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Abstract

Slowdown factors determine the extent of slowdown a computing system can experience based on
functional and performance requirements. Dynamic Voltage Scaling (DVS) of a processor based on
slowdown factors can lead to considerable energy savings. This paper describes computation of slow-
down factor for a task set with an underlying dynamic priority scheduler such as Earliest Deadline First
(EDF) scheduler. A constant slowdown equal to the processor utilization is optimal for periodic tasks
with deadline equal to period. The slowdown factors are non-trivial when the deadlines are not equal to
the task period. Thdensity[20] of the system can be used as a constant slowdown factor, however it is
not the optimal slowdown. We propose an algorithm to compute the optimal constant slowdown factor.
This algorithm has a worst case exponential time complexity and we present a pseudo polynomial time
algorithm to compute the constant slowdown factor that is close to the optimal. Different tasks having
different slowdown factors can be more energy efficient. We assume all instances of a task have the same
slowdown and call it theiniform slowdown factors. We formulate the problem as an optimization prob-
lem where the total system energy is to be minimized. We use the ellipsoid method[7] to compute uniform
static slowdown factors for the tasks. This technique extends to tasks with varying power characteristics
more precisely when the power consumption of a task is a convex [23] function. The simulation results
for our test examples show on an average 20% - 30% energy gains over the known slowdown techniques.
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1 Introduction

Power is one of the important metrics for optimization in the design and operation of embedded sys-
tems. There are two primary ways to reduce power consumption in embedded computing systems:
processor shutdown and processor slowdown. Slowdown using frequency and voltage scaling is more
effective than shutdown in reducing the power consumption. Scaling the frequency and voltage of a
processor leads to an increase in the execution time of a job. In real-time systems, we want to mini-
mize energy while adhering to the deadlines of the tasks. Power and deadlines are often contradictory
goals and we have to judiciously manage time and power to achieve our goal of minimizing energy.
DVS (Dynamic Voltage Scaling) techniques exploit the idle time of the processor to reduce the energy
consumption of a system. We deal with computing the voltage schedule for a periodic task set.

In this paper, we focus on the system level power management via computation of static slowdown
factors as opposed to dynamic slowdown factors computed at run time. We assume a real-time system
where the tasks run periodically in the system and have deadlines. These tasks are to be scheduled on a
single processor system based on a preemptive scheduling policy. Our work applies to dynamic priority
scheduling schemes and we consider the Earliest Deadline First (EDF) [20] [5] scheduling policy. Our
aim is to schedule the given task set and the processor speed such that all tasks meet their deadlines and
the energy consumption is minimized. We compute static slowdown factors for the tasks to minimize
the total energy consumption of the system.

Most of the earlier work deals with independent task sets. Shin et al. [29] have computed uniform
slowdown factors for an independent periodic task set. In this technique, rate monotonic analysis is
performed on the task set to compute a constant static slowdown factor for the processor. Gruian [9]
observed that performing more iterations gives better slowdown factors for the individual task types.
Yao, Demers and Shanker [31] presented an optimal off-line speed schedule for a\sgtbst The
time complexity of their algorithm i©(N?) and can be reduced @(N log’N) by the use of segment
trees [25]. The analysis and correctness of the algorithm is based on an underlying EDF scheduler,
which is an optimal scheduler [20]. An optimal schedule for tasks with different power consumption
characteristics is considered by Aydin, Melhem and Mod3. The same authors [2] prove that the
utilization factor is the optimal slowdown when the deadline is equal to the period. Quan and Hu [26]
[27] discuss off-line algorithms for the case of fixed priority scheduling. In our earlier work, we address
the problem of computing static slowdown factors in the presence of task synchronization. Both Rate
Monotonic Scheduling (RMS) [15] and EDF scheduling [14] have been addressed in this context.

Since the worst case execution time (WCET) of a task is not usually reached, there is dynamic slack
in the system. Pillai and Shin [24] recalculate the slowdown when a task finishes before its worst case
execution time. They use the dynamic slack while meeting the deadlines. Low-power scheduling using
slack reclamation heuristic is studied by Aydin et al. [2] and Kim et al. [17].

Scheduling of task graphs on multiple processors has also been considered. Luo and Jha [22] have
considered scheduling of periodic and aperiodic task graphs in a distributed system. Non-preemptive
scheduling of a task graph on a multi processor system is considered by Gruian and Kuchcinski [10].
Zhang et al. [32] have given a framework for task scheduling and voltage scheduling of dependent
tasks on a multi-processor system. They have formulated the voltage scheduling problem as an integer
programming problem. They prove the voltage scheduling problem for the continuous voltage case to
be polynomial time solvable.

Earlier work on computation of slowdown factors for the tasks deals with independent tasks where



the task deadline is equal to the period. The schedulability tests for independent tasks is given by Liu
and Layland [19]. We compute slowdown factors for the case when the task deadline is less than or
equal to its period. We present algorithms to compute constant slowdown factors and uniform slowdown
factors for the tasks. We use the ellipoid method to compute the soltions close to the optimum solution
under good performance guarantees. Our work extends to tasks with varing power characteristics, more
precisely all power characteristics that are convex [23] functions. We gain as much as 30% to 35%
energy savings over the known techniques.

The rest of the paper is organized as follows: Section 2 formulates the problem with motivating
examples. In Section 3 and 4, we present slowdown algorithms to minimize the energy consumption
under a dynamic priority scheduling policy such as EDF scheduling. The experimental results are given
in Section 5. Section 6 concludes the paper with future directions.

2 Preliminaries

In this section, we introduce the necessary notation and formulate the problem. We first describe the
system model followed by an example to motivate the problem.

2.1 System Model

A periodic task set oh periodic real time tasks is represented’as {11,...,Tn}. A 3-tuplet; =<
T, Dj, G > is used to represent each taskwhereT; is the period of the tasl; is the relative deadline
with D; < Tj, andG; is the WCET for the task, given it is the only task running in the system. All tasks
are assumed to be independent and preemptive.

The tasks are scheduled on a single processor which supports variable frequency and voltage levels.
Every frequency level has a power consumption value and is also referred to as power state of the
processor. Our aim is to schedule the given task set and the processor speed such that all tasks meet their
deadlines and the energy consumption is minimized. The processor speed can be varied to minimize
energy usage. Thg@owdown factocan be viewed as the normalized frequency. At a given instance, itis
the ratio of the scheduled frequency to the maximum frequency of the processor. We assume the speed
of the processor can be varied over a continuous range. If the processor speed is a constant value over
the entire time interval, it is called@nstant slowdownThe execution time of a job is proportional to
the processor speed. The goal is to minimize the energy consumption while meeting deadlines. In this
paper, we ignore the time and energy overhead incurred in changing the frequency and voltage of the
processor.

Each invocation of the task is callegad and thek! invocation of task; is denoted asi k. Ajob Jis
represented by a 3-tuple ay, dy, & > wherea is the arrival time of the joldk is the absolute deadline
of the job withdy > ax andey is the maximum number of cycles (WCET) required by the job. The time
interval[ay, di] is referred to as thpb intervalande is the weight of the interval. Thieyper-periodof
a periodic task set is defined as the least common multiple (Icm) of the periods of all the tasks.

We list the definitions and terms used in the rest of the paper.uliligation factorfor a taskt; is
defined as; = C/Ti. The processor utilizatiofU ) for a task set is the sum of the utilization factors for
each taskU = 3! ; uj < 1is a necessary condition for the feasibility of any schedule [20]nLbe the
slowdown factor associated with tagk The utilization of a task under slowdown is defined analogously
asU =3y, %%‘ Thedensity of a tasks defined as the ratio of the execution ti@gto the minimum of
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period and deadlinglensityt;) = %'. Thedensity of the system defined as the sum of the density of
each task in the system. Itis denoted/by 51! ; densityti). The phasep for a periodic tasKj is the
release time of thérst instance (jolx; 1) of the task. A set of tasks are said to be in phase if they have
the same phase. Such a system is referred tosga@hronougask system. We deal with synchronous
systems in this paper.

Assuming all jobs are represented by their job intervals along the time line we define the following.

e Intensity of an interval: The intensity of an intervdl= [z Z] denoted byy(l) is defined [31] as

2 k&
|) = &= 1
9l)=2—, 1)
where the sum is over all job intervalswith [ax, bx] C [z,Z] i.e. all jobs with their intervals lying
completely within[z Z].
g(l) is a lower bound on the average processing speed in the intdsyalny feasible schedule.

e Critical Interval : The intervall* that maximizeg(| ) is called thecritical interval for the job set
J. The set of jobg;+ = {k|[ax, bx] C I*} is called thecritical job set

Any time interval is represented by an ordered faib) and it is always true thdi > a.
2.2 Variable Speed Processors

A wide range of processors like the Intel StrongARM processors [11], Intel XScale [12], Transmeta
Crusoe [30] support variable voltage and frequency levels. Voltage and frequency levels are tightly cou-
pled. When we change the speed of a processor we change its operating frequency. We proportionately
change the voltage to a value which is supported at that operating frequency. The important point to
note is when we perform a slowdown we change both the frequency and voltage of the processor. We
use the terms slowdown state and power state interchangeably. We assume that the frequency can be
varied continuously fronfmi, to the maximum supported frequentyax. We normalize the speed to
the maximum speed to have a continuous operating rangg.f 1], wherenmin = fmin/ fmax

2.3 Motivating example
Consider a simple real time system with 2 periodic tasks having the following parameters :
T1= {27 27 1}7T2: {57 37 1} (2)

The task set is shown in Figure 1(a). The jobs for each task are shown at their arrival time with their
WCET at full speed. We have explicitly shown the deadlines where the deadline is different from the
period. The jobs are to be scheduled on a single processor by an EDF scheduler. The task set is feasible
at full speed under EDF scheduling . For the above example the system d&asity/2+1/3) = 0.83.

A constant slowdown of = 0.83 increases the system density to 1. If the system density is less than or
equal to 1, the system is feasible. We show that the processor utilization cannot be used as a slowdown
factor. The processor utilizatidu for this task set i$1/2+ 1/5) = 0.7. If the processor utilizatiob

is used as a slowdown factgop J, » misses its deadline. This is shown in Figure 1(b). Three units of
work has to be done in first 4 time units. At a slowdown of,0t requires 30.7 = 4.285 time units and
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Figure 1. Motivation for Optimal Static slowdown techniques (a) Task arrival times and deadlines. (b) Slosreo@r70,

taskT1 2 misses deadline. (c) Optimal Constant Slowd@va 0.75.

one task misses its deadline. It is clear that the utilization cannot be used as a slowdown factor. Note
that there are three jobs of unit workload to be finished within the intéévd) . So a lower bound on
the constant slowdown factor ig8= 0.75. A schedule with a constant slowdownscf 0.75 is shown
in part (c). This is th@ptimal constanslowdown. A constant slowdown lower than 0.75 will result in a
deadline miss.

It is seen that the utilization of tagk is higher than that of tasik. Executing the task; at a lower
speed will save energy. If we increase the speeth@nd lower the speed af by a small amount
such that the system is feasible, we will execute at a lower speed for a longer time and save energy.
A constant slowdown need not be optimal when the task deadline is less than the period. Assigning
different slowdown factors to tasks can be more energy efficient. This property is more evident when
the tasks have different power characteristics.

3 Constant Static Slowdown

We consider EDF scheduling on a uniprocessor system where the task deadlines can be less than
the period(D; < Ti). In this section, we present algorithms to compute the constant slowdown factor.
There is an tiem and energy overhead associated with changing power states and a constant slowdown
is preferred as it eliminates this overhead. A constant slowdown is a desired feature if the resource does
not support run time change in the operating speed. Algorithms [3] exist to check the feasibility of a
task set. Given a feasible task set at maximum speed, our work deals with computing static slowdown
factors to minimize the total energy consumption of the system.

3.1 Density slowdown

For the cas® < p, no known algorithm can efficiently (in polynomial time) check the feasibility of
a task set. A task set is schedulable [20] if tensityof the systemA <1 . If A< 1, we set the



slowdown factom = A, else QA > 1) we let the processor run at full speggi=1). Given a feasible
system, a constant slowdownmpf= min(A, 1) guarantees feasibility of the system. We call this constant
slowdown as thelensity slowdown

3.2 Optimal constant slowdown factors

The density slowdown is not optimal and we present an algorithm to compute the optimal constant
slowdown factor for a periodic task set.

Theorem 1 The maximum intensity over all intern@l t], 0 <t < H, where H is the hyperperiod of the

task set, is the optimal constant slowdown factor for a task set.

For a synchronous task system [3], the intensity of the intdtyap] is less than the intensity of the
interval [0, (t2 —t1)]. Thus it suffices to compute the intensity of the intenj@ld] to compute the
maximum intensity interval. Since the task set repeats every hyperperiod, the maximum intensity interval
up to the hyperperiod, is the maximum intensity interval. Theorem 1 gives an algorithm to compute the
optimal constant slowdown for periodic tasks. This gives an exponential time algorithm to compute
the maximum intensity which is the optimal constant slowdown for a task set. The intensity function
increases only at discrete point represented by th8=s€t(j ) = kT + Dili = 1,...,n;k> 0} It sufficies

to check the intensity of the intervdl3 t] s.t.t € S

3.3 Bisection method

Computing the optimal constant slowdown can take exponential time in the worst case. However,
the feasibility of a task set can be tested in pseudo polynomial time provided the processor utilization,
U < 1. The algorithm is given by Baruah et al. [3].

Theorem 2 [3] : The task set is feasible if the intensity of all intervést], t < tmax= 15 {maxTi —
Di)}, is less than or equal to 1. Thus the feasibility problem for synchronous systems on one processor
is solvable in time Q25 {maxT; — Di)}).

The algorithm works when the utilization of the system is strictly less than 1. In their result, the
system utilizatiod is considered as a system constafiit— D;) need not be polynomial in the problem
size and Theorem 2 gives a pseudo polynomial time algorithm to check the feasibility of a task set. The
algorithm only checks for the feasibility and does not compute the maximum intensity for the task set.
We are interested in computing the maximum intensity interval. An inté@vglwheret > tnaxcan be
the maximum intensity interval. So the algorithm by Baruah et al. [3] cannot be used to compute the
constant slowdown factor for the system. We use the result to compute the constant slowdown factor.
The time valudmaxdepends on the system utilization and it is proportioan@. As we slowdown
the system, the utilization of the system increases. As the utilization approachgsténds to infinity.
Thus in the worst case, we have to check all intervals up to the hyperperiod of the task set, which requires
exponential time. We present a pseudo polynomial time approximation algorithm with an additional
constraint on the processor utilization.



3.3.1 Bisection Algorithm

Let U be the processor utilization at a slowdownrpffor taskt;. We impose an additional constraint
on the utilizationU < 1—g,. Sinceg, is a constant, it boundg,ax to sgl{ma>(Ti —Di)}. We use the
pseudo polynomial time algorithm given by Baruah et al. [3] to test the feasibility of the system.

We perform a binary search on the constant slowdown factorUkdie the processor utilization at
no slowdown. At a slowdown aff = Uy, the processor utilization is 1 and this is the lower bound on
the constant slowdown factor. However, we impose an additional constraint on the processor utilization,
U <1-¢g,. Letn; > Uy be the constant slowdown when the utilization is €. With the constraint on
the utilization,n, is a lower bound on the constant slowdown factoiA is the density of the system,
the upper bound on the constant slowdown,js= min(A,1). We perform a binary search in the range
[N1,Nu] to compute the optimal constant slowdown in this range. We call this algorithiigketion
method

In this bisection method, we first compute the upper and lower bogndsdn, respectively. We
check for the feasibility of the system at a slowdowmef= hznu If the system is feasible, we update
the upper bound tgm, Nu = Nm. If the system is infeasible, we update the lower boung{on; = Nm.

This completes one iteration. We compute a ngwin each iteration. The number of iterations is
polynomial in the binary representation 9f The feasibility of the system at a slowdown factor of
Nm is checked by the algorithm given by Theorem 2. Since we bound the processor utilizatias,
proportional tomax D; — T;) and we have a pseudo polynomial time algorithm.

Let n be the solution returned by the bisection algorithm. If the utilization &t 1— €, then its an
approximate solution. Otherwise, we have the optimum solution to the problem in pseudo polynomial
time, an exponential improvement over the optimal constant slowdown. An important point about this
approximation algorithm is that we can efficiently check whether the solution computed by the algorithm
is the optimal solution.

4 Uniform Slowdown Factors

Constant slowdown factors are not always energy efficient, and we compute uniform slowdown factors
for the tasks. Different tasks can have different slowdown factors, however all instances of a task have
the same slowdown factor and we call it tilneiform slowdown factor

4.1 Power Delay Characteristics

The number of cycle<;; that a tasktj needs to complete is a constant during Voltage Scaling. The
processor cycle time, the task delay and the dynamic power consumption of a task vary with the supply
voltageVpp.

Pawitching= Ce f Vi3p f (3)
Cycle Timea s =k 0 (4)
f (Vbp — VrH)“
wherek is a device related parametéf; is the threshold voltageCe+ is the effective switching
capacitance per cycle awndranges from 2 to 2 depending on the device technology.

We normalize the operating voltaiyep to the maximum operation voltagéyax, supported by the

processor. LeYyq represent the task voltage normalized/tgnx. The normalized cycle tim€T, the

6



normalized task delagi and the normalized task enerByqy as a function of the normalized voltaygy
is represented as:

Ei(Vad) = Vg~ G )

CT(Vag) = Vgl h_ya (6)
Vdd —Mn

di(Vaa) = Ci - CT(Vua) (7)

whereVy, is the normalized threshold voltage.
4.2 Optimization Problem

We formulate the energy minimization problem as an optimization problemv EeR" be a vector
representing the voltagd$ of task1;. The optimization problem is to compute the optimal vector
v* € R" such that the system is feasible and the total energy consumption of the system is minimized.
The energy consumed by taskat voltageV, is given by Equation 5. Since the task set repeats every
hyperperiod, we minimize the energy consumption up to the hyperpéticaf,the task set. La¥, = %
be the number of instances of taskip to the hyperperiod of the task set. The total energy consumption
of the system up to the hyperperiod is given by Equation 8. The total enérgy,a function of the
voltage vectory € R". The optimization problemis :

minimize : .
2
E(v) = 3 N-W-G (8)
under the constraints :
Vmin<Vi <1 9)
et S (2 1 au) <t (10)
i; Ti B

Equation 9 constraints the normalized volt&gef each task. The operating voltage range is between
the normalized minimum voltagéni, and the normalized maximum voltaygax= 1. The constraint
C! given by Equation 10 specifies that the work load in the intej@d] be less that or equal tg
which means the intensity of intervil, t] be less than or equal to 1. Equation 10 must be true for all
t, 0 <t < H, whereH is the hyperperiod of the task set. The intensity of an interval depends on the
number of task instances in the interval. The number of instances ofjtasthe interval[0,t] is given
asoi(t) = (L%j +1). The cycle time at voltag¥ is given in Equation 6. Sindd can be exponential
in the problem size, the constraint set can be exponential in the problem size.

4.3 Varying Number of Constraints

The Constraint€!, 0 < t < H guarantee the feasible of the task set at vegtddowever we need
not check all the constraints to test the feasibility of a veetoBaruah et al. [3] have given a pseudo
polynomial time algorithm to check the feasibility of a task system when the utilization is less than 1.
They prove that checking the constraiGts0 < t < tmax= %{max('l’i —Di)}, guarantee the feasibility
of the task set. They consider the utilizatidnas a system constant. HoweWgris a function of the



vectorv and not a constant under voltage scaling. \LetR" be the vector representing the voltages for
each task. The utilization of the system with the task voltages represented byw&&tos as given as:

n
Uy = zl— CT(V) (11)
ST

The utilization of the system increases as we lower the task voltages. The number of constraints to
check the feasibility of a vector are not constant. For each vectoR", the number of constraints is
proportional to1 . If we use a convex programming solver [6], we have to explicitly enumerate all
the constraints in the system. All the constraints are checked to decide the feasibility of a vector. Even
at low processor utilization, we check all constraints. This leads to checking redundant constraints in the
system. The ellipsoid method is better suited for problems of this nature. In the ellipsoid method, the
constraints are not specified explicitly. We need a subroutine which checks the feasibility of awector
and if itis in infeasible, generate a hyperplane that separates the feasible space and tlve vector

4.4 Ellipsoid Method

The ellipsoid method is well suited for our optimization problem and we use the ellipsoid method to
compute aclose-to-optimunsolution with some performance guarantees. We explain the terms used
in the the rest of the paper. The exact definitions are given in [8] [7}veak optimization problem
is to compute a solution that is close-to-optimum under specified performance guarantexaclén
polynomial time algorithnis an algorithm that calls an oracle algorithm a polynomial number of times.
A weak separation oracles an algorithm that decides if a vector is in the feasible space and if not,
it generates a hyperplane that approximatly separates the feasible space from the vector with some
specified performance guarantees.

We state the theorem which solves the weak optimization problem given that we can solve the weak
separation problem.

Theorem 3 [8] There exists an oracle-polynomial time algorithm that solves the weak optimization
problem for every circumscribed convex bad, n,R) given by a weak separation oracle.(i;n,R)

represents a convex body&R" and is contained in a sphere with center as the origin and radius R.)

The result applies to optimizing convex functions whose gradients can be computed [8]. The theorem
tells the existence of an algorithm that makes a polynomial number of calls to the separation oracle
(separation algorithm) to compute a close-to-optimum solution. bEse& ellipsoid methof7] is used

to solve the optimization problem using the separation algorithm. We now explain the ellipsoid method.

4.4.1 Geometric Interpretation of Ellipsoid Method

We explain the geometry behind the ellipsoid algorithm. We start with a ellipsoid (convex body) con-

taining the feasible space and the optimization function. We check for the feasibility of the center of
the ellipsoid. If it is not feasible, the separation oracle returns a separating hypeipltra, cuts the

the ellipsoid into two halves. We select the half containing the feasible space and include it in a new
ellipsoid. If the center of the ellipsoid is feasible, we compute the gradient of the optimization function

8



at the center. This gradient hyperplane splits the ellipsoid into two halves, one containing the optimal
solution. By the property of convex functions, we can identify the non-optimal half. We cut the half
of the ellipsoid which does not contain the optimal solution. We include the optimal half into a new
ellipsoid. In each iteration, the volume of the ellipsoid decreases by a fixed ratio inversely proportional
to n. After a polynomial number of steps the volume of the ellipsoid is very small are we have a solution
close-to-optimal solution.

4.4.2 Convex Minimization

We show that computing the voltages that minimizes the energy function is a convex minimization [8]
problem. Each constraiif is a convex function of voltages [13]. Since the intersection of convex bodies

is convex, the feasible space is a convex body. The optimization function is also convex. The proofs are
given in [13]. Thus we have to minimize a convex function over a convex body. The feasible space is
enclosed in the sphere of radMgax The optimization functioik is differentiable and by Theorem 3 we
compute a weak optimum solution in polynomial number of calls to the separation algorithm (separation
oracle). We use the ellipsoid algorithm [7] to compute the weak optimum.

4.4.3 Separation algorithm

The algorithm to check the feasibility of a task set at a task deldyfof taskT; is given by Baruah et al.
[3]. The running time of the algorithm is given by Theorem 2 and depends on the processor utilization.
The result holds when the processor utilization is less than 1. The processor utilization increases as we
decrease the voltage. As the utilization approachészk.approaches infinity. Thus we may have to
check all intervals up to the hyperperiod, leading to worst case exponential time. To bound the running
time of the feasibility test, we constraint the utilization to be less thargl

If a constrainCt is violated for vectou, then the hyperplangC'i(u)(v— u) satisfy the property of the
separating hyperplane [23]! is differentiable and the separating hyperplane is computed by evaluating
the derivative ofC! at vectoru. This gives a pseudo polynomial time separation oracle. If we do not
bound the processor utilization, we may have to test the feasibility when the utilization is close to 1.
This computation can take exponential time. Even if the optimum system utilization is not close to 1,
we may have to check the feasibility of vectors where the utilization is close to 1.

4.5 Tasks with Different Power Characteristics

The nature of the tasks in a system vary and tasks have different power characteristics [1]. For exam-
ple, audio and video application tasks have very different power consumption characteristics. We must
consider the task power characteristics to minimize the energy consumption of a system. The constant
slowdown techniques compute the slowdown factors based purely on the timing requirements. The slack
is uniformly divided among all tasks to lower the energy consumption. The slack can be efficient utilized
to further reduce the energy consumption.

The constant slowdown techniques cannot be extended to incorporate tasks with different power char-
acteristics. The ellipsoid method can easily incorporate the power characteristics of the tasks. The total
energy functiork, given by Equation 8, can be modified to reflect the total energy consumption. Since



the ellipsoid method assumes a convex differentiable function to be minimized, power characteristics of
this nature can be handled by the ellipsoid method.

5 Experimental Results

We used the following three application sets for our experiments: Avionics task set [21], INS (Inertial
Navigation Control) task set [4] and CNC(Computer numerical control) task set [16]. These task sets are
also used in [18] [28]. Since we consider the cAse€ p, we have generated new task sets by decreasing
the deadlines of the original task sets. Almost all the tasks in the examples have their deadlines equal to
the period. We have obtained new examples by decreasing the deadline as a percentage of the original
deadline. In the new examples, the new deadlines are set to 100%, 95%, 90%, 85%, 80% & 75% of
the original deadline. We compute the energy consumption of the system for a time period equal to the
hyper-period of the task set.

The energy and delay characteristics are given by Equations 3 and 4. Recent processors [11], [12]
have low operating voltages. We have used an operating voltage ran@¥ adrd 18V. The threshold
voltage is assumed to be@Y anda = 1.5. We compare the energy consumption for the following
techniques:

¢ Density Slowdown
¢ Optimal Constant Slowdown (OptConst)
¢ Slowdown by Bisection Method

¢ Slowdown by Ellipsoid Method

5.1 Uniform Power Characteristics

When the tasks have a uniform power characteristic, the power consumption of a task depends only
on the operating voltage. The density slowdown factor is easy to compute. However, it is not energy effi-
cient and has the maximum energy consumption. We compare the energy consumption of the slowdown
techniques to that of the density slowdown method. For each example, the percentage energy gains over
the density slowdown method are shown in Figure 2. The workload for each task is its worst case execu-
tion time. It is seen from the graphs that the the Optimal constant, Bisection and the Ellipsoid methods
have comparable energy gains under uniform power characteristics. The optimal constant slowdown and
the ellipsoid method, each perform better in some cases. The bisection method is an approximation of
the optimal constant slowdown and has comparative lower energy gains.

The computation times for the three techniques are shown in Table 1. We conducted the experiments
on a Sun Ultra 5 work station running SunOS. The computation for the density slowdown is negligi-
ble and not shown in the table. Though the optimal constant slowdown has a worst case exponential
complexity, the hyperperiod is not exponential and it requires the least time. Since the bisection method
checks the feasibility of a task set at many points, it takes more time to compute the result. The ellipsoid
method requires the maximum amount of time. The computation time is three orders magnitude com-
pared to that of the optimal constant slowdown. Each iteration of the ellipsoid method requires matrix
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Figure 2. Percentage Energy savings of the slowdown techniques over the density slowdown algorithm for the three task sets:

(a) Avionics task set (b) CNC task set (c) INS task set

computations. We performs matrix multiplication and matrix transpose operations to compute the new

ellipsoid and its center. Each iteration is expensive and results in a large computation time. The size
of the matrix depends on the number of tasks in the system. As the number of tasks increase, matrix
operations require more time. The Avionics task set has the maximum number of tasks and results in the
maximum computation time as seen from Table 1. Since the computations are performed off-line, we

justify a larger computation time for the energy gains.

5.2 Different Power Characteristics
Due to the diverse nature of the tasks in a system, tasks can have distinct power characteristics. Scenar-

ios where tasks have different power characteristics are given in [1]. We compare the energy efficiency
of the techniques for tasks with different power characteristics. Only the ellipsoid method considers
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Table 1. Computation time for the slowdown methods at 100% task deadline

Example| Ellipsoid | Optimal Constant Bisection
Avionics | 20.6 sec 0.02 sec 0.16 sec
CNC 1.59 sec 0.004 sec 0.01 sec
INS 2.6 sec 0.02 sec 0.22 sec

the power characteristics in the computation of slowdown factors. The weak optimal solution can be
computed for all convex differential power characteristics. For experimental results we redineato
power characteristics. We consider the following two distributions similar to that by Aydin et. al [1].

¢ Uniform Distribution , where the coefficients of the power function coefficients of the tasks are
uniformly distributed between 1 ard In our experiments € [1, §].

¢ Bimodal Distribution , represents the case where there are two types of tasks in the system, one
with low power function coefficient and the other with high power function coefficient. Task sets
are created with 60% of the tasks having power function coefficients of 1, and the remaining 40%
tasks having a high power function coefficidatWe varyk in the rang€1, 8] for experimental
results.

Energy gains of the Ellipsoid Method
over the optimal constant slowdown

- (Bimodal Distribution)

—100% D
—95%D
90% D
85%D
—80%D
—75%D

N
o

-
(9]

-
o

% Energy gains

/

[¢)]

o

2 3 4 5 6 7 8
Variation of k, the power function
coefficient

Figure 3. Percentage gains of the ellipsoid algorithm over the optimal constant slowdown for the CNC task set

We compare the energy consumption of the ellipsoid method to that of the optimal constant slowdown.
We consider the CNC task set to compare the energy consumption. Figure 3 shows the percentage gains
for the bimodal distribution. It is seen that the energy gains increases with the increases in the power
function coefficientk. The ellipsoid method takes into account the power characteristics and hence
results in more energy efficient slowdown factors. The energy gains increase as the deadline decreases.
With the decrease in deadline, the feasible space becomes smaller. Moreover, tasks having different
slowdown factors exploit the slack time to a greater extent. So a constant slowdown is not as energy
efficient as the uniform slowdown. The diffence is small for the bimodal case.
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Figure 4. Percentage gains of the ellipsoid algorithm over the optimal constant slowdown for the CNC task set

We use the CNC task set to compare the energy gains for the uniform distribution. Figure 4 shows the
energy gains over the optimal constant slowdown for a uniform distribution. The energy gains increase
with the power function coefficierk. The ellipsoid method is energy efficient because the slowdown
factors depend on the power function coefficienit is seen from Figure 4 that as the deadline decreases
the energy gains are significantly larger.

6 Conclusions and Future Work

We present algorithms to compute static slowdown factor under EDF scheduling for a periodic task set.
In this paper, we consider the case where the task deadlines are less than the task period. Experimental
results show that the computed slowdown factors save on an average 20%-25% energy over the known
techniques. The algorithms have the same time complexity as the algorithm to check the feasibility of
the task set. We use the ellipsoid method to compute static slowdown factors that are close to the optimal
solution. The energy gains are significantly greater when the tasks have different power characteristics.
We gain as much as 20% more energy savings over the optimal constant slowdown. The techniques are
energy efficient and can be easily implemented in an RTOS. This will have a great impact on the energy
utilization of portable and battery operated devices.

As technology is improving, the leakage power dissipation will be a significant part of the power
consumption of the system. We plan to consider the effects of leakage current in our power model. As
a future work, we plan to compute the slowdown factors when the processor supports discrete voltage
levels. We plan on implementing the techniques in an RTOS such as eCos and measuring the power
consumed on a real processor.
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A Appendix
A.1 Convex Minimization Problem
We prove that the in the minimization problem given by Equations 8, 9 and 10 is a convex minimiza-

tion problem. We use the following result of convex functions :

e If Bis a constant witf8 > 1 or 3 < 0 then a function ovex, x® is convex [23].
e The sum of two convex functions is convex [23].

e Given a convex functiorf(x) and a positive constanfc- f(x) is a convex [23].

We want to minimize the total system eneifgv). It is a function of the task voltagé and is given
by :

E(v) = i:iNi V2.G

wherev is a vector inR" representing the voltage values of thasks in the system.

By the above resulty/? is convex. The functioM; - Vi2-C;, is convex sincé\; andC; are constants.
The energy functioiE(v) is the sum oh convex functions and hence convex. This proves the convexity
of functionE(v)

We now prove that each constra@itis convex. Each constrai@f is represented as :

' 3 (152 1) d(v) <t

If the functiond;(V;) is convex, then the constrai@t is the sum of convex functions and hence convex.
We now prove thati(V;) is convex.

1 _\/th )a

Vi —Vin

di(Vi) = Gi-Vi(

SinceG;, Vi anda are constants, we need to prove convexityviej@tw. SinceV; > V;h, we can shift
the origin toV;, to have,

Vi +Vin
=V o Vi Vi

Sincea > 1, (1—a) and(—a) are negative and'~% andV,~® are convex. Thusj(Vi), a sum of
convex functions is convex. This proves that all the constraints are convex in nature. The intersection of
convex constraints results in a convex body. This proves that the feasible space is a convex body and the
function to minimize is convex to have a convex minimization problem.

A.2 Example Task Sets

The examples used in the experiments are given below. We give the examples with their original
deadlines and show how we generate new examples with smaller deadlines.
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A.2.1 Original Periodic task set examples

These are periodic task sets and the periods, deadlines and WCETSs are specified.

INS (Inertial Navigation Control) task set
Period Deadline WCET

2500 2500 1180

40000 40000 4280

625000 625000 10280

1000000 1000000 20280

1000000 1000000 100280

1250000 1250000 25000

CNC(Computer Numerical Control) task set
Period Deadline WCET

2400 2400 35

2400 2400 40

2400 2400 165

2400 2400 165

9600 4000 570

7800 4000 570

4800 4800 180

4800 4800 720

Avionics task set

18



Period Deadline WCET
200000 5000 3000
25000 25000 2000
25000 25000 5000
40000 40000 1000
50000 50000 3000
50000 50000 5000
59000* 59000* 8000
80000 80000 9000
80000 80000 2000
100000 100000 5000
200000 200000 1000
200000 200000 3000
200000 200000 1000
200000 200000 1000
200000 200000 3000
1000000 1000000 1000
1000000 1000000 1000

+ Slight modification in Avionics example
Note : In the avionics task set there is a task with period 59000. This causes the hyperperiod of the task
set to be very large and the number of jobs to be considered increases drastically. We tried to compute
the optimal slowdown factors with no modification. However the process did not complete till a few
days. So we decreased the period of that task. This will ensure the correctness of the slowdown factors
and we compute the optimal slowdown factors for the modified task set. We set the new period and
deadline for that particular task to 50000. The WCET is left unchanged. We ran the experiments with
this modification.

A.2.2 Decreasing the Deadline

For each of the examples above, we generate examples where the tasks have deadlines less than the
period. The deadlines are varied as 100% 95% 90% 85% 80% 75% of the original deadline. For example,
when the deadlines are decreased to 95% of the original deadline, the new deadlines are computed as
Dnew= 0.95% Dorig, WhereDnewandDorig are the new and original deadlines for the task respectively.
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