
Grouping-Based Architecture Exploration of
System-Level Design

Lukai Cai
Daniel D. Gajski

CECS Technical Report 02-31
8/19/2002

Center for Embedded Computer Systems
University of California
Irvine, CA 92697, USA

{lcai, gajski} @cecs.uci.edu

Abstract
 This report introduces the grouping-based architecture exploration of the system level design. The
grouping-based architecture exploration selects processing elements (PEs) to assemble the system
architecture according to the design’s functionality. Furthermore, it maps design’s functional blocks to
the selected PEs to pursue the shortest execution time . This report outlines the design flow of the
grouping-based architecture exploration and describes a list-scheduling based algorithm for the grouping-
based architecture exploration. .

I

Index
1 Introduction... 1
2 Previous Work... 2
3 Scope Definition ... 2
4 Design Flow .. 3
5 Behavior Grouping... 3

5.1 System Behavior Model .. 3
5.2 Behavior Estimation ... 4
5.3 Behavior Grouping Algorithm ... 4

5.3.1 List Scheduling .. 4
5.3.2 Basic Grouping Algorithm.. 4

5.4 Behavior Re-Grouping .. 5
6 PE Selection.. 8

6.1 PE library ... 8
6.2 Performance Estimation ... 8
6.3 PE Selection Algorithm .. 8

7 Behavior Mapping.. 10
8 PE Number Selection .. 11
9 Experimental Result .. 12

9.1 Number of Explored Architectures ... 12
9.2 Design Time ... 12
9.3 Generated System Architecture .. 13

10 Conclusion... 14
Reference: ... 14

II

List of Figure
Figure 1: Extended Gajski and Kuhn’s Y chart .. 1
Figure 2: Design flow of the grouping-based architecture exploration ... 3
Figure 3: An example of the system behavior model .. 4
Figure 4: The basic grouping result of the example of Figure 3.. 7
Figure 5: The comparison of the basic grouping result and the ideal grouping result.................................. 7
Figure 6: The scheduling result of BACK_TRACE_SCHEDULING algorithm for the example of Figure 3. 7
Figure 7: The behavior re-grouping result for the example of Figure 3. ... 8
Figure 8: The processes of PE selection for the example of Figure 3. (Time constraint = 27ms) 10
Figure 9: The behavior mapping result for the example of Figure 3.. 11
Figure 10: The example of the limitation of grouping-based PE selection ... 13

III

List of Table
Table 1: Op and adjust_op of leaf behaviors in the example of Figure 3. .. 5
Table 2: PE attributes... 9
Table 3: The execution time of behaviors on different PEs .. 9
Table 4 : The table of PE number selection for the example of Figure 3. ... 11
Table 5: The table of random generated testbenches... 12
Table 6: The comparsion of maximal number of explored system architectures for random PE selection

and our PE selection algorithm.. 12
Table 7: The comparison of the design time of manual exploration and automatic exploration................ 12

1

Grouping-Based Architecture Exploration of System-Level
Design

Lukai Cai, Daniel D. Gajski
Center for Embedded Computer Systems

University of California
Irvine, CA 92697, USA

{lcai, gajski} @cecs.uci.edu

Abstract
This report introduces the grouping-based

architecture exploration of the system level design.
The grouping-based architecture exploration selects
processing elements (PEs) to assemble the system
architecture according to the design’s functionality .
Furthermore, it maps design’s functional blocks to the
selected PEs to pursue the shortest execution time .
This report outlines the design flow of the grouping-
based architecture exploration and describes a list-
scheduling based algorithm for the grouping-based
architecture exploration.

1 Introduction
In order to handle the ever increasing

complexity and time-to-market pressures in the
design of system-on-chips(SOCs) or embedded
systems, the design has been raised to the system
level to increase productivity. Figure 1 illustrates
extended Gajski and Kuhn’s Y chart[1]
representing the entire design flow, which is
composed of four different levels: system level,
RTL level, logic level, and transistor level. The
thick arc represents the system level design. It
starts from the specification representing the
designs’ functionality (also called application or
system behavior), which is denoted by point S.
The system level design then synthesizes the
specification to the system architecture denoted
by point A. A system architecture consists of a
number of PEs (processing elements) connected
by buses. Different PEs can belong to different PE
types. Each PE implements a number of functional
blocks in the specification.

One of main tasks of the system level design is
architecture exploration (also called design space
exploration). Architecture exploration contains

three tasks: PE selection, behavior-architecture
mapping, and behavior scheduling. PE selection
selects appropriate PEs from PE library to
assemble the system architecture. Behavior-
architecture mapping determines which allocated
PE that each behavior will be assigned to. Behavior
scheduling determines when the behaviors are
executed on the mapped PEs.

Behavioral System

RTL

Logic

Transistor
S A

Architectural

Physical

Figure 1: Extended Gajski and Kuhn’s Y chart

The above tasks have been studied for a decade
in different scopes, which will be reviewed in
section 2. Most of previous work pursue optimal
solutions therefore the complexity of them are
relatively high. However, with the increase of the
design complexity, designers need a method with
relatively low complexity to produce a
satisfactory result rather than an optimal result, to
shorten the design time . As a result, we carefully
design an algorithm to tailor the designers’ needs .

This report is organized as follows. Section 2
reviews the previous work. Section 3 defines the
problem scope. Section 4 introduces the design

2

flow of grouping-based architecture exploration.
Section 5 introduces behavior grouping which
groups the functional blocks in design. Section 6
introduces PE selection for each group. Section 7
describes behavior mapping which reassigns the
functional blocks to the selected PEs to shorten
the execution time. Section 8 introduces the PE
number selection. The experimental result is
given in section 9. Finally section 10 concludes
the report.

2 Previous Work

The behavior-architecture mapping problem
has been well studied for multi-processor
architectures containing the same type of
processors[2][3][4][5]. Studies in [2][4] show that
the CPM(critical path method) list scheduling
algorithm produces near-optimal solutions for this
type of problems and the complexity of CPM is
O(nlog(n) + log(p)), where n denotes the number
of tasks and p denotes the number of processors.
Therefore, in this report, we choose the CMP list
scheduling as our behavior-architecture mapping
algorithm.

Based on the study of HW/SW co-design, such
as [6][7], the research on the architecture
exploration for multi-PE architectures containing
a number of different types of PEs are popular in
these years. These research can be classified to
two types: the system synthesis[12][13][14][15]
starting from PE selection , or the platform-
design[8][9][10][11] without considering PE
selection . Since we believe that the PE selection
gives designers a high flexibility to produce the
application specific SoC, in this report, we take
the PE selection into account.

 Among the research considering PE selection,
Prakash and Parker[12] formulated the problem as
an integer linear program(ILP). They could
simultaneously allocate and schedule processes
while designing the underlying PEs. However,
their ILP formulation is time consuming and
sometimes requires hours to execute. D’Ambrosio
and Hu[14] use simulation to judge the feasibility
of a schedule, then screen those candidates for
feasibility by simulation. Simulation is both time-
consuming and does not guarante to prove
feasibility. Wolf[13] developed a heuristic
algorithm that gives results comparable to ILP in

many cases. The complexity of its work is much
better, which is O(p3n2P) , where p is the number
of PEs in the system, n is the number of behaviors,
and P is the number of PE types in the PE library.
During architecture exploration, to remove the
least unutilized PE from the system, it moves
behavior on that PE to other PE in the system
architecture. However, it uses utilization as an
approximation to evaluate the feasibility of these
movements, rather than re-scheduling, which
makes the result incorrect in some cases. Yen[15]
extended Wolf’s work. He evaluated displacement
vector when moving one behavior from current
mapped PE to any other possible PEs, and then
performed the movement that has the highest
sensitivity. The complexity of its work is
O(pn3Plog(n)), if the complexity of the sensitivity
evaluation is O(nlog(n)). In comparison to above
research, the complexity of our algorithm is
O(pPnlog(n)) + O(np2 log(n)), which is the lowest.

3 Scope Definition
The purpose of this report is to outline the

grouping-based architecture exploration. In this
report, we limit our interests to following aspects.

1. Behavior model
The behavior model of design consists of a

number of behavior entities called behaviors ,
which represents the functional blocks.
Behaviors are composed hierarchically either
in sequential or in parallel sequence.
However, behaviors cannot be composed in a
pipeline sequence.

2. Architecture model.
The system architecture contains a number

of PEs connected by buses. Different PE can
belong to different PE types. During the
architecture exploration, we have two
objectives. The first is to determine the
number of PEs in the system architecture. The
second is to select suitable PE type for each
PE. Bus selection and memory selection are
not taken into account in this level.

3. Performance Estimation.
During architecture exploration, we only use

the execution time and the system cost as our
criteria. During the execution time
estimation, we only compute the execution
time of behaviors, while the communication

3

time between behaviors is ignored. The system
cost is equal to the sum of the cost of PEs in
the system architecture.

4 Design Flow
Figure 2(a) present s the design flow of the

grouping-based architecture exploration, which
contains three steps: specification tuning, PE
selection , and behavior mapping .

First, specification tuning changes the behavior
model of design which makes it suitable for
architectural exploration. For example, it explores
maximal parallelism existing in the behavior
model and reduces the hierarchy depth while
keeping all the parallelism. Specification tuning
is introduced in [16].

Second, if the system architecture is not pre-
defined, then PE selection selects PE from PE
library to assemble the system architecture. The
generated system architecture must ensure that the
implementation meet the given time constraint
when behaviors are mapped onto it and the
generated system architecture has the low cost.

Specification
tuning

Behavior grouping

PE selection

Behavior mapping

Arch. defined?

PE selection

Yes

No

PE number
selection

n <= m_n?

n = l_n

Yes
No

(a) The entire design
flow

(b) The design flow of the
PE selection

n++

Behavior mapping

Figure 2: Design flow of the grouping-based
architecture exploration

Third, behavior mapping maps the behavior
model to the generated architecture to pursue the
shortest execution time.

PE selection is illustrated in Figure 2(b). In
Figure 2(b), n represents the number of PEs which
will be selected for the system architecture. l_n is
the lower bound of n while m_n is the upper bound
of n . We will discuss the value of l_n and m_n in
section 8.

During PE selection, behavior grouping first
groups the behaviors in the system behavior
model to n groups. During grouping, it balances
the computation in each group.

After behavior grouping, PE selection selects
the slowest PE for each group without violating
the given time constraint . Then designers use all
the selected PEs to assemble the system
architecture.

Finally, behavior mapping maps the behavior
model to the generated architecture to pursue the
shortest execution time.

For each selected n, behavior grouping, PE
selection, and behavior mapping are executed
once to produce a system architecture containing n
PEs . At the end of PE selection, PE number
selection selects the architecture with the lowest
cost among all the generated architectures
containing different number of PEs.

5 Behavior Grouping

5.1 System Behavior Model

We use SpecC language[18][19] to specify the
functionality of design, which is illustrated by
Figure 3.

4

L2

L1

L3

L4 L5

L8

L11

H0

H1

H2 H3

H4 H5

H7 L9 L10

H6

L6 L7

H8

Figure 3: An example of the system behavior
model

In the SpecC language, there are two types of
behavior: leaf behavior and non-leaf behavior. A
leaf behavior, which is identified by the name
starting with “L”, implements certain functionality
of design. A non-leaf behavior, which is identified
by the name starting with “H”, contains a number
of sequential () or parallel () executing child
behaviors. If a non-leaf behavior is identified as a
sequential behavior (), then its left child
behavior is always executed before its right child
behavior. In Figure 3, L4, L5, L6, and L7 are four
leaf behaviors. H5 is a non-leaf sequential
behavior. H7 is a non-leaf parallel behavior. In H5,
the executing sequence is H7 then H8.

We assume specification tuning has been
applied on the system behavior model thus the
system behavior model specifies all the possible
parallelism in the design. Therefore, we don’t do
further dependency-analysis on the behavior
model.

5.2 Behavior Estimation

We evaluate the computation cost of leaf
behaviors by using spec profiler[20]. The spec
profiler produces the execution number of
operations during simulation for each behavior,
which is used to represent behavior’s computation
cost.

As mentioned before, we ignore the
communication cost among behaviors.

5.3 Behavior Grouping Algorithm

Behavior grouping is the first step of PE
selection. The goal of behavior grouping is to
map behaviors to n groups and to balance the

computation cost on each group. If we treat
behaviors as tasks, treat the computation cost as
the execution time, and treat groups as resources,
then the grouping problem can be interpreted as a
scheduling problem: schedule tasks to n resources
to pursue the shortest execution time. This
scheduling problem has been well-studied
[17][21]. In this report, we choose the static-list
scheduling[17][22] as the grouping algorithm.

5.3.1 List Scheduling

List scheduling are class of implementable
schedules in which tasks are assigned priorities
and placed in a list ordered in decreasing
magnitude of priority. Wherever executable tasks
contend for processors, the selection of tasks to
be immediately processed is done on the basis of
priority with the higher priority tasks executable
being assigned processors first. If there is more
than one task of a given priority, ties are broken
randomly. List schedules may be preemptive or
non-preemptive, dynamic or static.

List scheduling contains three tasks at each
iteration.

1. Task selection
It selects task according to the priority list.

2. Processor selection
It selects suitable resource for the selected

task.

3. State update
It updates the priority list and resource

statistics.

In this report, we choose a static, non-
preemptive list scheduling algorithm.

5.3.2 Basic Grouping Algorithm

5

Algorithm 1 PRIORITY_LIST_GENERATION(){
 COMPUTE_ADJUSTED_OP();
 prioirty_list = SORT_LEAF_BEHAVIOR();
}

Algorithm 2 BASIC_GROUPING (n, priority_list)

groups = RESET_GROUP(n);
RESET_BEHAVIOR();
behavior = FIRST(priority_list);
while behavior do

early_start = ∞;
 group = FIRST(groups);
 while group do
 if(group.earliest_time < early_start){
 mapped_group = group;
 early_start = group.earliest_time;
 }
 group = NEXT(groups);
 endwhile
 behavior.start_time = max(early_start, behavior.earliest_time);
 behavior.end_time = behavior.start_time + behavior.op;
 behavior.earliest_time = behavior.start_time;
 INSERT_TO_GROUPS(behavior, group, start_time, end_time);
 behavior = NEXT(priority_list);
endwhile

Algorithm 2 outlines the basic grouping
algorithm which is a variation of the static list
scheduling. Before implementing basic grouping,
priority_list is produced by algorithm 1.
COMPUTE_ADJUSTED_OP first computes the
adjusted_op of leaf behaviors. The adjust_op of a
leaf behavior equals to the sum of the leaf
behavior’s computation cost (Op) and all of its
successors’ Op. The successors of a leaf node can
be found according to the behavior model
illustrated in Figure 3: if an ancestor B of the leaf
node A is a sequential behavior identified by ,
then all the leaf behaviors in the children of B
right to the child of B containing A are A’s
successors. For example, in Figure 3, H1 is one of
L4’s ancestors and H1 is a sequential behavior.
Therefore, L8, L9, L10, and L11 are L4’s
successors. We use a post-order tree walk to
compute adjusted_op for all the leaf behaviors, in
the complexity of O(m), while m is the number of
behaviors in the model. After
COMPUTE_ADJUSTED_OP,
SORT_LEAF_BEHAVIOR sorts leaf behaviors and
saves them in priority_list in the decreasing order
of adjust_op. Ordering in this way, the
predecessors of a behavior are always sorted
before the behavior.

After priority_list is generated, basic grouping
algorithm first creates an set of group groups
containing n groups and set the variable
earliest_time of each group to 0 by
RESET_GROUP(n). RESET_BEHAVIOR then sets

the variable earliest_time of each leaf behavior to
0.

Then, during each iteration, the algorithm
schedules one leaf behavior at a time, starting
from the behavior in the beginning of priority_list
which has the largest adjust_op. At a time, the
scheduled behavior will be mapped to the group
having the smallest earliest_time . Then start_time
and end_time of the behavior are computed:
start_time equals to the maximum of the
earliest_time of behavior and earliest_time of
group . The end_time equals to the sum of
start_time and behavior's op. The earliest_time of
behavior is equal to the start_time of behavior.

Finally, INSERT_TO_GROUPS inserts
behavior to group. The earliest_time of group is
updated to end_time. Furthermore, all the
earliest_time of behavior’s immediate successors
are updated to the maximum of end_time and their
previous earliest_time .

For example, Table 3 shows the computation
cost(op) and adjust_op of leaf behaviors in Figure
3. Figure 4 shows the corresponding result of
behavior grouping.

Table 1: Op and adjust_op of leaf behaviors in the
example of Figure 3 .

L1 L2 L3 L4 L5 L6
Op 24 30 12 20 28 36
Adjust_Op 240 106 88 146 154 112

L7 L8 L9 L10 L11
Op 14 10 18 26 22
Adjust_Op 90 76 44 26 22

5.4 Behavior Re-Grouping

The result of basic grouping algorithm is
excellent in terms of the length of the critical path
because of the characteristics of the list
scheduling. The critical path refers to the path
from starting point S to the ending point E
displayed in Figure 4. The length of the critical
path equals to the sum of the computation costs of
behaviors on the critical path. The length of the
critical path in Figure 4 is 142.

After applying the basic grouping algorithm,
behaviors on the critical path may be mapped to

6

different groups. For example, in Figure 5(a),
behaviors A, B, and C on the critical path are
mapped to group 1, 2, and 3 respectively.

In order to execute the behaviors on the critical
path on the fastest PE in the system architecture
to pursue the fastest execution time, we must map
the critical-path behaviors to one group. The ideal
grouping result is displayed in Figure 5(b): critical
path behaviors A,B, and C are mapped to group1;
The “second critical path” behaviors D and E are
mapped to group2; The “third critical path”
behavior F is mapped to group 3. The “k th critical
path” refers to the critical path when mapping
behaviors to (n – k +1) groups, after 1,2.., (k-1)th
critical paths have been found and the behaviors in
1, 2, .., (k-1)th critical path have been removed,
where n is the number of group. Grouping in this
way, we can map group 1 to the fastest PE, map
group 2 to the second fastest PE, and finally map
group 3 to the slowest PE in the system
architecture.

Therefore, we implement behavior regrouping
algorithm to produce the ideal grouping result,
based on the result of basic grouping, which is
displayed in algorithm 3.

At the beginning, RESET_EMPTY_GROUPS
creates a variable groups representing a set of
groups . At the beginning, there is no group in
groups. Then one group is added to groups at each
iteration.

Algorithm 3 BEHAVIOR-REGROUPING (n, priority_list)

groups = RESET_EMPTY_GROUPS();
while n ≥ 0 do

length = BASIC_GROUPING(n, priority_list);
BACK_TRACE_SCHEDULING(n, priority_list, length);
group = FIND_CRITICAL_PATH(bhvrs);
ADD_GROUP(groups, group);
UPDATING(bhvrs, group);
n = n - 1;

endwhile

At each iteration, BASIC_GROUPING explained
in algorithm 2 first produces an initial grouping
solution. The returned value length equals to the
length of the critical path in the grouping result.
BACK_TRACE_SCHEDULING then reads the
grouping result and reschedules behaviors in each
group without moving behaviors across the groups.
In contrast to BASIC_GROUPING,
BACK_TRACE_SCHEDULING starts scheduling
from the ending point E and ends at the starting

point S of the grouping result. It also starts
scheduling from the behavior at the end of the
priority list, rather than from the behaviors at the
beginning of the priority list. The difference
between scheduling methods in
BASIC_GROUPING and
BACK_TRACE_SCHEDULING is similar to the
difference between ASAP(as soon as possible)
algorithm and ALAP(as late as possible) algorithm
explained in [17]. BACK_TRACE_SCHEDULING
is explained in algorithm 4. The result of
BACK_TRACE_SCHEDULING for the example in
Figure 3 is displayed in Figure 6.

7

L1, L5, L4, L6, L2, L7, L3, L8, L9, L10, L11
(a) Ordering sequence

L1(24)

L5(28)
L4(20)

L6(36)

L2(30)

L7(14) L3(12)

L8(10)

L9(18)

L10(26)

L11(22)

(b) Grouping result (n = 3)

group1 group2 group3
E(142)

S(0)

Figure 4: The basic grouping result of the
example of Figure 3.

A

B

C

D

E F

A

B

C

D

E F

(a) Basic grouping
result

(b) Ideal grouping
result

1 2 3 1 2 3

Figure 5: The comparison of the basic grouping
result and the ideal grouping result.

After BACK_TRACE_SCHEDULING,
FIND_CRITICAL_PATH finds the behaviors on the
critical path. For a behavior, if its start_time
assigned in BACK_TRACE_SCHEDULING is
equal to its earliest_time assigned in
BASIC_SCHEDULING, then it is a
critical_path_candidate. FIND_CRITICAL_PATH
selects a critical_path_candidate starting from the

starting point S. Then it selects the next
critical_path candidate starting from the end_time
of the previous selected critical_path_candidate.
The critical_path_candidate selection continues
until the ending point E is reached. All the
selected critical_path_candidates are the critical
path behaviors and comprises the returned group .

L11, L10, L9, L8, L3, L7, L2, L6, L4, L5, L1
(a) Order sequence

L1(24)

L5(28)
L4(20)

L6(36)

L2(30)

L7(14) L3(12)

L8(10)

L9(18)

L10(26) L11(22)

(b) Grouping result (n = 3)

group1 group2 group3
E(142)

S(0)

Figure 6: The scheduling result of
BACK_TRACE_SCHEDULING algorithm for the

example of Figure 3 .

Finally, ADD_GROUP adds the returned group
to groups and UPDATE remove s the behaviors in
group from priority_list . The immediate
predecessors and successors for left behaviors
are also updated accordingly. Then the number of
groups n is reduced by one and another iteration
starts to select the “second critical path”. This
process continues until n th critical path is found.

8

Algorithm 4 BACK_TRACE_SCHEDULING (n, priority_list,
length, groups)

for group ∈ groups do

group.latest_time = length;
endfor
for behavior ∈ priority_list do

group.latest_time = ∞;
endfor
behavior = LAST(priority_list);
while behavior do

behavior.end_time = MIN(behavior.latest_time
, behavior.group.latest_time);
behavior.start_time = behavior.end_time – behavior.op;
behavior.group.latest_time = behavior.start_time;
for pred ∈ immediate predecessors of behavior do
 pred.latest_time = MIN(behavior.start_time

, pred.latest_time);
endfor

Figure 7 gives the behavior-regrouping result
for the example of Figure 3.

L1(24)

L5(28)
L4(20)

L6(36)

L2(30)

L7(14)
L3(12)

L8(10)

L9(18)

L10(26) L11(22)

group1 group2 group3
E(142)

S(0)

Figure 7: The behavior re-grouping result for the
example of Figure 3.

6 PE Selection
Behavior grouping groups behaviors to n

groups. In this section, we introduce PE selection,
which select suitable PE for each group.

6.1 PE library

All the possible PEs are saved in PE libraries.
We assume there are numerous PE libraries, each
of which contains a number of PEs with
compatible communication protocols. We
assemble the system architecture by using the PEs
in one library.

In each PE library, PEs are saved in a PE list in
the decreasing order of cost. In general, the time
performance of PE become worse while the cost
of PE reduces. Therefore, we assume the
execution time of any behavior A on PE B is
always faster than the execution time on the PE
after PE B in the PE lists.

We assume we have selected a PE library.
Variable PEs represents the sorted PE list in the
selected PE library.

6.2 Performance Estimation

When behaviors are executed on different types
of PE, e.g. ASIC, microprocessor, or FPGA, the
methods of execution time estimation are
different . Furthermore, the execution time is
influenced by the PE’s parameters. For example,
the execution time of a behavior executing o n a
microprocessor depends on the microprocessor’s
frequency.

In this report, we use the sum of weighted
operations computed by spec profiler[20] as the
behavior’s execution time on the selected PE.
Each PE has a weighted table to tell the execution
time required for each type of operations, such as
“+”, “*”, or “=”. The product of the weight and the
total execution number of operations for an
operation type represents the execution time for
that operation type in the behavior. The sum of
weighted operations of all the operation types
represents the execution time of the behavior
executed on the PE. This type of estimation is
called time-appropriate estimation. Designers can
also use third-party estimation- tools to compute
the estimation time.

6.3 PE Selection Algorithm

We use algorithm 5 to select PEs for groups.
First, SELECT_FASTEST_PE selects the fastest

PE for each group. Then, at each outer iteration,
we select the cheapest PE in the PE library for a

9

group without violating the given time constraint,
while keeping the PEs for other groups unchanged.
We start PE selection from group 1, which
represents the critical path, and ends at group n,
which represents the nth critical path. At each
inner iteration, we select one PE for behavior ,
starting from the most expensive PE saved at the
beginning of the PE list PEs . If the execution time
returned by FORWARD_TRACE_SCHEDULING for
variable PE and group is smaller than the given
time constraint, then we map the group to that PE.
The inner iteration continues until the returning
length of FORWARD_TRACE_SCHEDULING is
greater than the Time_Constaint.

Algorithm 5 PE Selection

SELECT_FASTEST_PE(groups);

group = FIRST(groups);
while group do
 PE = FIRST(PEs);
 while PE do

length = FORWARD_TRACE_SCHEDUL(PE,
group, priority_list);
If (length ≤ Time_Constraint){

 group.pe = PE;
 }
 else{
 break;
 }
 PE = NEXT(PEs);

endwhile
group = NEXT(groups);

endwhile

Algorithm 6 FORWARD_TRACE_SCHEDULING(PE, groups,
priority_list)

for group ∈ groups do

group.earliest_time = 0;
endfor

for behavior ∈ priority_list do

behavior.start_time = 0;
endfor

behavior = FIRST(priority_list);
while behavior do

behavior.exec = ESTIMATE_EXEC_TIME(behavior,
behavior.group.pe);
behavior.start_time = MAX(behavior.start_time
, behavior.group.start_time);
behavior.end_time = behavior.start_time + behavior.exec;
behavior.group.ealiest_time = behavior.end_time;
for succ ∈ immediate successors of behavior do
 succ.start_time = MAX(behavior.end_time

, succ.start_time);
endfor

 behavior = NEXT(behavior);
endwhile

FORWARD_TRACE_SCHEDUL is introduced in
algorithm 6. It is also a static_list scheduling
algorithm. In comparison to
BASIC_SCHEDULING, it only reschedules
behaviors inside the group without moving
behavior across the groups. Furthermore, it uses
the execution time of behavior to compute the
start_time and end_time in stead of using the
computation cost.

Table 2: PE attributes

PE1 PE2 PE3
cost $18 $10 $6

Table 3: The execution time of behaviors on
different PEs

(ms) L1 L2 L3 L4 L5 L6
PE1 3 3.8 1.5 2.5 3.5 4.5
PE2 6 7.5 3.0 5 7 9
PE3 9.1 11.3 4.5 7.5 10.5 13.5

L7 L8 L9 L10 L11
PE1 1.8 1.2 2.2 3.2 2.8
PE2 3.6 2.4 4.4 6.4 5.6
PE3 5.4 3.6 6.6 9.6 8.4

10

For the example of Figure 3, we assume the
selected library contains three types of PEs. Table
2 lists the cost of PE and Table 3 lists the
execution time of behaviors on PEs . We assume
that the time constraint is 27ms. The processes of
PE selection are displayed in Figure 8. After PE
selection, we select PE1 for group1, PE2 for
group2, and PE3 for group3.

7 Behavior Mapping
In section 6, we have selected PE to assemble

the system architecture. During PE selection, we
schedule behaviors on the selected PEs without
moving behaviors across the groups. In this
section, we re-map the behaviors to the selected
PE without considering previous grouping.

We use a static-list-scheduling algorithm
described in algorithm 7 to map behaviors to the
selected PE. The behavior mapping algorithm is
similar to the behavior grouping algorithm
described in algorithm 2. The difference between
them is that behavior mapping algorithm use the
execution time of behavior on the selected PE
while behavior grouping algorithm uses the
computation cost op. Another difference is that
the behavior mapping algorithm chooses the PE
having the best end time rather than the PE having
the best start time. In algorithm 7, input variable
groups records the selected PE of each group.
Algorithm first removes all the behaviors from
groups by EMPTY_GROUP and then re-map
behaviors to the groups to pursue the shortest
execution time.

L1(3)

L5(3.5) L4(2.5)

L6(4.5)

L2(3.8)

L7(1.8)L3(1.5)

L8(1.2)
L9(2.2)

L10(3.2)

L11(2.8)

S(0)

E(17.6
ms)

(a) Intial stage

group1
(PE1)

group2
(PE1)

group3
(PE1)

L1(6)

L5(7)

L4(2.5)

L6(9)

L2(3.8)

L7(1.8)

L3(1.5)

L8(2.4)

L9(4.4)

L10(6.4)

L11(2.8)

S(0)

E(35.2
ms)

(b) Select PE2 for group1
(failed: therefore PE1 is

selected for group1)

group1
(PE2)

group2
(PE1)

group3
(PE1)

Time_
constraint
(27ms)

L1(3)

L5(3.5) L4(2.5)

L6(4.5)

L2(7.5) L7(1.8)

L3(3)L8(1.2)
L9(2.2)

L10(3.2)
L11(5.6)

S(0)

E(19.1
ms)

(c) Select PE2 for
group2

group1
(PE1)

group2
(PE2)

group3
(PE1)

L1(3)

L5(3.5)

L4(7.5)

L6(4.5)

L2(7.5)

L7(5.4)
L3(3)

L8(1.2)
L9(2.2)

L10(3.2)
L11(5.6)

S(0)

(d) Select PE3 for
group3

group1
(PE1)

group2
(PE2)

group3
(PE3)

E(21.8
ms)

Figure 8: The processes of PE selection for the
example of Figure 3. (Time constraint = 27ms)

11

Algorithm 7 BEHAVIOR_MAPPING (groups, priority_list)

EMPTY_GROUP(group);
RESET_BEHAVIOR();
behavior = FIRST(priority_list);
while behavior do

early_end = ∞;;
group = FIRST(groups);
while group do

start_time = max(group.eariest_time,
behavior.earliest_time);
end_time = start_time +
ESTIMATE_EXEC_TIME(behavior, group.pe);
if(end_time < early_end){

mapped_group = group;
early_end = end_time;

}
group = NEXT(groups);

endwhile
behavior.group = mapped_group;
behavior.exec = ESTIMATE_EXEC_TIME(behavior,
behavior.group.pe);
behavior.start_time = max(behavior.group.eariest_time,
behavior.earliest_time);
behavior.end_time = behavior.start_time +
behavior.exec;
INSERT_TO_GROUPS(behavior, group, start_time,
end_time);
behavior = NEXT(priority_list);

endwhile

The result of behavior mapping for the example
of Figure 3 is displayed in Figure 9. In comparison
to the execution time 21.8 ms in Figure 8(d), the
resulting execution time is 21.1ms.

L1(3)

L5(3.5)
L4(5)

L6(4.5)
L2(11.3

)L7(3.6)

L3(1.5)

L8(1.2)
L9(2.2)

L10(3.2)
L11(5.6)

S(0)

group1
(PE1)

group2
(PE2)

group3
(PE3)

E(21.1
ms)

Figure 9: The behavior mapping result for the
example of Figure 3 .

8 PE Number Selection
Section 5 to 7 describes the algorithms of

behavior grouping, PE selection and behavior
mapping when the number of PEs in the system
architecture is known. As shown in Figure 2, if
designers don’t know the number of PEs in the
system architecture, then designers needs to
define the lowerbound l_n and upperbound m_n.

n should be no less than 1 and no greater than
the number of parallelism max_p . We define
max_p as the largest number of behaviors that can
be executed simultaneously. It is obvious that the
shortest time of the design on the architecture
containing max_p PEs is the same as the shortest
execution time of the design on the architecture
containing more than max_p PEs. Therefore, we
can choose l_n as 1 and choose m_n as max_p.

However, if the max_p is too large, then it is
time consuming to implement architecture
exploration. Therefore, we choose another way to
define l_n and m_n. First, we roughly estimate the
optimal number of PE np as the total computation
cost divided by the computation cost on the
critical path. Then we define m as the range of PE
number selection. Finally, we define l_n as n-
m/2 and define m_n as n- m/2. In the example
in Figure 3, np is 2. If m is 5, then l_n is 1 and
m_n is 4.

After producing the system architectures
containing different numbers of PEs, the designers
can select the best one from them. We call this
task PE number selection.

Table 4 : The table of PE number selection for the
example of Figure 3 .

PE
Amo
unt

grou
p 1

grou
p 2

grou
p 3

grou
p 4

Cos
t

Exec
.
time
(ms)

1 PE1 -- -- -- $18 30
2 PE1 PE2 -- -- $28 22.6
3 PE1 PE2 PE3 -- $34 21.1
4 PE1 PE3 PE3 PE3 $36 25.6

Table 4 displays the result of PE number
selection for the example in Figure 3. Since the
maximal parallelism of the behavior model is four,

12

we produce four possible system architectures,
which containing 1 to 4 PEs. The computation cost
and execution time for the architectures
containing different number of PEs are displayed
in Table 4. As a result, designer can select 2 PE
solution because of its lowest cost. The
architecture contains PE1 and PE2. The cost of the
architecture is $28. The execution time is 22.6ms,
which meet the given time constraint 27ms.

9 Experimental Result
First of all, we implement the introduced

algorithm by programming around 3000 lines of
C++ code.

We then randomly generate 5 examples shown in
Table 5. We assume there are three types of PEs in
the PE library, which is shown in Table 2. In this
section, we will discuss the advantage/limitation
of our algorithms based on the exploration results
of these examples.

Our research cannot be compared directly with
other research mentioned in section 2 because
they didn’t provide the computation cost for
behaviors.

The complexity of the introduced algorithm is
O(pPnlog(n)) + O(np2 log(n)), where p is the
number of PE in the system, n is the number of
behavior, and P is the number of PE types in the
PE library. The complexity in Wolf[13]’s work is
O(p3n2P). Furthermore, the upper-bound of p in
our algorithm is the maximal parallelism while the
upper-bound of p in Wolf’s algorithm is n. In
comparison to the previous research introduced in
section 2, the complexity of our algorithm is
lowest.

Table 5: The table of random generated
testbenches

Ex.1 Ex.2 Ex. 3 Ex. 4 Ex. 5
Num. of
leaf behaviors

12 12 11 20 42

Max. Num. of
parallelism

6 4 4 14 18

9.1 Number of Explored Architectures

The main contribution of this report is that we
select suitable PEs for the system architecture

with low complexity according to the system
behavior model. If PE library contains three types
of PEs and the system architecture contains n PEs,
then during random PE selection, mn possible
system architectures may be explored. Using our
algorithm, we only explore at most (m × n) system
architectures, which dramatically reduced the
algorithm’s complexity. Table 6 lists the maximal
number of explored system architectures during
random PE selection and the PE selection we
introduce.

Table 6: The comparsion of maximal number of
explored system architectures for random PE

selection and our PE selection algorithm.

Num. of
explored
architect
ure

Ex.
1

Ex.
2

Ex
. 3

Ex. 4 Ex. 5

Random
selection

729 81 82 4,782,
969

387,420,
489

Grouping
based
selection

18 12 12 42 54

The number of explored system architecture of
Wolf[13] and Ten[15]’s work cannot be evaluated.

9.2 Design Time

We also compare the design time required by
manual architecture exploration and required by
automatic architecture exploration through running
the C++ code we made, for examples 1, 2, and 3,
which are displayed in Table 7.

Table 7: The comparison of the design time of
manual exploration and automatic exploration

Design Time Ex. 1 Ex. 2 Ex. 3
Manual
exploration

≈8640s ≈9000
s

≈7920s

Automatic
exploration

<1s <1s <1s

The manual exploration takes around 8000
seconds on an average, while the automatic
exploration takes less than 1 second, which is
8000 times faster than the manual one. Therefore,
we conclude the automatic exploration shortens
the design time dramatically.

13

9.3 Generated System Architecture

One goal of the grouping-based architecture
exploration is to select suitable PEs for the
system architecture. In this sub section, we test
whether this goal is reached.

Following our design flow, the strategy of
behavior grouping determines the PE selection.
Different grouping strategies will produce
different system architectures.

One attribute of our grouping is group
balancing, which balances the computation among
groups. Optimal group balancing
ensures that the length of the critical path of the
generated groups is the shortest one among the
length of the critical path of all the possible
groups. Therefore, in comparison to the fastest
PE in any possible system architecture that makes
the implementation meets the time constraint , the
fastest PE selected based on the optimal group
balancing is the slowest. Since the static-list
scheduling produces excellent balance solution,
the fastest PE in our generated system
architecture is close to the slowest PE that can be
selected as the fastest PE for the design.

L1

L2

L3
L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

group1
(PE1)

group2
(PE2)

group3
(PE3)

L1
L2
L3

L4

L5

L6L7

L8

L9

L10

L11

L12
L13

group1
(PE1)

group2
(PE2)

group3
(PE3)

Time Contraint

(a) Scheduling behaviors
without moving behavior
across the groups (failed)

(b) Mappping behaviors to
the archicture

Figure 10: The example of the limitation of
grouping-based PE selection

Second, behavior groups are balanced in terms
of computation cost. After selecting different PEs
for different groups, the groups are not balanced
anymore in terms of execution time. This makes
the generated system architecture not optimal. For
example, in Figure 10, assume we have selected
PE1 for group1 and PE2 for group. We also have
proved that PE2 can be selected for group3.
During testing PE3 for group3 (PE3 is slower than
PE2), we fail for scheduling, which is shown in
Figure 10(a). As a result, we select PE1 and two
PE2 to assemble the system architecture.
However, if we choose the system architecture
containing a PE1, a PE2, and a PE3, and use
behavior mapping algorithm in algorithm 7 to map
behaviors to the architecture, the mapping meet
the time constraint, which is shown in Figure
10(b). This is because the behaviors are balanced
in terms of execution time rather than the
computation cost. However, since the execution
time cannot be known before the PE selection, it
is impossible to select PEs according to the
execution time of behaviors except the exhaust
exploration. Therefore, the generated architecture
based on our algorithms is a low cost architecture
for the design but not the lowest cost one. As a

14

result, we add behavior mapping after PE
selection. If designers want to generate the lowest
cost architecture that can meet the design
requirement, designers can manually optimize the
generated system architecture and apply behavior
mapping again to ensure that design can meet the
given time constraint on the optimized system
architecture. It should be noted that this problem
also exists in Yen’s work[15].

10 Conclusion
This report introduces the grouping-based

architecture exploration of the system level
design. The grouping-based architecture
exploration selects PEs to assemble the system
architecture according to the designs’
functionality and maps behaviors to the selected
PEs .

This report has the following three
contributions.

First, it defines the design flow of the
grouping-based architecture exploration. After
specification tuning , designers first group
behaviors. Designers then determine the number
of PE and the selected PE types in the system
architecture, according to the behavior model
and behavior grouping results. Finally, behaviors
are reassigned to the selected PEs to shorten the
execution time. This design flow generates the
application specific SoC.

Second, in comparison to the complexities of
the previous work, the complexity of our
algorithm is the lowest, which is O(pPnlog(n)) +
O(np2 log(n)), where p is the number of PEs in
the system, n is the number of behaviors, and P
is the number of PE types in the PE library. We
compare the result of our grouping-based
algorithm with the best result that we can
manually generate. We find that the our PE
selection algorithm produces satisfactory
results for most of randomly generated
testbenches. Furthermore, our behavior-
architecture mapping algorithm produces near
to optimal solution, which is proved by [2].
Since our PE selection algorithm does not
guarantee the optimal solution, designers can
also manually improve the result of our PE
selection algorithm to gain better PE selection

solution and apply the behavior-architecture
mapping algorithm on it.

Third, we implement our algorithm by
programming around 3000 lines of C++ code .
For our random generated testbenches, the
implemented C++ program produces the
architecture exploration results in less than 1
second, where manual architecture exploration
took us 2 to 3 hours on an average. It proves
that the program based on our algorithm
shortens the design time dramatically.

Reference:
[1] D. Gajski “Silicon Compilers”, Addison-Wesley, 1987
[2] G. Bell, etc. “ A Comparison of List Schedules for Parallel

Processing Systems ”. Commun. ACM, 1974, 17, 685--690
[3] Yu-Kwong Kwok, Ishfaq Ahmad “Dynamic Critical-Path

Scheduling: An Effective Technique for Allocating Task
Graphs to Mult iprocessors” ”, IEEE Trans. on Parallel and
Distributed System. May 1996 (Vol. 7, No. 5)

[4] B. Shirazi, M.Wang, and G. Pathak. “Analysis and evaluat ion of
heurist ic methods for stat ic task scheduling” J. of Parallel
and Distributed Computing,10(3):222–232, Nov. 1990.

[5] Min-You Wu, Daniel D. Gajski “ Hypertool: A
Programming Aid for Message-Passing Systems”, IEEE
Trans. on Parallel and Distributed Systems, 1(7):330–343, July 1990.

[6] R. Ernst, J. Henkel, and T. Benner. “Hardware software
co-synthesis for microcontrollers”. IEEE Design and Test
of Computers . 10(4), December 1993.

[7] R.K. Gupta and G. D. Micheli. “Hardware-software co-
synthesis for digi tal systems”. IEEE Desgin & Test of
Computers. July/September 1993 (Vol. 10, No. 3)

[8] Kurt Keutzer, Sharad Malik , A. Richard Newton , Jan M.
Rabaey, A. Sangiovanni-Vincentelli , “System-Level
Design: Orthogonalization of Concerns and Platform-
Based Design”. IEEE transactions on computer-aiede
design of integrated circuits and systems, December 2000

[9] Paul Lieverse, Todor Stefanov, Pieter van der Wolf, “
System Level Design with Spade: an M-JPEG Case Study.”
In Proce. of Int. Conference on Computer Aided Design.
(ICCAD'01)

[10] Grant Martin, Jean-Yves Brunel “Platform-Based Co-
Design and Co-Development: Experience, Methodology
and Trends” The ninth IEEE/DATC Electronic Design
Process workshop (EDP-2002)

[11] http://www.cadence.com/products/vcc.html
[12] S. Prakash and A. C. Parker. “SOS: synthesis of

application-specific heterogenous multiprocessor
systems.” Journal of Parallel and Distributed Computing,
16, 1992

[13] Wayne H. Wolf “An architectural Co-Synthesis
Algorithm for Distributed, embedded computing
sys tems”. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol.5, (no.2), IEEE, June 1997.
p.218-29

[14] J. G. Dambrosio and X. Hu. “Configuration-level
hardware/software partitioning for real-time embedded
sys tems .” In Proceeding, International Workshop on
Hardwre-Software Co-Design, 1994

15

[15] Ti-Yen Yen and Wayne Wolf “Sensitivity-Driven Co-
Synthesis of Distr ibuted Embedded Systems”. of the
Eighth International Symposium on System Synthesis,
Cannes, France, 13-15 Sept. 1995.)

[16] Lukai Cai, Daniel D. Gajski “Specification Tuning of
System-Level Design” Technical Report CECS-18
University of California, Irvine. April 2002

[17] Gajski, D., N. Dutt, A. wu, S. Lin, “High-Level Synthesis -
Introduction to Chip and System Design”, Kluwer
Academic Publishers, 1993

[18] D. Gajski “Silicon compilers”, Addison-Wesley, 1987
[19] D. Gajski, J. Zhu et al. “SpecC: Specification Lanugaeg

and Design Methodology” Kluwer Academic Publishers,
2000

[20] Lukai Cai, Dan Gajski, “Introduction of Design-Oriented
Profiler of SpecC Language”, University of California,
Irvine, Technical Report ICS-00-47, June 2001

[21] B. R. Rau, J A. Fisher “Instruction-Level Parallel
Processing: History, Overview, and Perspective” Journal
of Supercomputing, vol.7, (no.1-2), May 1993. p.9-50.

[22] R. Jain, A. Sharma and H. Wang, “Empirical Evaluation of
some High-Level Synthesis Scheduling Heuristics,” 28th

Design Automation Conference, 1991

