way set
associative unified cache, in which each way can be disabled, or used for instructions,
data, or both. Malik et al. �[8] have shown that the best cache configuration depends
heavily on the particular running task. Likewise, Zhang et al. �[14] analysis shows that
having a dynamically configurable line size architecture can have a significant (up to
50%) energy saving potential in embedded systems.

Tang et al. �[15] have proposed an architectural scheme for dynamic cache line sizing.
Their approach is to introduce a hardware unit along with a memory and cache protocol
for fine grained tuning of the line size. In contrast, our approach is a software technique
that allows the OS to take charge of cache reconfiguration, taking into account a dynamic
workload and application requirements.

In a similar effort, Dropsho et al. �[16] have considered disabling cache ways (i.e.,
associativity) dynamically to achieve low power. They propose cache architectures
intended for dynamic reconfiguration. Further, they provide a hardware solution for
adaptivity. As with the previous technique, our approach is a software technique
performing adaptivity at the task and OS levels.

3 Problem Description
Our problem formulation is as follows. The system is composed of N tasks, T1, T2 … Tn.
Each task Ti has a deadline Di and a period Pi. To generalize the solution, a non periodic
or sporadic task Ti is assumed to have Pi = 0. Tasks are non-preemptive. One of the tasks
that are running on the platform is the scheduler Ts. Scheduler task Ts has no deadline and
no period, and is activated every time a task finishes execution to perform the context
switching. As stated previously, the scheduler selects the next task Tj to be executed
based on EDF. Then, our online algorithm, running as part of the scheduler, selects an
appropriate cache configuration that maintains the timing of the task Tj while saving as
much energy as possible.

The platform’s cache subsystem is assumed to have a finite number of possible
configurations C1, C2 … Cn. Each configuration Ci will be different than any other
configuration Cj by at least one of the configurable parameters: cache size, line size or
cache associativity. Among all valid configurations, one of them is the so-called
reference configuration Cr. The reference configuration is assumed to be the default
system configuration, or the configuration to be used if dynamic cache reconfiguration is
not used. For schedulability testing, we assume that the worse case execution time of
each task under the reference configuration is known ahead of time (e.g., obtained via
offline simulation).

 5

We assume a time penalty for cache reconfiguration. This penalty is for writing dirty data
back to memory. The time penalty is captured by a function PT(Ci,Cj) of the current
configuration Ci and the new configuration Cj. This function can be either hard coded
statically, or learned by our online algorithm during run time.

Figure 1 depicts the runtime behavior proposed here. Here, task Ti runs with cache
configuration Ci, while Tj with Cj. Between these two tasks, the scheduler Ts executes
with the same cache configuration of the last running task. Our algorithm runs as part of
the scheduler task Ts. Note that the time penalty PT(Ci,Cj) of cache reconfiguration is also
depicted in the figure1.

We note that being able to select the next cache configuration without any prior
knowledge of the currently running task is especially important, as we assume that the
work load is dynamic and not necessarily known during design time. The main advantage
of our algorithm is that it learns about task behavior under different cache configurations
in a dynamic setting.

We assume that there is a way to measure the power consumption of each task just
executed on the platform. We assume that this power consumption is inclusive of the
power penalty for cache reconfiguration. Checking the power consumption can be
accomplished by reading cache access counters and applying appropriate power models.
Alternatively, a platform may provide direct measurements of the power consumption of
its components.

We allow for some missed deadlines as the online algorithm is learning about the task
behavior under different cache configuration. This is a reasonable assumption for soft
real-time application where occasional lose of a deadline is not as critical as in a hard
real-time application. Despite this timing relaxation, soft real time applications (e.g.,
multimedia, videoconferencing, etc.) are very common in the embedded system
environment.

4 Proposed Solution

4.1 Overview

Dynamic cache reconfiguration poses a trade-off between power and performance.
Larger caches are supposed to reduce the number of misses, allowing a task to execute

1 The time line is not to scale.

Figure 1 - Runtime behavior
Time

Ti / Ci Ts / Ci PT(Ci,Cj) Tj / Cj … Ts / Cj PT(Cj,Ck)

 6

faster. On the other hand, the energy needed for a read or write in a bigger cache is larger
than in a smaller cache, leading to a higher energy consumption scenario.

This is clearly a multi-objective function: we want to minimize power while still meeting
a time constraint. In a multi-objective function, it is usually the case that one specific
solution is good for one objective, but not so good for the other ones. In the universe of
different configurations, we can identify some configurations that are better than all the
other ones for at least one of the performance criteria. These are the so-called Pareto-
optimal solutions.

However computing the exact set of Pareto-optimal configurations is a challenging
problem, as the configuration space is likely to be large. Instead, we aim at computing an
estimated Pareto-optimal set (i.e., a near-optimal set) which we refer to as the pseudo-
Pareto-optimal cache configurations. We dynamically discover the
pseudo-Pareto-optimal cache configurations, for each task, which are used to determine
the best cache configuration for low power.

Our online algorithm operates in two phases. The first phase of our online algorithm is
designed to discover the performance of each task under different cache configurations.
This is the Pareto-discovery phase. The second phase of our online algorithm is the cache
configuration selector.

Figure 2 depicts the parts of the task scheduler, which includes the two phases of our
online algorithm. Note that the execution of the two phases of our online algorithm is
interleaved and every time the scheduler is activated one iteration is completed for each
of phase.

A common task configuration database is shared between discovery and selection. The
database is build incrementally by the Pareto discovery algorithm, and is used to keep
information about the pseudo-Pareto-optimal configurations known so far. After a finite
number of iterations, the discovery process is considered finished and the database is
stable. The configuration selection algorithm consults the database in order to pick the
best cache configuration to be set for the current activation of the task.

Figure 2 - The online algor ithm.

EDF

Phase I: Pareto
discovery

Phase II: Cache
selector

Next task

Next $
config.

Task database
Scheduler

 7

The complete scheduler along with our online algorithm skeleton is given in Figure 3.

4.2 The Pareto Discovery Phase

The main objective of the Pareto discovery phase is to converge on to a reasonable
approximation of the actual Pareto-optimal set for each task.

The discovery procedure starts with the reference configuration as the only member of
the pseudo-Pareto-optimal set. Gradually, each of the cache size, line size, and
associativity parameter are varied, individually (i.e., one change per scheduler invocation)
in a greedy search process. Specifically, in a first stage, starting from the reference
configuration, the cache size parameter is changed until all possible settings have been
explored, or the task timings are affected beyond certain threshold. Then, in a similar
fashion, during second and third stages, the cache line and associativity parameters are
varied.

SCHEDULER:
 Input: cur r ent t ask and conf i g. (Ti , Ci)
 Output: next t ask and conf i g. (Tj , Cj)

 / / comput e del t a t i me and power
 dt i me = t i me() – Ti . s t ar t _t i me
 dpower = (ener gy() – Ti . s t ar t _ener gy) / dt i me

 / / i nt r oduce new Par et o poi nt s
 i s_par et o = t r ue
 f or each pk i n Ti . P
 i f (pk. t i me < dt i me && pk. power < dpower)
 i s_par et o = f al se
 i f (i s_par et o) {
 Ti . P = Ti . P ∪ { Ci }
 f or each pk i n Ti . P
 i f (pk. t i me > dt i me && pk. power > dpower)
 Ti . P = Ti . P – { pk }
 }

 / / per f or m st andar d schedul i ng
 Tj = EDF()

 / / expl or e or sel ect
 i f (need_t o_expl or e(Tj))
 Cj = di scover _par et o(Tj) / / Sect i on 4. 2
 el se
 Cj = pi ck_best _conf i g(Tj) / / Sect i on 4. 3

 / / pr epar e f or next execut e
 Tj . s t ar t _t i me = t i me()
 Tj . s t ar t _ener gy = ener gy()
 r et ur n(Tj , Cj)

Figure 3 - Scheduler skeleton

 8

A new point pi is introduced into the pseudo-Pareto-optimal set P if it has a better time or
power measure than every other point pj ∈ P. The newly added point pi will invalidate
any existing point pj ∈ P if pj has an inferior time and power measures than pi.
Invalidated points are removed from the set P.

4.3 Configuration Selection Phase

The configuration selection phase is based on the utilization rate of the processor. With
smaller utilization rates, there is additional slack to change the current cache
configuration to a lower energy at a higher execution time configuration.

The utilization rate of the processor is calculated every time a task finishes execution, or
whenever a task is added or removed to and from the system. At any moment, given that
the tasks are sorted according to EDF, the utilization rate can be calculated as follows.

��
�
�
�
�

�

�

��
�
�
�
�

�

�

−
=

�
=

∀ timecurrentdeadline

timeexec

util
i

i

j
j

i _

_

max 1

For the utilization calculation, the best case execution time (but not necessarily most
energy efficient) of each task is used. Given this utilization rate, we calculate the target
execution time for the next task Tj as shown below.

util
timeexec

timeexectarget j
j

_
__ =

Given the target execution time, our online algorithm selects the pseudo-Pareto
configuration that has a time less (but closest) to the target time.

Note that utilization rate of 1.0 means that there is no slack available, thus the fastest
configuration must be used to meet the deadline. On the other extreme, a low utilization
rate of 0.1 means that only 1/10 of the processing available is committed to task
execution, and thus the system can shift to a much lower cache configuration, increasing
the execution time and saving power.

5 Experiments
The target SOC platform used in our experiments is shown in Figure 4. The Platune
simulator was modified for our experiments �[17]. Our platform included a MIPS
processor with unified cache, main memory, and the associated buses. A timer peripheral

Figure 4 - Target SOC Platform

µP Unified $
Main

Memory

Timer
Power

Monitor

 9

was used by the scheduler for interval timing. Likewise, a hardware power monitor,
based on models developed in Platune, was incorporated into the platform for task power
measurements.

For our platform, the reference configuration Cr was set to be a 8K byte, with a line size
of 4 bytes, and a 2-way set associativity. The possible cache sizes ranged from 256 bytes
to 8K bytes, in power of 2 increments. The possible line size ranged from 4 to 16 bytes in
powers of 2 increments. Finally, the possible degree of associativity ranged from 1 to 4.

An operating system scheduler was also implemented, so that (i) the real system could be
tested and evaluated and (ii) the scheduling overhead could be taken into account. Our
online algorithm was incorporated into this scheduler.

For our experiments, we used typical embedded system tasks that are part of the
PowerStone benchmark applications �[17]. These tasks included a Unix compression
utility called compress, a CRC checksum algorithm called crc, an encryption algorithm
called des, an engine controller called engine, an FIR filter called fir, a fax decoder called
g3fax, a sorting algorithm called ucbqsort, an image rendering algorithm called blit, a
POCSAG communication protocol called pocsag, and a JPEG decoder called jpeg.

We did three sets of experiments, each set corresponding to one of high processor
utilization, medium processor utilization, and low processor utilization. In other words,
we selected a mix of tasks, from the Powerstone set of tasks, along with appropriate
deadlines to result in a processor utilization of 90%, 50%, and 20%.

Figure 5 depicts our results for the three different processor utilization experiments. In
the figure, the steady line gives the power consumption of the overall system if
configured to execute with the reference cache configuration. The varying plot depicts
power consumption of the system, as a function of time, as it adapts using our approach.

Note that during early stages, the power profile oscillates. This is due to the algorithm
discovering the pseudo-Pareto-optimal points. During this time, we note that some
deadlines are missed. For example, in the low processor utilization, the final power
consumption (e.g., at 25 second marker) is higher than that corresponding to the earlier
seen configurations (e.g., 5 second marker). However, that configuration is not used
because of a deadline miss.

Also, note that when the processor utilization is very high, most of the tasks need to run
under the fastest configuration, which for us is the reference configuration, in order to
meet the deadlines. In this case, there is as little as 1% opportunity for saving power.
However, as the utilization goes down to medium and low, significant energy saving,
namely 19% and 22% respectively, can be observed. We note that this is overall SOC
platform power saving and not just the cache subsystem.

 10

Load = 90%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00 3.70 7.10 10.52 14.27 17.66

Time (s)

P
o

w
er

 (W
)

Adaptive

Reference

Load = 50%

0

0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1

0.00 6.20 12.46 18.71

Time (s)

P
o

w
er

 (W
)

Adaptive

Reference

Load = 20%

0

0.2

0.4

0.6

0.8

1
1.2

1.4

1.6
1.8

2

0.00 4.55 9.75 14.81 19.67 24.56

Time (s)

P
o

w
er

 (W
)

Adaptive

Reference

Figure 5 - Exper imental Results

 11

6 Conclusion
We have proposed an online algorithm for dynamically reconfiguring the cache
subsystem of a system-on-a-chip (SOC) platform to meet timing requirements while
minimizing power consumption. Our online algorithm gradually constructs a set of
pseudo-Pareto-optimal cache configurations for each task, which it then uses to determine
a low power operating point meeting timing requirements. We have evaluated the quality
of our algorithm by considering the overall energy saving of an SOC platform, including
the time and energy overhead of the scheduler and our online algorithm, as well as the
cache reconfiguration penalties. Our results show savings of approximately 20% in
overall system energy usage.

References
[1] T. Mudge. Power: A First Class Architectural Design Constraint. IEEE Computer, vol.

34, no. 4, pp. 52-57, 2001.

[2] International Technology Roadmap for Semiconductors (ITRS), 2001.

[3] D. Wingard, R. Fordham, J. Ready, F. Romeo, A. de Oliveira. Embedded system
design: the real story, in Proceedings of the Design Automation Conference, 2001.

[4] F. Vahid, T. Givargis. The case for a configure-and-execute paradigm, in the
Proceedings of the International Workshop on Hardware/Software Codesign, 1999.

[5] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, M.J. Irwin.
Hardware and Software Techniques for Controlling DRAM Power Modes. IEEE
Transactions on Computers, vol. 50, no. 11, pp. 1154-1173, 2001.

[6] L. Geppert, T.S. Perry. Transmeta's magic show. IEEE Spectrum, vol. 37, no. 5, pp.
26-33, May 2000.

[7] Motorola M*CORE Product Page. http://www.motorola.com.

[8] A. Malik, B. Moyer, D. Cermak. A Lower Power Unified Cache Architecture
Providing Power and Performance Flexibility. International Symposium on Low
Power Electronics and Design, June 2000.

[9] T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Brodersen. A Dynamic Voltage Scaled
Microprocessor system. IEEE International Solid-State Circuits Conference,
November 2000.

[10] A. Rae, S. Parameswaran. Voltage Reduction of Application-Specific Heterogeneous
Multiprocessor Systems for Power Minimization. ASP-DAC, 2000, pp. 147-152.

[11] T. Pering, T. Burd, R. Brodersen. The simulation and evaluation of dynamic voltage
scaling algorithms. International Symposium on Low Power Electronics and Design.
Aug. 1998.

[12] P. Petrov, A. Orailoglu. Towards Effective Embedded Processors in Codesigns:
Customizable Partitioned Caches. International Workshop on Hardware/Software
Codesign, 2001.

[13] C. Su, A.M. Despain. Cache Design Trade-offs for Power and Performance
Optimization: A Case Study. International Symposium on Low Power Electronics
and Design, 1995.

 12

[14] C. Zhang, F. Vahid and W. Najjar. Energy Benefits of a Configurable Line Size
Cache for Embedded Systems. Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, 2003.

[15] W. Tang, A. Veidenbaum and R. Gupta. Architectural Adaptation for Power and
Performance. Proceedings of the International Conference on Supercomputing, pp
145-154, 1999.

[16] S. Dropsho, et al. Integrating Adaptive On-Chip Storage Structures for Reduced
Dynamic Power. Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, 2002.

[17] T. Givargis and F. Vahid. Platune: A Tuning Framework for System-on-a-chip
Platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, v21, n11, pp 1317-1327, 2002.

