
Using Global Code Motions to Improve the

Quality of Results for High-Level Synthesis∗

Sumit Gupta Nick Savoiu

Nikil Dutt Rajesh Gupta Alex Nicolau

CECS
Technical Report #02-29

October 2002

Center for Embedded Computer Systems
Department of Information and Computer Science

University of California, Irvine
http://www.cecs.uci.edu/∼spark

{sumitg,savoiu,dutt,rgupta,nicolau}@cecs.uci.edu

Abstract

The quality of synthesis results for most high level synthesis approaches is strongly affected by the choice of con-

trol flow (through conditions and loops) in the input description. This leads to a need for high-level and compiler

transformations that overcome the effects of syntactic variance or programming style on the quality of generated

circuits. To address this issue, we have developed a set of speculative code motion transformations that enable

movement of operations through, beyond, and into conditionals with the objective of maximizing performance. We

evaluate the effects of these speculative code motions in terms of the cycles on the longest path (performance), the

number of states in the finite state machine (FSM) (controller complexity), length of the critical path in the synthe-

sized netlist (clock period) and the area of the synthesized netlist. Significant improvements in performance and

reduction in controller complexity are observed. However, although critical path lengths remain fairly constant,

area of the design increases due to increasing complexity of the steering logic and associated control logic. To

address this, we present a methodology to reduce interconnections based on resource binding, which also leads to

improvements in critical path lengths. These code transformations and controller optimizations have been imple-

mented in a high-level synthesis research framework called Spark, which takes a behavioral description in ANSI-C

as input and generates synthesizable register-transfer level VHDL. The experiments described in this paper have

been performed on two real-life high-level synthesis design targets, namely, the MPEG-1 and ADPCM algorithms.

The results demonstrate reductions in the number of states in the FSM controller and in the cycles on the longest

path of between 35 % to 50 % and subsequently, the interconnect minimizing binding methodology achieves area

reductions between 15 % to 32 %.

∗A version of this paper is under revision with the IEEE Transactions on CAD.

Contents

1 Introduction 4

2 Related Work 5

3 Code Motions in High-Level Synthesis 7

3.1 Using Speculation in High-Level Synthesis . 7

3.2 Reverse Speculation . 8

3.3 Early Condition Execution . 10

3.4 Conditional Speculation . 11

4 The Spark High Level Synthesis Framework 12

4.1 A Model for Control Intensive Designs . 14

4.2 Code Motion Techniques in the Transformations Toolbox . 16

4.3 Eliminating data dependencies by Dynamic Renaming . 18

4.4 Priority-based Global List Scheduling Heuristic . 19

4.5 Determining the Application of the Code Motions . 21

5 Effects of Code Motions on Quality of Synthesis Results 23

5.1 Effects on Performance . 23

5.2 Effects on Area and Clock Period . 26

6 Reducing Interconnect 28

6.1 Operation to Functional Unit Binding . 29

6.2 Variable to Register Binding . 30

7 Results of Resource Binding 30

8 Conclusions and Future Work 32

2

List of Figures

1 Extracting the inherent parallelism in a control-data flow graph by speculating the addition operations.

This requires an additional resource, but leads to a reduction in the longest path. 8

2 Reverse Speculation for the waka benchmark (a) original design (b) operation c is reverse speculated

into the branch of the conditional that uses its result. This leads to a reduction in schedule length by one. 9

3 Difference between reverse speculation and the classical notion of downward code motion in CDFGs.

(a) Sample HTG representation (b) Operation a is reverse speculated by duplicating into operations a1

and a2 (c) CDFG representation of same example (d) Downward code motion of operation a. 10

4 Code restructuring by early condition execution (a) original design (b) comparison operations p and q

are scheduled as soon as possible to enable early condition checking. All unscheduled operations before

the conditional checks are reverse speculated into the conditional branches. 11

5 (a) A sample control-data flow graph (b) Operations x and y are speculated leaving idle slots in the

conditional branches (c) Operation z is conditionally speculated into conditionals BB1 and BB2. 12

6 The Spark High Level Synthesis Framework: a complete synthesis system that provides a path from

an architectural description in C to synthesizable register-transfer level VHDL. 13

7 The hierarchical task graph (HTG) representation of the “waka” benchmark [13]. The priorities of

each operation are marked next to each operation node. 15

8 The hierarchical task graph representation of a For Loop. 15

9 Trailblazing: Operation op1 is moved from basic block BB2 to basic block BB1 across the if-then-else

HTG node without visiting each basic block inside the node. 17

10 Moving one operation across another operation while eliminating (a) an anti dependency (b) an output

dependency and (c) a flow dependency. 18

11 (a) Priority-based List Scheduling Heuristic (b) Determining the list of Available operations. 20

12 Heuristic to determine whether to conditionally speculate an operation op into multiple basic blocks

given by BBList, while scheduling it into scheduling step in basic block BBstep. 22

13 Logic synthesis results after various code motions for the MPEG pred case2, pred case0 1 and calc f orward

functions and the ADPCM Encoder function; circuit delay decreases significantly but area can increase

marginally. 27

14 Typical critical paths in control-intensive designs pass through the steering logic and the associated

control logic. 28

15 An example of binding leading to a large number of interconnections. 29

16 Reducing interconnect by improved (a) operation binding (b) variable binding. 29

17 Results of logic synthesis after applying a non-interconnect aware (“regular”) binding and an inter-

connection minimizing resource binding for the MPEG pred case2, pred case0 1 and calc f orward

functions and the ADPCM Encoder function. 31

3

1 Introduction

Recent years have seen the widespread acceptance and use of language-level modeling of digital designs. In-

creasingly, the typical design process starts with design entry in a hardware description language at the register-

transfer level, followed by logic synthesis. Furthermore, with the advent of systems-on-a-chip, system level be-

havioral modeling in high level languages is being used for initial system specification and analysis. All these

factors have led to a renewed interest in high level synthesis from behavioral descriptions, both in the industry and

in academia [1, 2, 3, 4, 5].

However, current synthesis efforts have several limitations: Synthesizability is guaranteed on a small, con-

strained sub-set of the input language and the language level optimizations are few and their effects on final circuit

area and speed are not well understood. Also, for designs with moderately complex control flow, the quality

of synthesis results is poor due to the presence of conditionals and loops. In general, designers are often given

minimal controllability over the transformations that effect these results. All these factors continue to limit the

acceptance of high-level synthesis tools among designers.

To alleviate the problem of poor synthesis results in the presence of complex control flow in designs, there is a

need for high-level and compiler transformations that can optimize the synthesis results irrespective of syntactic

variance in the input description. Several scheduling algorithms have been proposed to address this issue, that

employ beyond-basic-block code motion techniques such as speculation to extract the inherent parallelism in

designs and increase resource utilization.

Generally, speculation refers to the unconditional execution of operations that were originally supposed to have

executed conditionally. However, we found that there are situations when there is a need to move operations into

conditionals [6, 7]. This may be done by reverse speculation, where operations before conditionals are moved into

subsequent conditional blocks and hence, executed conditionally, or this may be done by conditional speculation,

wherein an operation from after the conditional block is duplicated up into preceding conditional branches and

executed conditionally. Another code motion technique we developed, called early condition execution, moves

conditions so that they are evaluated as early as possible. The motivation for this transformation comes from

the fact that once a condition has been evaluated, all the operations in its branches are ready to be scheduled.

However, although these code motions are shown to be useful, there needs to be a judicious balance between when

to speculate, when to reverse speculate and so on.

We show how a simple priority-based global list scheduling heuristic can be used to direct these code motion

transformations and obtain significant reductions in schedule lengths and controller complexity. Synthesis results,

however, show significant area overheads are incurred due to aggressive code motions used during scheduling.

4

These area overheads are due to higher resource utilization and resource sharing caused by the code motions that in

turn lead to increased steering logic and multiplexors. The moderately control-intensive nature of the benchmarks

we have considered further increases the opportunities for significant resource sharing among mutually exclusive

operations. Higher resource sharing and utilization implies that the synthesized netlist has increased control logic

both in terms of control signal generation and interconnect. Interconnect, here, refers to the multiplexors and buses

that connect components together.

To address the complexity of the interconnect, we have implemented a resource binding methodology that binds

operations to functional units and variables to registers, such that operations with the same inputs or outputs are

bound to the same functional units and then, variables that are inputs or outputs to the same functional units, are

mapped to the same registers [8]. In this way, the interconnect between functional units and registers is reduced.

Although this idea of binding with the aim of minimizing interconnect is not new, the formulation that we use

in our approach to solve this problem is new, along with its integration in a high-level synthesis framework that

includes interconnect optimizations across nested conditionals.

These code motion transformations and the interconnect minimization methodology, along with a control syn-

thesis and optimization strategy has been implemented in a modular and extensible high-level synthesis research

system called Spark. The system uses parallelizing compiler technology developed previously within our group

[9, 10] and re-instruments and modifies it for high-level synthesis. Since one of the outputs of the system is

synthesizable register-transfer level (RTL) VHDL, the system enables evaluation of the effects of several coarse

and fine-grain optimizations on logic synthesis results. The input language for Spark is ANSI-C, currently with

the restrictions of no pointers and no function recursion. In this way, Spark provides an integrated flow from

architectural design to logic synthesis.

The rest of this paper is organized as follows: the next section reviews previous related work followed by a

presentation of a set of speculative code motions that are useful in high-level synthesis. Section 4 presents the

Spark framework in which these code motions are implemented, the internal representation model used to capture

the designs, several of the implemented transformations and the scheduling heuristic. We then study the effects of

these code motions on performance, controller costs and synthesis results. The interconnect minimization strategy

is presented in Section 6 followed by results of this methodology. Finally, we conclude the paper with a discussion.

2 Related Work

Early high-level synthesis work concentrated on data-flow designs and applied optimizations such as algebraic

transformations, re-timing and code motions across multiplexors for improved synthesis results [11, 12]. Subse-

quent work has presented speculative code motions for mixed control-data flow type of designs and demonstrated

5

their effects on schedule lengths. CVLS [13] uses condition vectors to improve resource sharing among mutually

exclusive operations. Radivojevic et al. [14] present an exact symbolic formulation that generates an ensemble

schedule of valid, scheduled traces. Haynal [4] uses an automata-based approach for symbolic scheduling of

cyclic behaviors under sequential timing and protocol constraints. This is an exact approach, but can grow ex-

ponentially in terms of internal representation size. The “Waveschedule” approach [15] incorporates speculative

execution into high level synthesis to achieve its objective of minimizing the expected number of cycles. Santos

et al. [16] and Rim et al. [17] support generalized code motions during scheduling in synthesis systems whereby

operations can be moved globally irrespective of their position in the input description.

The chief limitation of earlier work is on the control complexity of the input description that can be synthesized.

In particular, arbitrary nested loops and conditionals are not handled. For approaches that enumerate all the control

paths or traces in the design, complex control flow can lead to an explosion in the number of traces that need to

be scheduled and validated. Also, code motion techniques that require code motions into multiple control paths

such as conditional speculation (duplication of operations into conditionals) may not be easily supported. Previous

approaches also do not maintain information about hierarchical structuring of the code, which leads to expensive

and inefficient code motion techniques (see Section 4.1).

Further, most previous works compare the effectiveness of their algorithms primarily in terms of schedule

lengths; their impact on control generation is not considered. Industry experience shows that, often, critical paths

in control-intensive designs pass through the control unit and steering logic. To this end, Rim et al. [17] use an

analytical model to estimate the cost of additional interconnect and control caused by code duplication during

code motions. Bergamaschi [18] proposes the behavioral network graph to bridge the gap between high-level and

logic-level synthesis and aid in estimating the effects of one on the other.

Binding techniques for reducing interconnect have also been studied before [8, 19, 20]. Tseng et al. [21] use

clique partitioning heuristics to find a clique cover for a module allocation graph. Paulin et al. [22] perform ex-

haustive weight-directed clique partitioning of a register compatibility graph to find the solution with the lowest

combined register and interconnect costs. Stok et al. [23] use a network flow formulation for minimum module

allocation while minimizing interconnect. Gebotys et al. [24] present an integer-programming model for simul-

taneous scheduling and allocation that minimizes interconnect. Mujumdar et al. [25] consider operations and

registers in each time-step one at a time and use a network flow formulation to bind them.

A range of code motion techniques similar to those presented in our work have also been previously developed

for high-level language software compilers (especially parallelizing compilers) [26, 27, 28]. Although the basic

transformations (e.g. dead code elimination, copy propagation) can be used in synthesis as well, other transforma-

6

tions need to be re-instrumented for synthesis. This is usually because the cost models in compilers and synthesis

tools are different. For example, in compilers there is generally a uniform push towards executing operations as

soon as possible by speculative code motions. Indeed, the optimality claims in percolation and trace scheduling are

based entirely upon maximum movement of operations out of conditional branches. In the context of high-level

synthesis, such notions of optimality have little relevance. The additional hardware costs associated with code

motions must be taken into account while making scheduling decisions.

The contributions of this work include: (a) three code motion transformations derived from speculative ex-

ecution techniques that are specifically targeted for high-level synthesis, (b) a heuristic approach to drive the

application of these transformations and (c) a framework that provides a toolbox of code transformations and

supporting compiler transformations. The toolbox approach enables the designer to apply heuristics to drive selec-

tion and control of individual transformations under realistic cost models for high-level synthesis. The synthesis

framework is a complete high-level synthesis system that provides a path from an unrestricted input behavioral

description down to register-transfer level code, that can then be synthesized by commercial logic synthesis tools.

3 Code Motions in High-Level Synthesis

Code motions refer to source level transformations with the goal of improving resource utilization and extract-

ing maximal parallelism in designs with complex control flows. In the presence of control structures, maximal

parallelism can be extracted by exposing concurrency using code motions that move operations beyond control

boundaries. One of the key enabling transformations for such type of code motions is speculation. Speculative

execution refers to the execution of an operation that was to execute under a condition, before the value of this

condition has been evaluated. In the compiler context, if the condition evaluates to a value that was not the pre-

dicted value, then compensation code has to be executed. However, in the hardware synthesis context, we can

simply choose to either commit the results or discard them based on the evaluation of the conditions.

Although speculation has been used earlier in compilers, its use in high-level synthesis has been limited. This

is because unconstrained speculative execution can actually worsen synthesis results. Synthesis techniques must

apply such transformations within the context of the structure of control flow in which the target code is placed. In

the next few sections, we present several types of speculative code motions that are useful for high-level synthesis,

starting off with an overview of speculation.

3.1 Using Speculation in High-Level Synthesis

Speculation is demonstrated by an example in Figure 1. In Figure 1(a), variables d and g are calculated based on

the result of the calculation of the conditional c. Since d and g are executed on different branches of a conditional

7

(b)

g

c

h i

d

d = e + f

c = a < b

g = h + i

c
e h

d g

if fe

(a)

d1 = e + f g1 = h + i

+

a < b

d = d1

c = a < b

g = g1

+a < b+

FT
F

T F

T

Figure 1. Extracting the inherent parallelism in a control-data flow graph by speculating the addition opera-

tions. This requires an additional resource, but leads to a reduction in the longest path.

block, these two operations are mutually exclusive. They can, hence, be scheduled on the same hardware resource

with appropriate multiplexing of the inputs and outputs as shown in the circuit in Figure 1(a).

Now, consider that enough resources (an additional adder) are available; then the operations within the condi-

tional branches can be calculated speculatively and concurrently with the calculation of the conditional c as shown

in Figure 1(b). The corresponding hardware circuit is also shown in this figure. Based on the evaluation of the

conditional, one of the results will be discarded and the other committed. It is evident from the corresponding

hardware circuits in Figures 1(a) and (b) that as a result of this speculation, the longest path gets shortened from

being a sequential chain of a comparison followed by an addition to being a parallel computation of the comparison

and the additions.

This example also demonstrates the additional costs of speculation. Speculation requires more functional units

and more storage for the intermediate results. So, uncontrolled aggressive speculation can lead to worse results

due to the extra resources and complex control required. On the other hand, idle resources can be better utilized

by executing operations speculatively on them. Hence, speculation along with other code motions needs to be

directed by a global scheduling heuristic.

3.2 Reverse Speculation

Reverse speculation refers to downward movement of operations into conditional branches. This may be useful

in instances where an operation inside the conditional branch is on the longest path through the design, whereas

an operation before the conditional is not. The operation outside the conditional branch can then be moved down

8

d

h

kba

lm

q

e

j

kba

d

q

2

i

g

n

1
e

m l

p

f

p

f

n

h

cg

i

j

4

0

c

(a) (b)

3

4

1

4

4

1

2

1

3

1

5

6 5 0

3
<

<

Figure 2. Reverse Speculation for the waka benchmark (a) original design (b) operation c is reverse speculated

into the branch of the conditional that uses its result. This leads to a reduction in schedule length by one.

or reverse speculated into both the conditional branches, so that the resource freed can be better utilized by the

operation on the longest path. This code motion can reduce the variance in scheduling results caused by the choice

of placement of operations in the input description by the designer. Reverse speculation has been variously referred

to as lazy code motion or execution and duplicating down in past literature [17, 29].

Reverse speculation is demonstrated in Figure 2 for the waka benchmark [13] 1. The operations g and e lie on

the longest data dependency path of the design that starts at operation a and ends at operation n as shown in Figure

2(a) (solid lines in this graph denote data dependencies). Also, operation c is on a shorter dependency path that

starts at operation c and ends at operation n. Therefore, operations g and e are determined to have a higher priority

than operation c. Hence, operation c can be reverse speculated or moved into the conditional branches as shown

in Figure 2(b); this leads to a reduction in the number of cycles in the schedule by one.

Note that, as shown in Figure 2(b), the reverse speculation algorithm detects that the result of operation c is

used only in one of the branches of the conditionals and hence, moves it only into that branch. In the general case,

reverse speculation may lead to duplication of the operation into both the true and the false branch of a conditional.

Hence, implications on the hardware generated must be taken into account while applying this code motion.

An important difference between reverse speculation and the classical notion of downward code motion as

presented in previous work using CDFGs (control-data flow graphs), is demonstrated by an example in Figure

1For a description of the graphical representation used in this figure see Section 4.1.

9

S0

S1

S2

S3

(b)(a)

S0

S2

a

a1

a2

S3

S1

BB3

BB4

BB2BB1

BB0

BB3

BB4

BB2BB1

BB0

S3

S2

S1

S0

S3

S2

S1

S0

(c) (d)

a

a

<<< <

Figure 3. Difference between reverse speculation and the classical notion of downward code motion in CD-

FGs. (a) Sample HTG representation (b) Operation a is reverse speculated by duplicating into operations

a1 and a2 (c) CDFG representation of same example (d) Downward code motion of operation a.

3. In this example, when operation a is reverse speculated, it is duplicated into operations a1 and a2 in basic

blocks BB1 and BB2 respectively, as shown in Figure 3(b). These operations may now be scheduled in different

time steps or states independent of each other. However, in the classical notion of downward code motion, an

operation a in an equivalent CDFG representation (shown in Figure 3(c)), is usually moved down into another

time step as shown in Figure 3(d). The ability to duplicate operations across fork (or branch) nodes and across join

nodes (as explained in Section 3.4), gives the scheduler greater flexibility in scheduling the duplicated operations

in mutually exclusive basic blocks. This flexibility is scheduling a duplicated operation in different time steps also

differentiates code motions in high-level synthesis from their counterparts in compilers.

3.3 Early Condition Execution

Reverse speculation can be coupled with another novel transformation, namely, early condition execution. This

transformation involves restructuring the original code, so as to evaluate conditional checks as soon as possible.

This in effect means that the conditional check is “moved up” in the design, and hence, all operations before the

conditional are reverse speculated into the conditional. This transformation is motivated by the fact that evaluating

a conditional check early, resolves the control dependency for operations within conditional branches. This allows

these operations to be available for scheduling sooner.

Early condition execution is demonstrated for the waka benchmark in Figure 4. In Figure 4(b), the comparison

operations p and q, that calculate the conditions, are scheduled as soon as possible and hence, the condition-

als based on them can be checked early (Boolean conditional checks are denoted by triangles in these figures).

Unscheduled operations from basic blocks preceding the conditional (d, k and c) are reverse speculated into the

conditional branches as shown in Figure 4(b). Note that operations d and c are reverse speculated into only those

branches that use their results. Clearly, the design after applying the transformation as shown in Figure 4(b) has a

10

f c

h

m

kb

d

a

l

e

j

f

d k

i

g

a bp q

m l

(b)(a)

g
ce

q
k

p

n

n

d

i

j

hk<

<

Figure 4. Code restructuring by early condition execution (a) original design (b) comparison operations p and

q are scheduled as soon as possible to enable early condition checking. All unscheduled operations before

the conditional checks are reverse speculated into the conditional branches.

shorter schedule length than the original design in Figure 4(a).

Although techniques developed previously can also execute conditions as early as their conditional check has

been evaluated, the notion of operation duplication by reverse speculation or downward code is new here. As

explained in the previous section, the flexibility of scheduling the duplicated operations in different time steps

afforded by reverse speculation is the main difference with similar techniques developed for CDFGs. Using a

more efficient hierarchical representation of the input description (see Section 4.1), along with these code motions,

enables the Spark system to more efficiently and implicitly extract and use information about mutual exclusivity

of operations and hence, increase resource sharing.

3.4 Conditional Speculation

Control intensive designs often have instances where the basic blocks that comprise the branches of a condi-

tional do not have enough operations to fully utilize the resources allocated to the design. Speculation also creates

such “idle slots” on resources by moving operations out of conditionals. These idle slots can be filled or utilized

by scheduling operations that lie in basic blocks after the conditional branches. These operations can be dupli-

cated up into both branches of the conditional and executed speculatively. We call this code motion, conditional

speculation (CS). This is similar to the duplication-up code motion used in compilers and the node duplication

transformation discussed by Wakabayashi et al. [13].

11

f=c

x y

z

f f
f=d

BB1 BB2

BB0

a
d

BB3

x

z2

BB3

(c)

f=d f=c

(a) (b)

a

BB1

d

BB0

BB2

y

z1

BB0

z

x

a

f f

BB3

BB1 BB2

y

c c

< <<

Figure 5. (a) A sample control-data flow graph (b) Operations x and y are speculated leaving idle slots in the

conditional branches (c) Operation z is conditionally speculated into conditionals BB1 and BB2.

Figure 5 demonstrates how such idle slots are created by speculation and how conditional speculation can be

used to fill them. In Figure 5(a), consider that the operations x and y both write to the variable f in their respective

conditional branches BB1 and BB2. Now, consider that this design is allocated one adder, one subtracter and

one comparator. Then operations x and y can be speculatively executed as shown in Figure 5(b). The results

of the speculated operations are written into new destination variables, d and c, that are not committed until the

corresponding condition is evaluated, i.e., the results of the speculated operations are written back to the variable

f only within the conditional branches.

Figure 5(b) demonstrates that the speculation of these operations leaves “idle” slots in which no operations

have been scheduled on the resources. Furthermore, operation z is dependent on either the result of operation x or

operation y depending on how the condition evaluates (i.e. operation z is dependent on the variable f). Operations

such as z, that lie in basic blocks after the conditional branches, can be duplicated up or conditionally speculated

into both branches of the conditional to fill idle slots as illustrated in Figure 5(c).

Note that condition speculation does not necessarily need speculation to be done first to activate it as shown

in the example above. As stated earlier, there are often empty slots within conditional branches, that go unused

unless operations are conditionally speculated from after the conditional branches.

Code motion transformations such as those presented above allow flexible motion of operations so that the

manner in which the input description was written has little or no effect on the synthesis results. This syntactic

invariance is an essential requirement of high-level synthesis systems because the behavioral nature of the input

specifications allows designers significant freedom in the choice of programming style.

4 The Spark High Level Synthesis Framework

Our synthesis framework, Spark is a modular and extensible high-level synthesis system that provides a number

of code transformation techniques. Spark has been designed to aid in experimenting with new transformations and

12

Behavioral VHDL and C

Logic Synthesis and
Functional Verification

FSM Generation
and Optimization

Operation/

Viewer
Graph

and Library

(Maintains
Hierarchical

Code
Structure)

Resource

C Input

Generate RTL VHDL,

Constraints

Variable Binding

SPARK IR

Whole-set Speculation

Percolation/Trailblazing

Scheduling and Allocation

Heuristics

Speculation/Predication Array Privatisation

Transformations Toolbox

Inlining/CSE/IVA/Folding

Code Motion

a
n

d
 G

ra
p

h
ic

a
l U

se
r I

n
te

rf
a

c
e

 (
G

U
I)

C
o

m
m

a
n

d
 L

in
e

 F
ro

n
t

En
d

Loop Transformations

Control Synthesis/Optimization

Loop Transformations

Parser Front End

Figure 6. The Spark High Level Synthesis Framework: a complete synthesis system that provides a path

from an architectural description in C to synthesizable register-transfer level VHDL.

heuristics that optimize the quality of synthesis results. Figure 6 provides an overview of the Spark system. The

input language for design descriptions is ANSI-C, currently with the restrictions of no pointers and no function

recursion. This input description is parsed into a hierarchical intermediate representation described in Section 4.1.

The core of the synthesis system has a transformations toolbox that consists of a set of information gathering

passes, basic code motion techniques and several compiler transformations. Passes from the toolbox are called

by a set of heuristics that guide how the code refinement takes place. Since the heuristics and the underlying

transformations that they use are completely independent, writing new heuristics can be as simple as making calls

to the toolbox.

The transformations toolbox contains a data dependency extraction pass, parallelizing code motion techniques

[30, 9], dynamic renaming of variables, the basic operations of loop pipelining (or software pipelining) and some

supporting compiler passes such as constant propagation and dead code elimination [31]. The code motion tech-

niques and dynamic renaming are detailed in Sections 4.2 and 4.3.

A typical design flow through the Spark system takes as input a behavioral description of a design in ANSI-C,

creates the intermediate format, schedules the design, performs control synthesis, and finally generates an output

13

in register-transfer level VHDL. The passes and transformations that are used can be controlled by the designer

using scripts, hence, allowing experimentation with various transformations and heuristics.

For instance, the designer may decide to use the trailblazing code motion technique in conjunction with variable

renaming and schedule operations in the design. In this way, once a scheduling heuristic has scheduled the design

based on a given resource allocation, the next stage of the system performs control synthesis and optimization.

Control synthesis consists of generating control circuits to implement the schedule, binding operations to func-

tional units, tying the functional units together (interconnect binding), allocating and binding storage (registers)

and generating the steering logic. The control unit is generated using the finite state machine controller style.

Resource binding is done as a part of control generation since it affects the generation of the steering control logic.

The back-end of the Spark system consists of a register-transfer level (RTL) VHDL generator. This VHDL is

synthesizable by commercial logic synthesis tools [32] and hence, the Spark system integrates into the standard

synthesis design flow. This completes the direct path from architectural design and specification in a high level

language such as “C” to synthesizable RTL VHDL code, and then down to the synthesized netlist.

In the next few sections, we examine, in more detail, some of the transformations and heuristics of the Spark

synthesis framework that aid in implementing the code motion transformations presented earlier. We start with a

description of the internal intermediate model used for capturing the input description.

4.1 A Model for Control Intensive Designs

The Spark system stores the behavioral description in an intermediate representation (IR) that retains all the

information given in the input description. Hence, for example, the IR maintains information about variables

used in the source code and it does not reduce array accesses to pointer arithmetic and an associated pointer

access. This is critical for enabling source-level transformations and making global decisions about code motion.

Retaining information about variables used in the input description is also very important from the point of view

of user-interaction, since it allows a user to track the intermediate results as each transformation is applied to the

input code. This is explained in more detail in Section 4.3.

The intermediate representation used in Spark consists of basic blocks encapsulated in Hierarchical Task

Graphs (HTGs) [9, 33]. An HTG is a directed acyclic graph that has three types of nodes: simple nodes, compound

nodes and loop nodes.

1) Simple nodes represent nodes that have no sub-nodes. There are two such nodes, namely, statement nodes

and single nodes. Statement nodes, or statements for short, represent an aggregation of operations that

execute concurrently. Statements that have no control flow between them are aggregated together into basic

14

3

n
0

h

1 1m l

1f

p

FT

44

3

2

2
g

i

j

e

0

5

56
kba

d

q
4

4

c

<

False/Else
Branch

Compound

If HTG
Node

If HTG Node

HTG Node

True/Then
Branch

Figure 7. The hierarchical task graph (HTG) represen-

tation of the “waka” benchmark [13]. The priorities of

each operation are marked next to each operation node.

Basic Block

Incr Statement

Statement

Cond Statement Loop Exit

True

False

HTG Node

Compound

Basic Block

Init Statement

Basic Block

Basic Block

Compound HTG Node

For HTG Node
Compound

HTG Node

Figure 8. The hierarchical task graph repre-

sentation of a For Loop.

blocks, which are encapsulated into single nodes. These single nodes (or basic blocks) then form parts of

compound HTG nodes or loop nodes.

2) Compound HTG nodes are hierarchical in nature, i.e., they can contain other HTG nodes. They are used to

represent structures like if-then-else blocks, switch-case blocks or a series of HTGs.

3) Loop nodes are used to represent the various types of loops (for, while-do, do-while) and have a loop head

and a loop tail that are simple nodes and a loop body that is a compound HTG node.

HTGs are constructed from the input code by creating HTG nodes for each if-then-else, for-loop, while-loop

et cetera in the code. Expressions in the code are stored as abstract syntax trees [31] and each expression is

initially encapsulated in a statement HTG node of its own. Since HTGs maintain a hierarchy of nodes, they are

able to retain coarse, high level information about program structure, in addition to operation level and basic block

level information. For example, an if-then-else HTG contains a compound HTG with a single basic block for the

conditional check, a compound HTG for the true branch, a compound HTG for the false branch and a compound

HTG with a single basic block for the join node. Figure 7 illustrates the HTG for the synthetic benchmark “waka”

15

[13]. In this figure, the dashed arrows indicate control flow and the solid lines indicate data flow. Operations are

denoted by circular nodes with the operator sign within and the triangle indicates a Boolean conditional check. In

this figure, there is an if-HTG node, whose false branch contains another if-HTG node. Similarly, the conceptual

HTG representation of a For-loop HTG is shown in Figure 8; only control flow dependencies are shown in the

figure (with solid lines). A for-loop HTG consists of an initialization basic block, the conditional check basic

block, a compound HTG node that represents the body of the loop and an optional basic block for the loop index

increment.

An important feature of HTGs is that they are strongly connected components (SCC) [33]. An SCC region

(in this case a HTG node) has the property of having a single entry and a single exit point. This property has

several advantages: it can be used to encapsulate complex loops and also irregular regions of code, to simplify

and regularize code motion techniques and possibly reduce the amount of patch-up code that needs to be inserted.

These features are exploited by code motion techniques such as Trailblazing [9] and Resource-Directed Loop

Pipelining [10], to make hierarchical moves when moving operations in the graph as explained in the next section.

4.2 Code Motion Techniques in the Transformations Toolbox

The code motion techniques implemented in the toolbox of the Spark system are percolation scheduling and

trailblazing. Percolation Scheduling (PS) was developed as a technique to target code to parallel architectures such

as VLIWs (Very Long Instruction Word) processors and vector processors [27, 30]. Percolation scheduling com-

piles programs into parallel code, by systematically applying semantic preserving transformations. There is a set

of four core percolation transformations, move-op, move-cj, delete and unify, that are defined in terms of adjacent

nodes in a program graph [30]. The move-op and move-cj form the heart of the percolation transformations; they

move an operation or a conditional jump up one instruction in the CDFG while preserving the semantics of control

and data flow.

The core transformations of percolation have been proven to be complete with respect to the set of all possible

local, dependency-preserving transformations on program trees. Once the code motion heuristics have decided

which operation to move and the slot to schedule it on, the appropriate percolation transformations are applied so

that the operation “percolates” to its assigned resource slot.

However, percolation-based compilers typically suffer from two main efficiency problems: code explosion and

linear operation moves. Code explosion occurs when trying to parallelize descriptions with conditional branches,

due to duplication of operations into both branches of conditionals and insertion of copy operations. A lot of this

unnecessary code explosion is due to the strictly incremental nature of percolation transformations. The problem

of linear operation moves refers to the fact that in percolation, moving an operation from a node A to node B

16

cond = a < b
b = e − f

cond

x = a + b a = c − d
x = a − b

Op1: y = e + f
z = y + x

If Node

BB 1

BB 2

z = y + x

x = a − b
a = c − dx = a + b

cond

Op1: y = e + f
b = e − f

cond = a < b BB 1

If Node

BB 2

Figure 9. Trailblazing: Operation op1 is moved from basic block BB2 to basic block BB1 across the if-then-else

HTG node without visiting each basic block inside the node.

requires a visit to each node on every control path from A to B. To circumvent these problems, the trailblazing

code motion technique was proposed.

Trailblazing is a code motion technique that moves operations in a hierarchically structured control-data flow

graph [9]. These graphs, known as Hierarchical Task Graphs (HTGs) [33] (see Section 4.1), structure the input

description’s operations and global information so that non-incremental moves can be made without visiting every

operation that is bypassed. At the lowest level, trailblazing is able to perform the same fine-grained transformations

as percolation. However, at a higher level, trailblazing is able to move operations across large blocks of code.

While an operation is being moved using trailblazing, if the algorithm comes across a HTG node, it checks to

determine if the moving operation has any dependencies with the HTG node. If there are no dependencies, then

the operation is moved across the node without visiting each of its sub-nodes. This is demonstrated in Figure 9

with an example. In this figure, the operation Op : y = e+ f is moved from basic block BB2, across the if-then-else

HTG node, since it has no data dependencies with any of the operations in this node. Hence, the Op operation can

be scheduled in the earlier basic block BB1 as shown in Figure 9(b). To perform the same code motion, percolation

would have duplicated Op into both the branches of the if-block, then moved it up each branch, and finally unified

the copies back into Op at the conditional check, hence, in the process visiting each node in the if-then-else block.

The algorithm for implementing trailblazing is discussed in detail in [9]. For implementing these code motion

techniques, a data dependency collection pass has to be executed after the input description has been parsed into

the intermediate representation. However, some of the data dependencies in the input description can be eliminated

by dynamic renaming, as explained in the next section.

17

x=y+1

y=y’

y’=z+1

y=z+1

x=y+1

x=z+1

x=y+1 x=y+1

x=x’

(a) (b)

x’=z+1

x=y x=y

z=y+1

(c)

z=x+1

Figure 10. Moving one operation across another operation while eliminating (a) an anti dependency (b) an

output dependency and (c) a flow dependency.

4.3 Eliminating data dependencies by Dynamic Renaming

A data dependency is said to exist between two operations if the result of one of them interferes with execution

of the other. There are four types of data dependencies [29]: a flow dependency is said to exist when an operation

that writes to a variable is followed by an operation that reads the same variable, an anti dependency is when one

operation that reads a variable is followed by an operation that writes to the same variable, an output dependency

exists when two operations write to the same variable one after the other and an input dependency when two

operations read from the same variable. Of these, input dependencies do not affect scheduling.

Several approaches exist to eliminate some data dependencies. In one popular technique used in high-level

synthesis, a control-data flow graph (CDFG) is constructed from the input description in such a way that the

variable names from the original source are not maintained. Hence, the CDFG just consists of nodes, which

are the operations, and edges that constitute the data flow from one node to another. In this way, only flow

dependencies are maintained. However, one of the main reasons for the poor acceptance of high-level synthesis

tools among designers has been the inability to control the various transformations applied to the input description

and more importantly, to visualize the intermediate results. This inability to visualize the intermediate results

arises from the fact that once the input description has been captured by a flow-dependency only CDFG, there is

no way to correlate the variables and operations used in the input description with the design as represented by the

CDFG. In the Spark system, we maintain the complete information about variables used in the input description

and hence, construct the hierarchical task graphs (HTGs) along with data dependency graphs that maintain all the

data dependency types. Hence, users can correlate the variables and operations from the input description to the

intermediate representation used by the synthesis tool.

However, non-flow data dependencies that prevent code motions can often be resolved by dynamic renaming

and combining [34]. Figures 10(a) to (c) demonstrate how one operation can be moved past another one while

dynamically eliminating data dependencies. In Figure 10(a) the operation that writes to variable y is scheduled at

an earlier time step by moving only the right hand side of the operation. The result is written to a new destination

18

variable y′ and the original operation is replaced by a copy operation of the new destination variable y ′ to the

original variable y. Similarly, in Figure 10(b), an output dependency between two operations that write to the same

variable x, can be resolved by creating a new destination variable x′ while moving the operation, and replacing the

original operation with a copy operation.

Copy operations introduced by dynamic renaming can also be circumvented by a technique known as combin-

ing. Combining replaces the copy in the operation being moved by the variable being copied. This is demonstrated

in Figure 10(c), where the operation z = x +1 is moved past the copy operation x = y. The variable x is replaced

with the variable y on the right hand side of the moving operation.

Dynamic renaming and combining, when performed in conjunction with code motion techniques such as trail-

blazing and percolation, can lead to considerable easing of the constraints imposed by data dependencies. In the

next section, we present a scheduling heuristic that uses the various passes in the Spark toolbox and generates a

schedule under resource constraints.

4.4 Priority-based Global List Scheduling Heuristic

Scheduling is the task of assignment of operations to control steps or time intervals so that the allocated re-

sources can compute the operations assigned to each step [8]. For the purpose of evaluating the various code

motion transformations, we have chosen a Priority-based global list scheduling heuristic, although the transfor-

mations presented here can be applied to other scheduling heuristics as well. Priority list scheduling works by

ordering operations to be scheduled based on a priority or cost associated with them.

Our objective is to minimize the longest delay through the design; hence, priorities are assigned to each opera-

tion based on their distance, in terms of the data dependency chain, from the primary outputs of the design. The

priority of an operation is calculated as one more than the maximum of the priorities of all the operations that use

its result. The algorithm starts by assigning operations that produce outputs a priority of zero, and hence, opera-

tions whose results are inputs to outputs have a priority of one and so on. The priority assignment of operations

for the waka benchmark is shown in Figure 7. The priority assignment can also be changed to minimize a different

cost function, such as average delay.

The scheduling heuristic is presented in Figure 11(a). The inputs to this heuristic are the unscheduled hierar-

chical task graph (HTG) of the design and the list of resource constraints. Additionally, the designer may specify

a list of allowed code motions (i.e. speculation, reverse speculation, conditional speculation et cetera), whether

dynamic variable renaming is allowed, and the code motion technique (percolation or trailblazing) for moving

the operations. The heuristic starts by assigning a priority to each operation in the input description as explained

above. Then scheduling is done one control or scheduling step at a time while traversing the basic blocks in the

19

Algorithm 1: Priority List Scheduling Heuristic

Inputs: Unscheduled HTG of design, Resource List R

Output: Scheduled HTG of design

1: Calculate Priority Pr of all Operations in HTG

2: Scheduling step step = 0

3: while (step 6= last step of HTG) do

4: foreach (resource res in Resource List R) do

5: Get List of Available Operations A

6: Pick Operation op with lowest cost in A

7: Move op and schedule on res in step with

user-specified CodeMotionTechnique

8: endforeach

9: step = step+1

10: endwhile

(a)

Algorithm 2: Get List of Available Operations

Inputs: Resource res, Scheduling step,

AllowedCodeMotions

Output: Available Operations List A

1: Candidates A = all unscheduled ops U in HTG

that can be scheduled on resource res

2: foreach (op in A) do

3: if (data dependencies of op cannot be satisfied)

remove op from A

4: if (op cannot be moved to step using

AllowedCodeMotions)

remove op from A

5: Calculate cost of operation op

6: endforeach

(b)

Figure 11. (a) Priority-based List Scheduling Heuristic (b) Determining the list of Available operations.

hierarchical task graph (HTG). In our implementation, control paths are followed such that at the fork node of a

conditional block, the true branch is scheduled first and then the false branch. Within a basic block, each schedul-

ing step corresponds to a statement HTG node in the basic block (see Section 4.1). So, at each time step in the

basic block, a list of available operations is collected, for each resource in the resource list, as shown in line 4 in

the algorithm in Figure 11(a).

Available operations is a list of operations that can be scheduled on the given resource at the current scheduling

step. Pseudo-code for collecting the list of available operations is given in Figure 11(b). Initially, all unscheduled

operations in the HTG that can be scheduled on the current resource type are added to the available operations list.

Subsequently, operations whose data dependencies are not satisfied and cannot be satisfied by variable renaming

are removed from this list. Similarly, operations that cannot be moved in the HTG to schedule them onto the current

scheduling step using the allowed code motions are also removed from the available list. The list of allowed code

motions is provided by the user and hence, allows experimentation with various kinds of code motions. The

algorithm then assigns a cost to each remaining operation in the available list. Currently, this cost is based on the

operations global priority.

Once the scheduling heuristic has received the list of available operations, it picks the operation with the lowest

20

cost from the list as shown in line 6 of Figure 11(a). The code motion technique is then instructed to schedule

this operation at the current scheduling step. This is repeated for all resources in each scheduling step as the basic

blocks in the HTG are traversed from top to bottom. Operations left unscheduled at the end of a basic block are

moved down into the next basic block or reverse speculated into the conditional branches, as the case may be.

Scheduling of loops is done in the same manner; however, loops are scheduled first in the design. The scheduler

traverses the design graph till it finds the innermost loop, schedules this first (after applying any user-specified

loop transformations), and then schedules the next outer loop nest and so on. Scheduling of the rest of the design,

then proceeds starting at the first node in the HTG. The Spark system can schedule all types of loops, including

those with unknown loop iteration bounds. This is because, in the finite state machine (FSM) generated by Spark,

at the end of a loop body iteration, the FSM either goes back to the first state in the loop body or goes to the next

state after the loop body, depending on whether the loop condition is satisfied or not. Hence, loop bounds are not

required for generating correct, synthesizable VHDL. However, when the loop bounds are not known, we cannot

estimate the cycles the loop will take to execute and hence, for these kind of designs, we cannot present the number

of cycles of execution in our results.

4.5 Determining the Application of the Code Motions

There is no fixed order of application of code motions; it depends upon the individual operation and the current

scheduling step. When the available list is being constructed, the scheduler calls a code motion technique such

as trailblazing or percolation, which determines all the code motions required to move the operation from its

current position to the current scheduling step. It then compares these required code motions with the list of

AllowedCodeMotions, which are user-specified. So, if a particular code motion, say speculation, is required to

move the operation to the current scheduling step, say because it has to move out of a conditional branch, and this

code motion is not in the AllowedCodeMotions list, then the operation is not included in the available list.

The user can specify which of the code motions are enabled (AllowedCodeMotions) via a script file that is read

by Spark. We use this scripting ability to see how the synthesis results are affected when various code motions

are enabled and disabled. Hence, once a code motion is enabled in the script file, the scheduler applies this code

motion automatically without any further user intervention, as and when required.

Experimental results have shown us that, when code motions such as conditional speculation that lead to oper-

ation duplication, are applied unchecked, they can lead to high overheads and increased schedule lengths. Hence,

currently we have developed some heuristics to control conditional speculation (CS). A heuristic that determines

if an operation op should be conditionally speculated is outlined in Figure 12. This heuristic starts with the list

of basic blocks (BBList) into which an operation op will have to be duplicated, if it were to be scheduled on

21

Algorithm 3: Test if Conditional Speculation should be applied

Inputs: List of basic blocks BBList to which the operation op will

be duplicated if it is scheduled at scheduling step in BBstep

Output: Whether op should be condionally speculated

1: Initialize: allowConditionalSpeculation = true

2: foreach (Basic block bb in BBList) do

3: if (isThereEmptyResourceInBB(bb, op) == false)

4: willHaveToCreateNewStatementInBBForOp = true

5: if (numOfStmtsInBB(bb) ≥ numOfStmtsInBB(BBstep)) then

6: if (willHaveToCreateNewStatementInBBForOp == true)

7: allowConditionalSpeculation = false

8: else if (isBBScheduled(bb) == false)

9: allowConditionalSpeculation = false

10: if (allowConditionalSpeculation == false)

11: return from function with false result

12: endforeach

13: return from function with true result

Figure 12. Heuristic to determine whether to conditionally speculate an operation op into multiple basic

blocks given by BBList, while scheduling it into scheduling step in basic block BBstep.

scheduling step, step, in basic block BBstep.

The heuristic goes through every basic block bb in the list BBList and for each bb, it checks if there is an idle

resource to schedule operation op on (line 3 in Figure 12). If there is no idle resource in bb, then the heuristic sets

a flag saying that a new statement2 will have to be created in the basic block bb to accomodate operation op. Next,

the heuristic determines if the current basic block bb already has as many or more statements than BBstep and a

new statement will have to be created to accomodate op, then CS is not allowed (lines 5 to 7 in the algorithm).

This is to prevent basic block bb from becoming the critical path in the design with the most number of statements

(or scheduling steps) among its mutually exclusive basic blocks. This implies that the heuristic do not allow CS

if it leads to an increase in the maximum number of cycles through an if-then-else conditional HTG node. So in

the example in Figure 5, if CS would lead to an additional cycle being required in either the “true” (BB1) or the

2Each statement in a basic block translates into a scheduling step within the basic block (see Section 4.1)

22

“false” (BB2) basic blocks, then the code motion would not be allowed.

The heuristic also does not allow CS when the bb already has as many or more statements than BBstep and the

basic block bb has not been scheduled yet (lines 5, 8 and 9 in Figure 12). This is because without scheduling the

basic block bb first, it is not possible to accurately determine if there is an idle resource in bb on which to schedule

operation op. This can be demonstrated with the example in Figure 5; we would allow consideration of operations

that require CS only while scheduling basic block BB2 (after BB1 has been scheduled). If we apply conditional

speculation while scheduling basic block BB1, then the operation duplication into basic block BB2 may lead to an

extra cycle being added, since the resource usage of unscheduled basic blocks cannot be determined.

The current cost model depends only on the global priority of the operation, but ignores the control and mul-

tiplexor costs associated with scheduling an operation on a functional unit. A more global notion of operation

scheduling costs is required, so that undesirable code motions or scheduling decisions leading to increased in-

terconnect costs are assigned a higher cost. In this work, we have used this simple cost model to gather more

information about the effects and effectiveness of the various code motions. The results of these experiments are

presented in the next section and can be used to develop more realistic cost models.

5 Effects of Code Motions on Quality of Synthesis Results

We now study the effects of the proposed code motions first on scheduling and controller synthesis results and

then on logic synthesis results. We use two large realistic benchmarks for all the experimental results presented in

this paper: the Encoder block from the ADPCM benchmark [35] and the Prediction block (a moderately control

intensive block) from the MPEG-1 algorithm [36]. We present results for three out of five of the functions from the

MPEG Prediction block, namely, calc f orward motion, pred0 1 and pred2, which have 31, 45, and 26 non-empty

basic blocks respectively. Of the remaining two functions, the calcid function consists of a single basic block with

no control flow and the calc backward motion function is similar to the calc f orward motion. The ADPCM

Encoder has 38 non-empty basic blocks. The number of basic blocks gives an idea of the control complexity and

size of the design.

5.1 Effects on Performance

We first study the effects of these code motions on the number of states in the finite state machine (FSM) and

the cycles on the longest path in the design. These are presented in Tables 1 and 2 for the various functions in the

two benchmarks. The number of states denotes the controller complexity and the longest path length is equivalent

to the execution cycles of the design. For loops, the longest path length of the loop body is multiplied by the

number of loop iterations, if this is known. The resources used are indicated in the two tables; ALU does add and

subtract, ∗ is a multiplier, == is a comparator, [] is an array address decoder and << is a shifter. The multiplier

23

MPEG Prediction Block; Resources = 3ALU,2[],3 <<,2 ==,1*(2-cycle); BBs = non-empty Basic Blocks

Type of calc f orw (73 Ops, 31 BBs) pred2 (217 Ops, 45 BBs) pred0 1 (101 Ops, 26 BBs)

Code Motion # States Long Path # States Long Path # States Long Path

Within basic blocks 37 37 182 6359 187 3072

+across hier blocks 28(-24%) 28(-24%) 157(-14%) 5956(-6%) 162(-13%) 2871(-7%)

+speculation 26(-7%) 26(-7%) 102(-35%) 4263(-28%) 137(-15%) 2177(-24%)

+early cond exec 24(-8%) 24(-8%) 100(-2%) 4261(-0%) 134(-2%) 2174(0%)

+cond speculation 22(-8%) 22(-8%) 92(-8%) 3945(-7%) 122(-9%) 1910(-12%)

Total Reduction 40.5 % 43.2 % 49.5 % 38.0 % 34.8 % 37.8 %

Table 1. Scheduling and controller size results for the various code motions for the MPEG Pred block.

Specu-
lation Speculation

Reverse
If Node

Then
BB

Else
BBAcross the

Hierarchical
Block Speculation

Conditional

<

Summary of various types of code motions

ADPCM Encoder: 65 Ops, 38 non-empty BBs

Type of 1ALU,2 ==,2[],1 <<

Code Motion # States Long Path

Within basic blocks 33 313

+across hier blocks 28(-15%) 273(-13%)

+speculation 26(-7%) 253(-7%)

+early cond exec 24(-8%) 233(-12%)

+cond speculation 16(-33%) 152(-35%)

Total Reduction 51.5 % 51.4 %

Table 2. Scheduling and controller size results for the

various code motions for the ADPCM Encoder.

is a 2-cycle resource and all other resources have single cycle execution time. These tables also show the number

of non-empty basic blocks and operations in the design.

The Spark system treats function calls as resources and creates a functional unit corresponding to them in

hardware. For example, the function calc f orward motion is called from both the functions pred0 1 and pred2,

and hence, is a component or functional unit that is embedded in these hardware blocks. Hence, called functions

contribute towards the schedule length and number of states in the controller of the calling function.

The rows in Tables 1 and 2 present results with each code motion enabled incrementally, i.e., these signify

the allowed code motions while determining the available operations (see Section 4.4) and do not represent an

ordering of code motions. We first allow code motions only within basic blocks (first row) and then, in the second

row, we also allow code motions across hierarchical blocks, i.e., across entire if-then-else conditionals and loops.

24

The third row further allows speculation, the fourth row has early condition execution enabled as well and the final

row has the conditional speculation code motion also enabled. The percentage reductions of each row over the

previous row are given in parentheses. Typical run times of Spark to produce these results is in the range of 5 user

seconds (0.2 kernel seconds) on a Sun Ultra 250 running at 400 Mhz.

As each code motion is enabled, we see significant reductions in both the number of FSM states and the cycles

on the longest path. Code motions across hierarchical blocks, speculation out of conditionals and conditional

speculation by far are the most effective code motions. The results demonstrate that early condition execution,

which uses reverse speculation to move operations down into conditional branches, can lead to improvements in

some cases. However, these improvements vary with each function in the benchmarks. Similarly, the results for the

various code motions also demonstrate that the nature of the benchmark functions dictates what code motions are

most effective on them. For example, the fifth row in Table 2 demonstrates that enabling conditional speculation

leads to reductions of over 36 % both in the number of states and the longest path cycles for the ADPCM encoder.

However, the corresponding row in Table 1 shows reductions of only between 5-15 % for the MPEG algorithm.

This is because the ADPCM benchmark is highly control intensive with nearly as many conditional checks as

operations. Hence, moving operations into its conditional branches significantly improves resource utilization.

The functions in the MPEG Prediction block on the other hand have a more mixed distribution of data and control

operations. Hence, the improvements due to the various code motions are more uniform for the MPEG functions,

as evident from Table 1.

These observations, and the results in Tables 1 and 2, demonstrate that the effectiveness of a particular code mo-

tion is heavily dependent on the characteristics of the behavioral description being synthesized. Control-intensive

designs (such as calc f orw and ADPCM) benefit more from code motions that move operations into conditional

branches (such as early condition execution and condition speculation), whereas designs that have more data op-

erations than conditionals (such as pred0 1 and pred2) benefit more from code motions such as speculation. We

also note that opportunities for conditional speculation increase with increasing resources, leading to up to 30 %

reductions for the MPEG benchmark. This indicates that resources are most idle within conditional branches,

especially as more resources are allocated.

Tables 1 and 2 show that these kind of speculative code motions lead to substantial improvements in the latency

of the design and complexity of the controller. The total reduction in execution cycles and number of states

achieved with all the transformations enabled over code motion only within basic blocks ranges between 35 % to

51 % (last row in the tables). Note that, when code motions only within basic blocks are enabled, the priority-list

scheduling heuristic we have presented reduces to the classical list scheduling approaches presented in previous

25

Number of Schedule Length
Benchmark

Basic Blocks
Resources

CVLS [13] HRA [37] Radivojevic [14] Santos [3] Spark

kim [37] 7 2+,1-,2== 6 7 6 6 6

parker [38, 39] 20 2+,3-,5== 4 NA 4 4 4

waka [13] 9 1+,1-,2== 7 7 7 7 7

rotor [14] 11 2+-,2*,1[] NA NA 8 8 8

Table 3. Comparison of schedule lengths with other methods using classical high-level synthesis benchmarks.

NA represents results that are not available. The scheduling results are optimal for these benchmarks.

works [8, 20].

As stated earlier, most of the benchmarks used to present results in previous high-level synthesis literature are

small and many of them are synthetic. However, to provide a comparison of Spark with these works, we present

scheduling results of several previous approaches along with our system, Spark, in Table 3. The comparisons are

made with the CVLS approach [13], the HRA approach [37], the exact approach presented by Radivojevic [14] and

the approach presented by Santos et al. [3]. These comparisons have been made using classical high-level synthesis

benchmarks. The benchmarks are: kim from [37], parker from [38, 39], waka from [13] and rotor from [14]. The

columns present the number of basic blocks, the resources used for scheduling and the longest path length (cycles)

of the schedule produced by each approach. The results in this table show that for these benchmarks, the Spark

system produces scheduling results that are as good as those produced by the other systems. These scheduling

results are optimal for these benchmarks. Whereas the runtime for the exact approach by Radivojevic on the

“rotor” benchmark is in the order of 13.7 seconds on a SUN Sparc Station 10 (probably running at 33 or 66 Mhz),

the runtime for the Spark system for the same benchmark is in about 0.13 seconds on a 170 Mhz SUN Sparc

Station 5.

5.2 Effects on Area and Clock Period

Although aggressive code motions lead to significant reductions in the execution cycles of a design, their overall

effects on synthesis results should take into account the associated costs of control logic. These are not obvious

until the design is synthesized. Hence, to further evaluate the effects of the various types of code motions, we

synthesized the register-transfer level (RTL) VHDL generated after scheduling by the Spark synthesis system,

using the Synopsys Design Compiler logic synthesis tool. The LSI-10K synthesis library was used for technology

mapping.

The results after logic synthesis are summarized in Figure 13 for the pred2, pred0 1 and the calc f orw func-

26

Within Basic Blocks

Conditional Speculation
Early Condition Exec
Across hier+Speculation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
Synthesis Metrics

MPEG Pred2
function

N
or

m
al

iz
ed

 V
al

ue
s

Within Basic Blocks

Conditional Speculation
Early Condition Exec
Across hier+Speculation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

Synthesis Metrics

MPEG Pred0
function

Within Basic Blocks

Conditional Speculation
Early Condition Exec
Across hier+Speculation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
Synthesis Metrics

N
or

m
al

iz
ed

 V
al

ue
s

MPEG Calc Forw
function

Within Basic Blocks

Conditional Speculation
Early Condition Exec
Across hier+Speculation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Num of States Critical Path Total Delay Unit Area

ADPCM Encoder
function

N
or

m
al

iz
ed

 V
al

ue
s

Synthesis Metrics

Figure 13. Logic synthesis results after various code motions for the MPEG pred case2, pred case0 1 and

calc f orward functions and the ADPCM Encoder function; circuit delay decreases significantly but area

can increase marginally.

tions of the MPEG Prediction block and for the Encoder function of the ADPCM algorithm. In these graphs, four

metrics are mapped: the number of states in the FSM, the critical path length (in nanoseconds), the unit area and

the maximum delay through the design. The critical path length is the length of the longest combinational path

in the netlist as determined by static timing analysis. The critical path length dictates the clock period of the final

design. The unit area is in terms of the synthesis library used (the LSI-10K library). The maximum delay is the

product of the longest path length (in cycles) and the critical path length (in ns) and signifies the maximum input

to output latency of the design.

These four metrics are mapped for, code motions allowed only within basic blocks, then with across hierar-

chical block code motions and speculation also allowed, with early condition execution as well and finally with

conditional speculation allowed too. The values of each metric are normalized by the metric’s value when code

motions are allowed only within basic blocks. We synthesized these designs with a arbitrary binding of operations

to functional units so as to ensure that the number of resources synthesized are as per the resources allocated

during scheduling by the high-level synthesis tool.

27

These graphs demonstrate that as we apply more and more aggressive code motions, the size of the controller

(number of states) decreases and the performance of the design increases, i.e. total delay decreases. These values

are almost halved when all the code motions are enabled over when code motions only within basic blocks are

allowed. For the early condition execution transformation, even though the scheduling results presented in the

previous section showed no improvement in some cases, we find that the synthesis results are usually better,

especially in terms of the area of the circuit. This is because this transformation moves operations down into

conditional branches and at times only into those branches that need the results of the operation.

These graphs also demonstrate that the critical path length in
State

Current

ALU

Control
LogicConditions

Figure 14. Typical critical paths in control-

intensive designs pass through the steering

logic and the associated control logic.

the design remains fairly constant, while the area increases steadily.

This area increase is due to increasing complexity of the steer-

ing logic and associated control logic caused by resource sharing.

Critical paths also typically pass through this steering logic. A

typical critical path in the synthesized designs is shown in Figure

14. It starts in the control logic that generates the select signals

for the multiplexors connected to the functional units. The path

continues through the multiplexors, through the functional unit

and then through another multiplexor, that finally writes to the output register. As the resource utilization and

sharing increases as a result of aggressive speculative code motions, the size of these interconnects (multiplexors

and demultiplexors) gets increasingly large, leading to increased area.

As noted above, the critical path length does not change significantly as more and more code motions are

enabled. This is because although aggressive code motions affect critical path lengths adversely due to higher

resource utilization and sharing, they also lead to reduced number of states in the FSM and shorter schedule

lengths. This leads to smaller controllers that moderate the effects of the increased interconnect and effectively

leads to negligible effect of the code motions on critical path lengths.

6 Reducing Interconnect

The very resource sharing that is leading to increases in circuit complexity, also provides an opportunity to

minimize interconnect. Since the resources have several operations and variables mapped to them, there exist

opportunities to reduce the number of inputs to, and hence, the complexity of, the (de)multiplexors between these

resources by resource binding techniques. Fewer inputs not only mean smaller interconnects but also simpler

associated control logic. The interconnect minimizing resource methodology implemented in the Spark framework

attempts to first bind operations with the same inputs or outputs to the same functional unit. The variable to register

28

c e

1:a=b+c; 2:d=e+f

3:g=e+d; 4:h=a+c 1:a=b+c 2:d=e+f
3:g=e+d 4:h=a+c

b,d,h f,a,g

Figure 15. An example of binding leading to a large

number of interconnections.

3:g=e+d4:h=a+c
1:a=b+c

b,a,h c e

(b)

c e

1:a=b+c 2:d=e+f
4:h=a+c 3:g=e+d

(a)

2:d=e+f

b,d,g f,a,h

f,d,g

Figure 16. Reducing interconnect by improved (a) op-

eration binding (b) variable binding.

binding then takes advantage of this by trying to map variables that are inputs or outputs to the same functional

units to the same register. In this way, the number of registers feeding the inputs and storing the outputs of

functional units is reduced, in effect, reducing the size of the multiplexors and demultiplexors connected to the

functional units. The following sections describe an operation and variable binding methodology to minimize

these interconnect and control costs.

6.1 Operation to Functional Unit Binding

The number of interconnections required to connect units to each other and to registers can be reduced by com-

bining operations that have the same inputs and/or same outputs. This can be intuitively understood by considering

the classical example of binding and resultant hardware shown in Figure 15 [8]. The interconnect shown in this

circuit can be simplified by exchanging the functional units that operations 3 and 4 are bound to, as shown in

Figure 16(a). This is because operations 1 and 4 have the input variable c in common and operations 2 and 3 have

variable e in common.

So, the operation binding problem can be defined as follows: given a scheduled design and a set of resource

constraints, map each operation to a functional unit from among the given resources, such that the interconnect

is minimized. We formulate this problem by creating an operation compatibility graph for each type of resource

in the resource list. Each operation in the design that can be mapped to the resource type under consideration

has a node in the graph. Compatibility edges are created between nodes corresponding to operations that are

scheduled in either different control steps or execute under a different set of conditions. Note that, mutually

exclusive operations (and their variables) scheduled in the same time step are compatible with each other.

For reducing interconnect, we add additional edge weights between operations for each instance of common

inputs or outputs between them. Then, a maximally weighted clique cover of this graph will lead to binding

that reduces interconnect. However, the constraint on the number of resources means that the number of cliques

cannot exceed the number of resources of each type. To solve this problem, we formulate it as a multi-commodity

network flow problem. A max-cost flow through this multi-commodity network represents a valid maximally

29

weighted clique cover [40, 41]. We note that Chang et al. [40] use the same formulation for module allocation but

their objective is to minimize power consumption.

6.2 Variable to Register Binding

Variable to register binding can take advantage of the improved operation binding by mapping variables that

are inputs or outputs to the same port of the same functional unit to the same registers. For example, the result

obtained after operation binding shown in Figure 16(a) can be further improved by changing the variable binding

as shown in Figure 16(b). Here, the binding of the variables d and a has been switched, so that variables b and a

which feed the same input of the first adder are mapped to the same register and f and d which feed the second

adder are mapped to the same register. Similarly, the binding of the output variables g and h has been switched

too.

The formulation of this problem is similar to the operation binding problem, except that we do not place a

constraint on the number of registers. A compatibility graph is created with a node corresponding to a write to a

variable in the design. Compatibility edges are added between nodes corresponding to variables that do not have

overlapping lifetimes or are created under a different set of conditions.

Additional edge weights are added between variables for each instance of them being inputs or outputs to

the same port of the same functional unit. A maximally weighted clique cover of this graph represents a valid

variable to register binding with minimal interconnect. This is solved by formulating it as a min-cost max-flow

network problem. Similar approaches to solve this clique problem have been used in [23] and [42]. Details of the

implementation of the binding methodology can be found in [43].

7 Results of Resource Binding

To validate the interconnect minimizing methodology presented above, we synthesized the MPEG and ADPCM

designs, using a non-interconnect aware resource binding technique and using the interconnect minimizing binding

technique. For the rest of this section, we refer to the non-interconnect aware resource binding methodology as

the “regular” binding. We have been unable to compare our results to any previous work because of a number of

reasons; past work on reducing interconnect by resource binding has used purely data-oriented DSP benchmarks

(such as elliptic wave filter, et cetera) for validating their techniques [23, 25]. Our resource binding methodology

specifically targets designs with a moderate mix of data and control operations, with the objective of reducing the

large multiplexors that characterize these type of designs. Also, recent work in binding for high-level synthesis has

concentrated on reducing power or improving testability by resource binding [25, 42]. Comparison with previous

work is further complicated by the fact that binding results are often presented in terms of absolute area numbers

or registers required by the design. Area of the netlist depends on the synthesis library and the logic synthesis

30

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

function

N
or

m
al

iz
ed

 V
al

ue
s

Synthesis Metrics

MPEG Pred2 Naive/Random Binding
Min Interconnect Binding

Total Delay Unit AreaCritical Path
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
MPEG Pred0

function
Naive/Random Binding

Min Interconnect Binding

Total DelayCritical Path Unit Area
Synthesis Metrics

N
or

m
al

iz
ed

 V
al

ue
s

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

function
MPEG Calc Forw Naive/Random Binding

Min Interconnect Binding

Total Delay Unit AreaCritical Path
Synthesis Metrics

N
or

m
al

iz
ed

 V
al

ue
s

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
ADPCM Encoder

function Min Interconnect Binding
Naive/Random Binding

Total Delay Unit AreaCritical Path
Synthesis Metrics

N
or

m
al

iz
ed

 V
al

ue
s

Figure 17. Results of logic synthesis after applying a non-interconnect aware (“regular”) binding and an

interconnection minimizing resource binding for the MPEG pred case2, pred case0 1 and calc f orward

functions and the ADPCM Encoder function.

tool used and our methodology does not attempt to reduce the number of registers, but rather the interconnect

requirements of the design.

Hence, we compare our results with a non-interconnect aware binding methodology. The graphs in Figure 17

present the synthesis results for the pred2, pred0 1 and the calc f orw functions of the MPEG Prediction block

and for the Encoder function of the ADPCM algorithm obtained with regular resource binding and the interconnect

minimizing resource binding. The metrics compared in these graphs are the critical path lengths, total delay and

the unit area. The values for each metric in these graphs are normalized to the value with regular binding. The

results are obtained with all code motions enabled.

The reductions in area due to the interconnect minimizing binding over the regular binding are significant; the

area reduces by 32 % for the pred2 function and atleast by 15 % for all other designs. These improvements are

despite the fact that in our interconnect minimization strategy, we sometimes choose to allocate more registers

if this leads to a reduction in the steering logic. Hence, the reductions in interconnect complexity dominate any

increases due to higher register requirements. Furthermore, we found that although synthesis using a binding

methodology, which minimizes only registers, leads to fewer registers, the total area of the design is worse, since

the interconnect sizes are not reduced.

The graphs show that critical path lengths remain fairly constant in all the designs, hence, barely leading to

any changes in delay through the circuit. These results demonstrate that the interconnect methodology is able to

31

achieve more area efficient designs without sacrificing performance.

For both, the interconnect minimizing and the non-interconnect aware binding results, we find that applying the

conditional speculation transformation can lead to an increase in the critical path lengths of the design and always

leads to an increase in area of the synthesized circuit. As can be seen for the graph of the MPEG calc f orw

function, the total delay can also increase over the previous value (after early condition execution). This goes to

show that these code motion transformations have to be judiciously used by the scheduling heuristic by taking into

account additional control costs that may be incurred due to higher resource utilization and sharing. Hence, more

accurate control cost estimation models have to be developed and used during scheduling in high-level synthesis.

8 Conclusions and Future Work

In this paper, we have presented a set of speculative code motions that re-order, speculate, and sometimes

even increase the number of operations in a behavioral description so as to achieve higher quality of synthesis

results. These code motions of operations are essential to minimize the effects of syntactic variance caused by

programming style in high level languages. Scheduling results after applying these code motions to moderately

complex real-life benchmarks show improvements of up to 50 % in performance and reduction in controller size

when compared to list scheduling techniques that allow code motions only within basic blocks. Logic synthesis

results show similar reductions in the total delays through the circuits. Furthermore, we demonstrate that the

control and interconnect overheads incurred due to these code motions can be reduced by resource binding targeted

at interconnect minimization. This methodology leads to area reductions between 15 % to 32 %. We have also

described the Spark high-level synthesis framework in which the various transformations presented in this paper

are implemented. This framework provides a platform for applying a range of coarse-grain and fine-grain code

optimizations aimed at improved synthesis results.

Future work entails working on developing more comprehensive cost models for the various code motions.

This is necessary especially for code transformations, such as conditional speculation and loop unrolling, that

change the number of operations in the design. Uncontrolled application of conditional speculation can lead to

significantly poorer results, since the number of operations on the longest path may increase due to operation

duplication. Furthermore, when scheduling an operation on a functional unit, the effects of this decision on

interconnect (multiplexors et cetera) must be taken into account and be included in the cost of the code motion.

References

[1] K. Wakabayashi. C-based synthesis experiences with a behavior synthesizer, ”Cyber”. In Design, Automation

and Test in Europe, 1999.

32

[2] Get2Chip Incorporated. Volare multi-level synthesis.

[3] L.C.V. dos Santos. Exploiting instruction-level parallelism: a constructive approach. PhD thesis, Eindhoven

University of Technology, 1998.

[4] S. Haynal. Automata-Based Symbolic Scheduling. PhD thesis, University of California, Santa Barbara, 2000.

[5] G. Lakshminarayana, A. Raghunathan, and N.K. Jha. Wavesched: a novel scheduling technique for control-

flow intensive designs. IEEE Transactions on CAD, May 1999.

[6] S. Gupta, N. Savoiu, S. Kim, N.D. Dutt, R.K. Gupta, and A. Nicolau. Speculation techniques for high level

synthesis of control intensive designs. In Design Automation Conference, 2001.

[7] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Conditional speculation and its effects on

performance and area for high-level synthesis. In Intl. Symp. on System Synthesis, 2001.

[8] D. D. Gajski, N. D. Dutt, A. C-H. Wu, and S. Y-L. Lin. High-Level Synthesis: Introduction to Chip and

System Design. Kluwer Academic, 1992.

[9] A. Nicolau and S. Novack. Trailblazing: A hierarchical approach to percolation scheduling. In International

Conference on Parallel Processing, 1993.

[10] S. Novack and A. Nicolau. An efficient, global resource-directed approach to exploiting instruction-level

parallelism. In Conference on Parallel Architectures and Compilation Techniques, 1996.

[11] M. Potkonjak and J. Rabaey. Optimizing resource utlization using tranformations. IEEE Trans. on CAD,

March 1994.

[12] R. Walker and D. Thomas. Behavioral transformation for algorithmic level IC design. IEEE Trans. on CAD,

Oct. 1989.

[13] K. Wakabayashi and H. Tanaka. Global scheduling independent of control dependencies based on condition

vectors. In Design Automation Conference, 1992.

[14] I. Radivojevic and F. Brewer. A new symbolic technique for control-dependent scheduling. IEEE Transac-

tions on CAD, January 1996.

[15] G. Lakshminarayana, A. Raghunathan, and N.K. Jha. Incorporating speculative execution into scheduling of

control-flow intensive behavioral descriptions. In Design Automation Conference, 1998.

33

[16] L.C.V. dos Santos and J.A.G. Jess. A reordering technique for efficient code motion. In Design Automation

Conf., 1999.

[17] M. Rim, Y. Fann, and R. Jain. Global scheduling with code-motions for high-level synthesis applications.

IEEE Transactions on VLSI Systems, September 1995.

[18] R.A. Bergamaschi. Behavioral network graph unifying the domains of high-level and logic synthesis. In

Design Automation Conference, 1999.

[19] R. Camposano and W. Wolf. High Level VLSI Synthesis. Kluwer Academic, 1991.

[20] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[21] C.J. Tseng and D.P. Siewiorek. Automated synthesis of data paths in digital systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, July 1986.

[22] P. G. Paulin and J. P. Knight. Scheduling and Binding Algorithms for High-Level Synthesis. In Design

Automation Conference, 1989.

[23] L. Stok and W.J.M. Philipsen. Module allocation and comparability graphs. In IEEE International Sym-

poisum on Circuits and Systems, 1991.

[24] C.H. Gebotys and M.I. Elmasry. Optimal synthesis of high-performance architectures. IEEE Journal of

Solid-State Circuits, March 1992.

[25] A. Mujumdar, R. Jain, and K. Saluja. Incorporating performance and testability constraints during binding

in high-level synthesis. IEEE Trans. on CAD, 1996.

[26] J. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Trans. on Computers, July

1981.

[27] A. Nicolau. Uniform parallelism exploitation in ordinary programs. In International Conf. on Parallel

Processing, 1985.

[28] K. Ebcioglu and A. Nicolau. A global resource-constrained parallelization technique. In 3rd International

Conference on Supercomputing, 1989.

[29] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

34

[30] A. Nicolau. A development environment for scientific parallel programs. Technical Report TR 86-722,

Department of Computer Science, Cornell University, 1985.

[31] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles and Techniques and Tools. Addison-Wesley, 1986.

[32] Synopsys Incorporated. Design compiler.

[33] M. Girkar and C.D. Polychronopoulos. Automatic extraction of functional parallelism from ordinary pro-

grams. IEEE Trans. on Parallel & Distributed Systems, Mar. 1992.

[34] S.-M. Moon and K. Ebcioglu. An efficient resource-constrained global scheduling technique for superscalar

and VLIW processors. In International Symposium on Microarchitecture, 1992.

[35] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench: A tool for evaluating and

synthesizing multimedia and communicatons systems. In International Symposium on Microarchitecture,

1997.

[36] Spark Synthesis Benchmarks FTP site. ftp://ftp.ics.uci.edu/pub/spark/benchmarks.

[37] T. Kim, N. Yonezawa, J.W.S. Liu, and C.L. Liu. A scheduling algorithm for conditional resource sharing - a

hierarchical reduction approach. IEEE Transactions on CAD, April 1994.

[38] A.C. Parker, J. Pizarro, and M. Mlinar. MAHA: A program for datapath synthesis. In Design Automation

Conference, 1986.

[39] 1991 High-Level synthesis design repository. ftp://ftp.cecs.uci.edu/pub/hlsynth/HLSynth91, 1991.

[40] J.-M. Chang and M. Pedram. Module assignment for low power. In European Design Automation Confer-

ence, 1996.

[41] L. Stok. Transfer free register allocation in cyclic data flow graphs. In European Conf. on Design Automation,

1992.

[42] J.-M. Chang and M. Pedram. Register allocation and binding low power. In Design Automation Conf., 1995.

[43] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nicolau. Conditional speculation and its effects on

performance and area for high-level synthesis. Technical Report ICS-TR-01-25, UC Irvine, 2001.

35

