
Mapping Loops on Coarse-Grain Reconfigurable Architectures
Using Memory Operation Sharing

Jong-eun Lee
jelee@poppy.snu.ac.kr

Kiyoung Choi
kchoi@azalea.snu.ac.kr

Nikil Dutt
dutt@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES)
Center for Embedded Computer Systems, University of California, Irvine, CA 92697

Technical Report #02-34
Center for Embedded Computer Systems

University of California, Irvine, CA 92697, USA

September 2002

Abstract
Recently many coarse-grain reconfigurable architectures have emerged as programmable co-

processors, considerably relieving the burden of the main processors in many multimedia applica-
tions. While their very high degree of parallelism enables high performance in compute-intensive
loops, their shared memory interface between several processing elements often becomes a bottle-
neck in many multimedia and DSP applications. In this report we present a technique that ame-
liorates this memory bottleneck through the sharing of different loop iteration executions using a
novel organization of the loop pipeline. We develop the conditions for sharing memory operations
on a generic reconfigurable architecture template and propose a heuristic method to generate the
pipelines accordingly within a general mapping flow. Experimental results using our technique on
a typical coarse-grain reconfigurable architecture show improvement of up to 3 times.

Contents

1 Introduction 4

2 Related Work 5

3 Generic Reconfigurable Architecture Template 6
3.1 Review of the MorphoSys architecture 6
3.2 Review of the REMARC architecture 7
3.3 Generic reconfigurable architecture template .. 8

3.3.1 PE microarchitecture . .. 9
3.3.2 Line architecture 9
3.3.3 Reconfigurable plane architecture . .. 10

4 Pipelined Mapping of Loops 10
4.1 Loop pipelining . 11
4.2 Mapping flow . 13

4.2.1 PE-level mapping . 13
4.2.2 Line-level mapping . 14
4.2.3 Plane-level mapping . 16

5 Memory Operation Sharing 16
5.1 Motivational example . 16
5.2 Memory operation sharing . 17

5.2.1 Conditions for memory operation sharing 18
5.2.2 Handling the conditions in the mapping flow 18

5.3 Placement heuristic. 19

6 Experiments 21

7 Conclusion 23

8 Acknowledgements 23

2

List of Figures

1 MorphoSys architecture [1]. . .. 6
2 REMARC architecture [2]. 8
3 DRAA: Generic reconfigurable architecture template. 9
4 A pipeline bigger than plane’s physical dimension. 12
5 Three major steps in the mapping flow. 13
6 An example loop. .. 13
7 PE-level mapping. 13
8 Line-level mapping. 14
9 Sliding cut algorithm. 14
10 Plane-level mapping. 15
11 FIR example. 17
12 An optimal placement for the FIR example. .. 17
13 Identifying and replacing a subtree. 19
14 Placement heuristic for memory operation sharing. 19
15 Four paths joining at three join nodes. 20

List of Tables

1 An example reconfigurable architecture 10
2 The loops used in the experiments 21
3 Comparison of mapping results . 22

3

Abstract
Recently many coarse-grain reconfigurable architectures have emerged as programmable co-

processors, considerably relieving the burden of the main processors in many multimedia applica-
tions. While their very high degree of parallelism enables high performance in compute-intensive
loops, their shared memory interface between several processing elements often becomes a bottle-
neck in many multimedia and DSP applications. In this report we present a technique that ame-
liorates this memory bottleneck through the sharing of different loop iteration executions using a
novel organization of the loop pipeline. We develop the conditions for sharing memory operations
on a generic reconfigurable architecture template and propose a heuristic method to generate the
pipelines accordingly within a general mapping flow. Experimental results using our technique on
a typical coarse-grain reconfigurable architecture show improvement of up to 3 times.

1 Introduction

Recently many coarse-grain reconfigurable architectures, typically used as coprocessors for
compute-intensive loops, have shown their capability in boosting the performance of the general
purpose processors [1, 2, 3, 4, 5]. Their abundant parallelism, high computational density and also
flexibility in terms of changing the behavior during run-time all contribute to making them better
alternatives to traditionally used DSPs (Digital Signal Processors) or ASICs (Application-Specific
Integrated Circuits), especially in the platforms for complex SOC’s (Systems-On-a-Chip).

Typically coarse-grain reconfigurable architectures have identical processing elements (PEs),
each of which contains functional units (e.g., ALU, multiplier) and a small number of storage
units (e.g., register file, small local memory), even though there is a wide variance in the number
and functionality of components as well as the interconnections between them. Those PEs are
connected through programmable interconnects that support rich communication between neigh-
boring PEs, typically to form a 2D array. To achieve high performance in many data-dominated
applications, they often have specialized memory interfaces (e.g.,Frame Bufferin MorphoSys [1]
andglobal control unitin REMARC [2]). One of the common features of coarse-grain reconfig-
urable architectures is that the memory interface is shared by a group of PEs, namely a row or a
column, for it would be too costly if every PE had its own memory interface or load/store units.
Consequently, one critical performance bottleneck is the sharing of the memory interface by mem-
ory operations within loops mapped to the reconfigurable architecture; thus optimizing memory
operations will have a great impact on the quality of mapping and the resulting performance.

Our technique presented in this report exploits the opportunity of the memory interface being
shared by memory operations appearing in different iterations of a loop. Particularly, if a data array
is used in a loop, it is often the case that successive iterations of the loop refer to the overlapping
segments of the array, so that parts of data being read in each iteration have already been read in
previous iterations. This redundant memory access can be reduced if the iterations are executed
in a pipelined fashion [6], by organizing the pipeline in such a way that the related pipe stages
share the memory operation and save the memory interface resource. Since this redundancy can be
seen only when the multiple iterations as well as the pipelining execution are taken into account,

4

this kind of memory operation sharingis not addressed by conventional loop optimization tech-
niques. We develop the conditions for sharing memory operations using a generic reconfigurable
architecture template. We also propose a heuristic method to generate the pipelines with memory
operation sharing within a general mapping flow. Experimental results using our technique on a
typical coarse-grain reconfigurable architecture show performance improvements of up to 3 times
in throughput, for loops showing inter-iteration data reuse patterns.

This report is organized as follows. In Section 2 we outline some of the related work and in Sec-
tion 3 we introduce a generic reconfigurable architecture template, which is based on the common
features found in many published coarse-grain reconfigurable architectures. The mapping flow
based on the high performance pipelining technique is illustrated in Section 4. In Section 5 we
present our memory operation sharing technique, which can effectively reduce the memory opera-
tions, increasing the resource usage efficiency. We demonstrate the effectiveness of the techniques
through the experiments in Section 6 and conclude the report in Section 7.

2 Related Work

There is little work published on mapping techniques for coarse-grain reconfigurable architec-
tures. Although there is extensive research and even commercial tools for FPGA (Field-Programmable
Gate Array) and fine-grain reconfigurable architectures, the techniques developed for them are not
directly applicable to coarse-grain reconfigurable architectures (a PE contains at least an ALU),
because of the substantial differences in PEs and interconnection architectures among others. Re-
configurable architectures of high granularity (e.g., MorphoSys [1], MATRIX [7], REMARC [2])
are reported to have only assembly-level programming environments [3] and are typically lacking
a compiler environment.

As a granularity-neutral technique for reconfigurable architecures, Bondalapatiet al. [6] de-
scribed algorithmic techniques for mapping loops onto reconfigurable hardware. They aim to
minimize the run-time reconfiguration when the resources (e.g., PEs) in the architecture are less
than what is needed to pipeline all the computations in the loop. They have similar concerns in that
they try to find a better pipeline organization during mapping applications onto the architecture.
However, the only architectural feature they consider is the reconfiguration resource. We consider
many architectural features such as the memory interface, the interconnections between the PEs,
etc. as well as the fast reconfiguration cache.

As another technique for reconfigurable architectures of no specific granularity, Bondalapati
[8] proposeddata context switchtechnique to maximize the throughput of IIR (Infinite Impulse
Response) type algorithms. The technique can hide the delay from the loop-carried dependency
when there is an outer loop with no loop-carried dependency, by utilizing the independent data
sets of the outer loop. Even though this technique was applied to a high-granularity reconfigurable
architecture, Chameleon [9], as well as an FPGA, it requires an outer loop with no loop-carried
dependency to find independent data sets. Moreover, it assumes that each PE has access to an
ample local memory to store the data context when the outer loop is executing other iterations,
which is not valid for many coarse-grain reconfigurable architectures.

Huang and Malik [10] proposed a design methodology for their own dynamically reconfigurable

5

RC Array

Figure 1. MorphoSys architecture [1].

datapath architecture, which is used as an accelerating co-processor. Even though this work targets
coarse-grain reconfigurable hardware, it is significantly different from our approach. The main
difference is that their reconfigurable datapath is designed for a specific application and reconfigu-
ration is used only to switch between the loops for which the reconfigurable datapath is designed.
In constrast, we employ a generic architecture template that is representative of a large class of
coarse-grain reconfigurable architectures; thus our architecture is designed independently from
applications and can be used for many different applications by reconfiguration.

3 Generic Reconfigurable Architecture Template

We first review two typical examples of coarse-grain reconfigurable architecture: MorphoSys
and REMARC. Then, we present our generic reconfigurable architecture template, which is being
developed for the purpose of application mapping (compilation), simulation, and design space
exploration, among others.

3.1 Review of the MorphoSys architecture

MorphoSys [1] is comprised of a core RISC processor, a reconfigurable cell array (RC Array),
and a high-bandwidth memory interface as shown in Figure 1. The RC Array consists of an 8� 8
array of identical PEs (also called RCs). The architecture of MorphoSys can be described at two
levels: intra-cell and inter-cell levels.

At intra-cell level, each RC is similar to a very simple microprocessor except that an instruction
is replaced with acontext word1 and there is no instruction decoder or program counter. The
datapath of an RC is centered around an ALU-multiplier and a shifter connected in series. The
output of the shifter is temporarily stored in an output register and then goes back to the ALU-
multiplier, to a register file (of size 4), or to other cells via buses and inter-cell connections. Finally

1Each RC is the basic unit of reconfiguration [1] and configuration data for each RC is calledcontext wordand
stored in thecontext register.

6

for the inputs of the ALU-multiplier are there muxes, which select the input from several possible
sources such as the register file, neighboring cells, or the memory buses. The bitwidth of the
functional or storage units is at least 16 bits except the multiplier, which supports multiplication of
16� 12 bits. The function of an RC is instructed by a context word, which defines the opcode and
an optional constant (for functional units) and the control signals (for the muxes and the register
file).

At inter-cell level, there are two major components: the interconnection network and the mem-
ory interface. The interconnection exists only between the cells of either the same row or the same
column. Since the interconnection network is symmetrical and every row (column) has an identical
interconnection with other rows (columns), it is enough to define only interconnections between
the cells of one row. Now for a row, there are two kinds of connections. (1) One is dedicated inter-
connection between two cells of the row. This is defined between neighboring cells and between
cells of every 4-cell group (so that every cell in that group can have an interconnection with any
other). (2) The other kind of connection is calledexpress laneand provides a direct path from any
one of each group to any one in the other group.

MorphoSys’ memory interface consists of Frame Buffer (with a controller) and memory buses.
Memory buses connect between Frame Buffer and the RCs with the width of 8� 2 � 8 bits such
that for each of the eight rows there are two 8-bit buses shared by all the cells of the row. Frame
Buffer is located between the RC Array and the main memory, providing the RC Array with the
necessary bandwidth of 128 bits per cycle. To support such a high bandwidth, the MorphoSys
architecture has (1) DMA (Dynamic Memory Access) to the main memory and (2) thetwo-set
structureoverlapping the data transfer with computation [1].

Context Memory, where the configuration is stored, has 32context planes, with a context plane
being a set of context words to program the entire RC Array for one cycle. The dynamic reloading
of any of the 32 context planes incurs effectively zero run-time overhead [1] in MorphoSys, as the
Context Memory can be updated concurrently with the RC Array execution. However, MorphoSys
supports only row-parallel or column-parallel SIMD (Single Instruction-stream Multiple Data-
stream) operations. Therefore, only eight context words are needed for a context plane and each
context word is broadcast to a row or column of RCs.

3.2 Review of the REMARC architecture

REMARC (Reconfigurable Multimedia Array Coprocessor) [2] consists of aglobal control unit
and an 8� 8 array ofnano processorsas shown in Figure 2.

A PE or a nano processor is similar to a simple microprocessor, but here the configuration of a
PE is calledinstruction,2 which is essentially the same as the context word in MorphoSys. The
datapath of a nano processor consists of an ALU, a 16-entry data RAM, an 8-entry register file,
and special purpose registers such as DIR (Data Input Registers) and DOR (Data Output Register).
All the functional or storage units are 16 bit wide. Compared to MorphoSys’ RCs, nano processors

2What is called instruction in REMARC can be seen as configuration because there is no instruction decoder and
the connections between the PEs are also defined by the “instructions”. Moreover, there is nothing else corresponding
to configuration in REMARC.

7

Figure 2. REMARC architecture [2].

have more storage units but do not have multipliers.
The interconnection network of REMARC is simpler than that of MorphoSys. REMARC has

only nearest neighbor network additionally with a global bus for every row and column. The global
buses, which are called HBUS (in row direction) and VBUS (in column direction), are 32 bit wide.
However, VBUS’es can also be used as memory buses while both VBUS and HBUS can be used
for broadcasting configuration in SIMD mode.

The memory access in REMARC is controlled by the global control unit, which has a 32-entry
64-bit data register file and load/storealignersas well as a global instruction RAM andnano PC-
related circuitry. The global control unit transfers data between the data register file and nano
processors using VBUS’es. But since the data register is only 64-bit-wide,3 the global control unit
uses the load/store aligners to arrange the data in multiple registers to transfer to/from VBUS’es.

The configuration for each nano processor is stored in the 32-entry instruction RAM, so that it
can easily switch to any of the 32 configurations indicated by the nano PC (generated by the global
control unit). SIMD mode configurations (using the VBUS or HBUS as broadcast channels) are
also supported to utilize the instruction RAMs more effectively.

3.3 Generic reconfigurable architecture template

We now describe a generic reconfigurable architecture template, which is based on the com-
mon features found in many coarse-grain reconfigurable architectures including MorphoSys and
REMARC. This generic architecture template, namedDRAA(Dynamically Reconfigurable ALU
Array), is developed as a model for compilation (application mapping), simulation as well as the
design space exploration of such architectures.

3This seems to be so that it can easily interface with the main processor via already-established 64-bit buses

8

Main

Memory

Main

Processor

Memory I/F

Reconfigurable
plane

Figure 3. DRAA: Generic reconfigurable architecture template.

The DRAA consists of identical PEs placed in a 2D array, regular interconnections between
them, and a high-speed memory interface as illustrated in Figure 3. The 2D array of PEs con-
nected via interconnections is called thereconfigurable plane. A direct data transfer path between
the main processor and the reconfigurable plane may be provided to facilitate quick transfer of a
few variables such as parameters or computation results (e.g., scalar product). The DRAA can be
defined at three levels: PE microarchitecture, line architecture, and reconfigurable plane architec-
ture. Table 1 lists the parameters for an example DRAA architecture.

3.3.1 PE microarchitecture

We can describe the PE microarchitecture in similar ways as microprocessor architectures are de-
scribed in ADLs (Architecture Description Languages) such as EXPRESSION [11]. For instance,
the datapath can be described as a netlist of the components comprising the PE with relevant at-
tributes such as supported opcodes, timing, etc. Alternatively, a set of supported functionalities
as corresponding to an instruction set may be used as a PE microarchitecture description.4 We
assume each PE’s latency remains constant regardless of its function, configuration, or even data,
since variability in PE’s latency would significantly diminish the architecture’s regularity.

3.3.2 Line architecture

We assume that there are only row and column interconnections in the reconfigurable plane. For
instance, interconnections in the diagonal direction are excluded. Also, all rows (columns) are
assumed to have the same interconnections as the other rows (columns). Therefore, only the in-
terconnections of a row and a column need to be defined. These 1D interconnections may be
described as a list of dedicated connection pairs, the number of global buses, and if any, special-
ized interconnections.

In addition to the row/column interconnections, the line architecture includes memory access
resource, which is a part of the memory interface. Similar to the interconnections, the memory ac-
cess resources are assumed to be equally distributed along the rows or columns, which are referred
to aslines. For example, REMARC has a 32 bit wide bus for each column, which can be used for

4In this work, the latter method was used to implement a PE-level mapping tool.

9

Table 1. An example reconfigurable architecture

Category Parameter Value

ALU 1
MUL 1

PE micro- Reg files 1 (4x16bit)
architecture Netlist (data transfer path) f. . .g

Functionality set f. . .g
Latency 1

of PEs in a line 8
Row (=line) # of lines 8
interconnect Pairwise interconnections f. . .g

Bus 2 (16bit/each)
Memory access Bus (shared w/ row global buses) 2 (16bit/each)

resource per Latency 1
line (=row) Buffer depth per bus 256

of configurations 8
Configuration # of configurations in SIMD mode 64

Fast configuration reloading overhead 0 cycle
Misc. Direct communication channel w/ main processornone

transferring four 8-bit or two 16-bit data. In this case, a line is a column and the memory access
resource per line is a 32 bit wide bus.

3.3.3 Reconfigurable plane architecture

Reconfiguration-related parameters are among the most critical ones in the plane level architecture
description. In many architectures where distributed configuration memory (cache) is supported
for fast run-time configuration switching, parameters such as configuration cache size and dynamic
reloading overhead can make a big difference in the performance. Compilers also need to be
aware of the architectural features to avoid the huge penalty when, for example, the generated
configurations do not fit in the cache size.

4 Pipelined Mapping of Loops

Programming frameworks for coarse-grain reconfigurable architectures involve many subtasks.
For instance, kernel5 extraction and selection, kernel mapping onto the architecture, configuration
memory management [12], and data memory management can all have much impact on the per-
formance of the implementaion. Also if it is used as a soft core in an SOC, the customization of
the reconfigurable architecture itself in such areas as the reconfigurable plane dimension, intercon-

5Here kernels mean highly repetitive loops of the application to be implemented on the DRAA.

10

nection scheme, the PE microarchitecture, the bitwidth, etc. might be necessary to optimize the
performance as well as to reduce the power consumption.

In this section we describe a general flow of mapping loops onto the DRAA architectures defined
in Section 3. First the loop pipelining in the context of reconfigurable architectures is introduced,
then the mapping flow based upon the pipelining is described.

4.1 Loop pipelining

When mapping loops onto reconfigurable architectures, one common way to achieve high per-
formance is to build a pipeline for the operations comprising the loop body (spatial mapping).
Let’s assume there is no loop-carried dependency or control flow within the loop. Then if the
pipeline is built withNp stages and every pipe stage takes at mostn cycles, the execution time of
one iteration or the latency isLatency= Np �n cycles andinitiation interval, the interval by which
successive iterations start execution, isn. Therefore, the total execution time ofN iterations is

Exectime= Latency+(N�1) �n: (1)

This pipelined execution has the following advantages:

� It parallelizesNp iterations using the abundant resources available on the reconfigurable
architecture.

� Since each stage has simple, fixed functionality, it does not need reconfiguration during
execution.

On the other hand, its disadvantages are

� spreading all the operations of the loop body on the limited reconfigurable architecture may
require too many resources,

� data dependencies between the operations should be taken care of by allocating interconnect
resources to them, and

� it may require delay registers6 to make every stage to have the same latency in number of
cycles.

In summary, pipelined execution is efficient in terms of performance once the pipeline is con-
structed and filled, but because operations and their dependencies have to mapped with the limited
resources, it may be difficult to build the pipelines.

Another way of mapping independent loops efficiently would be mapping every iteration to one
PE and having it perform necessary operations by changing the configurations (temporal mapping).
While this method has some advantages such as that direct application of conventional program-
ming/compilation techniques is possible, no need to worry about interconnection, and that even

6Delay registers do not increase the throughput but can increase the latency. More importantly, implementing a
delay register may use a whole PE in DRAAs.

11

the best performance may be obtained for some cases, it does not perform well as the loop be-
comes complex. It is because each PE’s storage resources such as registers and quickly-reloadable
configurations will be too limited for long sequences of operations in longer loops.

Temporal mapping(changing the configuration), however, does relieve the difficulty of spatial
mapping (constructing the pipeline). It can also be used in combination with spatial mapping in
such cases as more lines are needed than are avaiable. Also, because of the equivalence of using
multiple lines to using one line with multiple configurations from the performance point of view
(assuming zero configuration switch overhead), we initially consider using as many lines as needed
(each line with a fixed configuration). Then, in a later phase each line can be time-multiplexed with
multiple configurations.

Throughput is decreased if temporal mapping is used in such cases as more lines are needed than
are available. On the other hand, throughput may be increased if more resources are available than
the pipeline requires and the loop iterations can be split into independent groups. Simply repli-
cating the pipeline on the unused lines of the plane and having the pipelines execute independent
iterations in parallel will do.

Consider the example shown in Figure 4. If the mapping algorithm has generated a pipeline
of upto two rows (=lines)� seven columns and the architecture has a 4�4 array of PEs, the
array can have two pipelines in parallel while overflowing columns will drop the performance
due to two configurations used. If the iterations are independent, the total execution time will
be Latency+ (dN=2e� 1) � 2, assuming the latency of each PE is one and configuration switch
overhead is zero. Generally, assuming each PE has single cycle latency, the total execution time
can be written as7

Exectime= Latency+(dN=nGe�1) �Scs; (2)

wherenG is the number of independent iterations running in parallel andScs is the slowdown
factor due to the configuration switch.Scs is 1 if a single configuration is used, or otherwise
Ncon f � (1+Csw), with Ncon f andCsw being the number of configurations and dynamic reloading
overhead, respectively.

7Note that configurations need to be switched only when the pipeline actually needs more than one physical plane.

Configuration #2Configuration #1

Replicate
Reconfigurable plane (4x4)

Figure 4. A pipeline bigger than plane’s physical dimension.

12

PE-level mapping
(micro-op. covering)

Line-level mapping
(grouping, placement)

Plane-level mapping
(stacking and folding)

Micro-operation
Trees

PE-level
Operation trees

List of
Line placements

Pipelines
and Configurations

PE microarch spec

Line arch spec

Line & plane arch

Figure 5. Three major steps in the mapping flow.

4.2 Mapping flow

We now illustrate a flow for the mapping of applications represented as loops to a typical class of
DRAA architectures. To achieve maximal throughput, our approach generates high performance
pipelines that are executed on the DRAA architecture. The mapping flow, shown in Figure 5, has
three steps: micro-operation covering (PE-level), operation grouping and placement (line-level),
and stacking of line placements followed by folding with time-multiplexing (plane-level). We
explain these steps using the example loop in Figure 6.

for (k=0; k<100; k++)
x[k]=q+y[k]*(r*z[k]+t*z[k+1]);

Figure 6. An example loop.

(a) Expression tree (b) PE-level operation tree

Figure 7. PE-level mapping.

4.2.1 PE-level mapping

In the PE-level mapping, the loop body is represented as expression trees of micro-operations. The
micro-operation trees are covered with patterns that can be implemented with a single configuration

13

of a PE, producingPE-level operationtrees.8 A PE-level operation is an abstraction for a pattern
of micro-operations that can be implemented with one configuration of a PE. If a series ofADD

andSTOREwith no more than two memory operations can be implemented with one configuration,
for example, the first two operations in Figure 7 (a) can become one node in (b). The numbers in
Figure 7 (b) represents the number of memory operations contained in the node, which is necessary
information for the next step.

Bus is used
for both
memory bus &
column i/c

operations
(a) Grouping PE-level

(b) Line architecture

Figure 8. Line-level mapping.

(a) Sliding cut (b) Local change of cuts

Figure 9. Sliding cut algorithm.

4.2.2 Line-level mapping

Following the PE-level mapping is the line-level mapping, where the PE-level operation nodes are
grouped and placed on each line. Let’s suppose the line architecture is given as in Figure 8 (b).

8Though the behavior of PE-level operations may be complex, the resulting graph of PE-level operations is con-
strained to be a tree if the microarchitecture of the PE has only one output port.

14

That is, each column of PEs shares a memory bus (which is capable of transferring two operands at
each cycle) and an interconnection exists between neighboring PEs. Then, two conditions should
be met for the nodes to be placed together. First, they should have no more than two memory
operations in total, since the capacity of the memory bus is two. Second, it should be possible
to allocate an interconnection resource for each edge (data dependency) between the nodes. One
possible grouping is shown in Figure 8 (a).

In performing the node grouping, one of the major concerns is to ensure the line placements can
be stacked together satisfying the data dependency between the line groups with existing intercon-
nections, while preferably finding large groups for area efficiency. We use a heuristic algorithm
calledsliding cutalgorithm9 developed for these architectures: the PE-level operation has at most
two children (PEs have at most two input ports) and only nearest neighbor connections and global
buses are supported for row/column interconnections. The algorithm tries to group nodes in the
order found as a ‘sliding cut’ sweeps the tree horizontally from left to right (Figure 9 (a)). Groups
generated by the sliding cut10 are tested for line placement until the group contains more opera-
tions than the architecture supports for one line. Then, the last (also largest) group that passed the
test is selected as a line placement. In this algorithm, groups that will be placed near each other are
likely to have more edges between them, which matches well with the interconnection architecture.
To connect data-dependent PEs in different groups, the PEs should be on the same row (assuming
here line is column), which is accommodated by expanding the line placements. Expanding line
placement can be realized easily by inserting dummy nodes (functioning as delay registers), which
only increases the latency but not decrease the throughput.

Memory I/F

(b) Plane architecture

k=0~49 k=50~99

Columns 2 and 4

Columns 1 and 3

(a) Line placements

Figure 10. Plane-level mapping.

9This algorithm does not guarantee that the interconnections can always be allocated for all inter-group edges; if
that happens it resorts to the plane-level mapping, where multiple configurations are generated to resolve the resource
shortage.

10To have better cuts, it is checked if there are such cases as in Figure 9 (b). Sincemcan have no memory operation
(all its input/output are being used), it is possible and clearly advantageous to ex(in)clude nodem from the group.

15

4.2.3 Plane-level mapping

In the plane-level mapping, the line placements generated in the previous step are stitched together
on the 2D plane of PEs. In this example the line placements can be put together nicely, resulting
in a pipeline within a bounding box of 3 rows� 2 columns. If the physical plane size is 4� 4,
the pipeline can be replicated in the other two unused columns as shown in Figure 10, resulting
in about 2 times in throughput. Note that in this example the generated mapping achieves the
maximum throughput on the DRAA architecture even though only 10 out of the 16 PEs are used,
since all the memory I/O resources are used at every cycle. (This illustrates the need to pay critical
attention to the memory I/O resource.)

There are two factors of potential performance decrease in the plane-level mapping stage. First,
in stacking the line placements there may be the case where edges (representing data dependency)
cannot be allocated interconnections such as buses or dedicated connections due to the scarcity
of the resource. Second, the pipeline obtained from stacking the line placements may have a
bigger dimension than the physically available plane size. In those cases, multiple configurations
are used with time-multiplexing (dynamic reconfiguration). If the number of configurations to
be multiplexed is greater than the number of “quickly reloadable configurations” supported by
the architecture, the overhead will be severe. In this case other levels of techniques (e.g., loop
fission [13]) should be used together or the loop would be decided to be implemented on the main
processsor.

5 Memory Operation Sharing

We now motivate the need for memory operation sharing with an example and present a method-
ology to achieve it within the mapping flow described. We also propose a heuristic placement
technique to automate the memory operation sharing, for a special class of input trees.

5.1 Motivational example

Since the loops implemented on DRAAs are often memory operation-bounded as seen in the
previous example, reducing the effective number of memory operations will have a great effect
on the performance. One such opportunity comes from the data reuse pattern in loops of DSP
algorithms.

Let’s take an example of an FIR (Finite Impulse Response) filter algorithm defined as

y[i] =
2

∑
j=0

wj �x[i� j]; (3)

wherewi ’s are constants andi = 0;1;2; � � �. Figure 11 shows (a) the micro-operation tree represen-
tation of the input algorithm, (b) a PE-level operation tree after PE-level mapping, and (c) the line
architecture of the target DRAA, which supports at most two memory operations per row at each
cycle. In PE-level mapping, a PE is assumed to support a series ofMULTIPLY andADD operations
with one configuration if one of theMULTIPLY ’s operands is constant.

16

(c)

(a) Covering expression tree (b) PE-level op. tree

Figure 11. FIR example.

Since there are four memory operations in the PE-level operation tree, at least two rows are
needed to implement the tree with a single configuration. The optimal mapping in this example,
however, is to use only one row as follows. Figure 12 depicts a pipeline implementation using one
row. The three nodes are placed on three PEs in a row and the edges (data dependency) between
them are implemented with existing interconnections between the PEs. One of the two memory
buses is used by the write operation ofw0 node and the other is shared by all the three nodes.

stage 2 stage 3(unused) stage 1

Access Sequence
t=1 t=2t=0

Figure 12. An optimal placement for the FIR example.

The reason why they can share one memory bus is that the three PEs are different stages of
a pipeline. Whenw0 node is processing the iterationi = 0, for instance,w1 node isi = 1 and
w2 node isi = 2. And since those nodes access consecutive data in an array,x[i], x[i � 1], and
x[i � 2], respectively, what they are actually accessing is the same data, namelyx[0]. Thus, the
three memory operations are indeed the same and the three PEs can share a memory bus or one
memory operation, using half the resource or generating twice the performance in this example.

5.2 Memory operation sharing

As seen in the example, the nodes11 in the PE-level operation tree may share a memory operation
by placing (aligning) them on the same line. Here, we develop the conditions for the nodes to share
the memory operations and address how to handle the conditions within the mapping flow.

11Hereafter, we use ‘nodes’ to mean the PE-level operations in the PE-level operation tree.

17

5.2.1 Conditions for memory operation sharing

The memory operation sharing is a technique that exploits the redundancy of memory operations
over different iterations of a loop. We assume the loop is already optimized, so that common
subexpressions (e.g., memory operations reading the same address in the same iteration) are al-
ready eliminated. But even with an optimized loop, there may be memory operations that read the
same address in different iterations. We distinguish those memory operations that read the same
address in iterations differing by a constant number. We call those memory operations (and also
the nodes containing12 them)alignable.

Alignable operations can easily be detected from their memory access indexes. Suppose that the
loop iterator isi and it is incremented byc at every iteration. Then two memory read accesses
A[a*i+s] andA[a*i+t] are alignable if the differences–t is divided bya*c . They will
access the same address in iterations differing by(s –t)/(a*c) , which will be callediteration
differenceof the two memory operations. More than two operations are alignable if they are
pairwise-alignable.

Now, to make the alignable operations actually access the same address at every cycle, the nodes
containing them have to be placed in the right stages of the pipeline. So the second condition for
memory operation sharing is that the pipe stage difference of two alignable nodes should equal the
iteration difference of their memory operations, while the first condition is that the alignable nodes
should be placed on the same line.

5.2.2 Handling the conditions in the mapping flow

The conditions for memory operation sharing provide useful guidelines for a better placement
of the PE-level operation tree. If a 2D placement technique were used for the mapping of the
tree onto the reconfigurable plane, it might be possible simply to use those conditions as additional
constraints of the placement. But because our mapping flow utilizes 1D placement (line placement)
instead of computationally very expensive 2D placement, it needs a special care to handle the
conditions in the mapping flow.

Since the alignable nodes can be found anywhere in the tree, simply placing the alignable nodes
first and then doing the placement for the rest of the tree may bring about many problems in the
plane-level combining process. Moreover, the alignable nodes may not be connected directly as
in the FIR example. Rather, they may have only common ancestors up in the tree. In this case,
enforcing the second condition means placing all the nodes from the alignable ones up to their
first common ancestor. Then, the remaining tree (unplaced portion of the tree) may have a more
irregular interface with the placed portion, further complicating the combining process later.

One reasonable way of satisfying the conditions while not complicating the rest of the problem
is to identify a subtree including all the alignable nodes13 and do placement for it separately. More
precisely, the root of the subtree is defined as the first common ancestor of all the alignable nodes,

12PE-level operations may contain other operations including another memory operation as long as the PE microar-
chitecture permits.

13Note that there may be multiple sets of alignable nodes. In this case, a subtree is constructed for each set of
alignable nodes.

18

r : Root of the subtree
S : Supernode substituted
 for the subtree

mi : Alignable nodes

Figure 13. Identifying and replacing a subtree.

and the subtree includes the root and all the nodes below the root (Figure 13). If the placement
of this subtree can be done separately14 generating a group of line placements, a supernode is
substituted for the subtree and this new tree is fed into the line-level mapping process. Finally, the
plane-level mapping process stacks the line placements from both the subtree and the new tree.

5.3 Placement heuristic

Even though it is difficult to do 2D placement for a general subtree satisfying the conditions for
memory operation sharing, we can devise a placement heuristic for regularly structured subtrees
found in many DSP and multimedia algorithms.

This heuristic assumes two architectural features. First, the PE microarchitecture allows the PE-
level operations to have at most two inputs. This assumption guarantees that the PE-level operation
tree as well as the subtree is a binary tree. Second, the line architecture supports at least nearest
neighbor interconnections. Both of them hold true in many architectures including MorphoSys and
REMARC.

Index offset decreases

Figure 14. Placement heuristic for memory operation sharing.
14We assume manual placement for general subtrees.

19

By regularly structured trees, we mean the trees that can be structured into something like Fig-
ure 14. Suppose the subtree has the rootr andn alignable nodes. Alignable nodes contain memory
read operations of the form ofA[a*i+s] , which are different only ins . Let’s call thiss index
offsetof the node.

Let mi(i = 1; � � � ;n) be the alignable nodes and assume thatmi has greater index offset thanmi+1,
as shown in Figure 14. We want to map the subtree directly on the reconfigurable plane, placing
the alignable nodes on the same line to satisfy the first condition for memory operation sharing.
Let the path from eachmi to r be denoted byPi and thejoin nodewherePi andPi+1 meet first be
denoted byj i . Since the join nodes are also placed on the same line as shown in the Figure 14, the
distance (L0) betweenj i andmi is the same for alli = 1; � � � ;n�1. To satisfy this, we insert dummy
nodes as needed. Now, to satisfy the second condition for memory operation sharing, we try to
make the pipe stage differences be the same as the iteration differences. It is done by inserting
dummy nodes betweenj i and j i+1 such that the distance (Li) is equal to the iteration difference of
mi andmi+1. If the distance is already larger than the iteration difference, then the heuristic gives
up finding placement for this subtree. In practical examples, giving up well-structured subtrees
doesn’t happen very often. Typically, the join nodes come from a series ofADD operations, so that
the distance between neighboring join nodes is initially 1.

Figure 15. Four paths joining at three join nodes.

Figure 15 shows a general form of regularly structured trees, which are found in many digital
signal processing applications. There may be nodes betweenmi and j i or betweenj i and j i+1. But,
no nodes other than join nodes are allowed to have more than one child.15 Once a subtree is found
to have this form, it is straight forward, as explained above, to transform it into what looks like
Figure 14. To find whether a subtree has this form, we check the following properties.

� All the nodes in the subtree are covered by the set of pathsPi ;(i = 1; � � � ;n� 1); in other
words, every node is on at least one of the paths.

15Only the alignable nodes may be the leaves of the subtree. But, an aligable node may not be a leaf, as in the FIR
example of Figure 11 (b).

20

Table 2. The loops used in the experiments

Loop Description (LL means Livermore Loops) #mem. op. #repetition
hydro Hydrodynamic excerpt from LL 4 40
ICCG Incomplete Cholesky-conjugate gradient from LL 6 40
banded Banded linear equations (unrolled) from LL 14 3
state equations of state from LL 10 12
ADI Alternating direction, implicit integration (innermost, part) from LL 11 7
diff First difference from LL 3 98

wavelet A wavelet filter implementation (innermost) 5 24
ME Motion estimation kernel (unrolled) from MPEG encoder 128 30

� The set of join nodes inPi is a subset of the set of join nodes inPi+1.16

6 Experiments

For our experiments, we used the example architecture described in Table 1. For the line inter-
connections, nearest neighbor connections and global buses are used, where global buses may also
be used as memory buses. For the PE microarchitecture, a PE supports arithmetic operations as
well as a series ofMULTIPLY andADD operations with one configuration if one of theMULTIPLY ’s
operands is constant.

Table 2 shows the eight loops used in the experiments. Six loops are from the Livermore Loops
benchmark suite and the other two are from a wavelet filter and the motion estimation kernel of an
MPEG encoder. In the experiments, only the loops exhibiting inter-iteration data reuse patterns are
used. The degree of the data reuse varies; some (hydro, ICCG, diff) have only 2 alignable memory
operations in a loop while others (banded, state) have three to five sets of alignable operations
with two to three operations per set.ME has 8 sets of 16 alignalbe operations.

For each of the benchmarks, we selected an appropriate loop level. Since the current mapping
flow can handle only one level of loop at a time, when the benchmark has nested loops, either the
inner loops were unrolled or only the inner-most loop was used. Then, the loops were fed into the
mapping flow, with and without the memory operation sharing optimization.

Table 3 compares the mapping results in the following terms: (a) the number of lines used for
one instance of the loop pipeline, (b) the number of configurations, (c) the latency of the pipeline,
(d) the throughput of the entire reconfigurable plane, which is equal to the number of pipelines on
the plane divided by the number of configurations, and (e) the total number of cycles for the whole
iterations, which depends on the repetition count of the loop. For the comparison of the two cases
— without and with memory operation sharing — the rightmost columns show the reduction of
the latency and the ratio of the throughputs.

16Assuminga*c in Section 5.2.1 is positive.

21

Table 3. Comparison of mapping results

Loop Without Memory Operation Sharing With Memory Operation Sharing T.Cyc Thrpt
#Ln #Cnf Lat Thrpt T.Cyc #Ln #Cnf Lat Thrpt T.Cyc Rdc(%) ratio

hydro 2 1 4 4 13 2 1 5 4 14 -7 1
ICCG 3 1 3 2 22 3 1 3 2 22 0 1
banded 7 2 11 0.5 15 10(8) 2(1) 13(11) 0.5(1) 17(13) -13(13) 1(2)
state 5 1 9 1 20 4 1 11 2 16 20 2
ADI 6 1 7 1 13 5 1 7 1 13 0 1
diff 2 1 3 4 27 1 1 3 8 15 44 2

wavelet 3 1 4 2 15 2 1 4 4 9 40 2
ME 65 18 66 0.056 588a 23 6 36 0.167 210 63 3

aThe actual number of cycles may be larger in this case because this mapping uses more configurations than the
configuration cache can hold.

In the results, the throughput is determined bythe number of configurationsandthe number of
pipelines, the latter of which is not shown in the table but can easily be calculated by dividing the
architecture’s number of lines (=8) by the number of lines used. First, the number of configurations
increases due to the two factors: the need for more PE resources (i.e., more than 8 rows or columns
are used) and the need for more interconnection resources (i.e., when plane-level mapping fails to
connect line placements with a single configuration). Second, the number of pipelines is reversely
proportional to the number of lines used.

The number of lines used was decreased in many loops by using the memory operation sharing
technique, although there were cases where reducing the number of memory operations didn’t
make any difference in the use of lines (hydro) or the input tree didn’t allow the heuristic technique
to find a placement for it (ICCG).

Table 3 shows that in general the pipelines generated using the memory operation sharing tech-
nique tend to have slightly longer latency17 but take less number of lines and often increase the
throughput considerably, up to 3 times in theME example. While the loopbanded was mapped
with fewer lines when memory operation sharing was not used, it was neutralized by multiple con-
figurations, which were used because the line placements couldn’t be connected within a single
configuration.

The numbers in parentheses (in the loopbanded) are when the technique was applied selec-
tively on a subtree basis. Not all the subtrees for which the heuristic could find the placement
contributed for throughput; some subtrees placed by the heuristic used more lines than would be
by the mapping flow algorithm, typically whenL0 (in Figure 14) is large and the number of mem-
ory operations in the subtree is small. By selectively applying the technique for each subtree, a
better result could be obtained.

Table 3 shows that the memory operation sharing technique also helps reducing the number
of configurations.18 It is because the memory operation sharing technique makes the input tree

17This is is due to the dummy PE-nodes inserted to make the pipeline regular during the heuristic placement.
18The number of columns used (not shown), however, tends to increase slightly when the memory operation sharing

22

smaller for the mapping flow so that the mapping flow can handle it more easily espeically in
terms of the inter-line interconnections (in the case ofbanded) as well as it generates very efficient
pipeline structures for a certain class of input trees (in the case ofME).

7 Conclusion

We presented a novel memory operation sharing technique for the loops with inter-iteration
data reuse patterns. During the pipelined mapping onto reconfigurable architectures, the technique
exploits the opportunity of sharing memory interface resources between executions of different
iterations. We developed the conditions for sharing memory operations in a loop, using a generic
reconfigurable architecture template, and proposed an efficient heuristic method to generate the
pipelines accordingly within a mapping flow. Our experimental results demonstrates that the tech-
nique can generate performance improvement of 3 times on a typical coarse-grain reconfigurable
architecture.

The mapping of applications onto reconfigurable architectures requires much research. For in-
stance, in current work we assumed that iterations of a loop are executed in pipeline, to develop
a mapping flow that works reasonably for many applications. However, some loops may be best
mapped when iterations are executed in parallel. Therefore the mapping style could be one di-
mension for optimizing mapping of different applications. Finally, the current mapping flow has
several constraints in architectures and application loops. Our future research will investigate map-
ping techniques for more general classes of architectures as well as other types of loops.

8 Acknowledgements

This research was supported by grants from Motorola Corporation and Hitachi Ltd. We also
thank members of the EXPRESS compiler team, especially Mehrdad Reshadi for their assistance.

References

[1] H. Singh et al. MorphoSys: An integrated reconfigurable system for data-parallel and
computation-intensive applications.IEEE Trans. Computers, 2000.

[2] T. Miyamori and K. Olukotun. REMARC: Reconfigurable multimedia array coprocessor.
Proc. ACM/SIGDA FPGA ’98, Monterey, 1998.

[3] R. Hartenstein. A decade of reconfigurable computing: A visionary retrospective.Proc.
DATE, 2001.

[4] P. Schaumont et al. A quick safari through the reconfigurable jungle.Proc. DAC, Las Vegas,
2001.

technique is used, although in all the examples exceptME, they came within 8 columns. In the case ofME, 16 and 11
columns were used respectively, when the memory operation sharing technique was used, not used.

23

[5] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia acceleration.Proc.
ISCA ’99, Atlanta, 1999.

[6] K. Bondalapati et al. Loop pipelining and optimization for run-time reconfiguration.Proc.
RAW, 2000.

[7] E. Mirsky and A. DeHon. MATRIX: A reconfigurable computing architecture with config-
urable instruction distribution and deployable resources.Proc. IEEE FCCM, 1996.

[8] K. Bondalapati. Parallelizing DSP nested loops on reconfigurable architectures using data
context switching.Proc. DAC, 2001.

[9] Chameleon Systems. http://www.chameleonsystems.com/.

[10] Z. Huang and S. Malik. Exploiting operation level parallelism through dynamically recon-
figurable datapaths.Proc. DAC, New Orleans, 2002.

[11] A. Halambi et al. EXPRESSION: A language for architecture exploration through com-
piler/simulator retargetability.Proc. DATE, 1999.

[12] R. Maestre et al. A framework for reconfigurable computing: Task scheduling and context
management.IEEE Trans. VLSI Systems, 2001.

[13] M. Kaul et al. An automated temporal partitioning and loop fission approach for FPGA based
reconfigurable synthesis of DSP applications.Proc. DAC, 1999.

24

