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Abstract

Memory represents a major bottleneck in modern embedded systems in terms of cost, power
and performance. Traditionally, memory organizations for programmable systems assume a fixed
cache hierarchy. With the widening processor-memory gap, more aggressive memory technologies
and organizations have appeared, allowing customization of a heterogeneous memory architecture
tuned for the application. However, such a processor-memory co-exploration approach critically
needs the ability to explicitly capture heterogeneous memory architectures. We present in this
paper a language-based approach to explicitly capture the memory subsystem configuration, and
perform exploration of the memory architecture to meet diverse requirements: low power, better
performance, smaller die size etc. We present a set of experiments using our Memory-Aware Archi-
tectural Description Language to drive the exploration of the memory subsystem for the TI C6211
processor architecture, demonstrating a range of cost, performance, and energy attributes.



Contents

1 Introduction 4
2 Related Work 5
3 Our Approach 6
4 Motivating Example 6
5 The Memory Subsystem Description in EXPRESSION 8
6 Example Memory Architecture 9
7 Experiments 11
7.1 Experimental Setup . . . . . . ... e 12
7.2 EstimationModels . . . . . . .. 13
7.2.1 Performance Computation . . . . .. .. ... ... ... ... 13
7.2.2 AreaComputation . . . . . . . .. . .. 13
7.2.3 Energy Computation . . . . . . . .. ... 14
7.3 Results. . . . . . e 15
8 Summary 19
9 Acknowledgments 20
A Appendix 22



List of Figures

1 TheFlowinourapproach . .. ... ... .. .. .........
2 A Motivating Example . . . . . . .. ... . o oo
3 Sample Memory Architecture for TIC6211 ... . . . . .. ... ...
4 Schematic of wordlines and bitlines in array structures . . . .. .. .
5 Memory Exploration ResultsforGSR . . . . . ... ... ... ..
6 Energy Performance Tradeoff for Compress ... . . . . .. .. ...
7 Energy Performance Tradeoff for Laplace . . ... .. ... .. ..
8 Energy Performance Tradeoff for MatMult ... . . . .. ... .. ..
9 Energy Performance Tradeoff for 1dpartpush. . . . . . ... .. ..
10 Energy Performance Tradeoff for 2dhydro . . . . . .. .. .. ...
11 Energy Performance Tradeoff for Condcompute ...... . . . .. ... .. ...
12 Energy Performance Tradeoff for Diffpred ... . . . . ... ... ..
13 Energy Performance Tradeoff for Firstdiff ... . . . . .. ... ...
14 Energy Performance Tradeoff for Firstmin . . . . .. .. ... ...
15 Energy Performance Tradeoff for Firstsum . . . . . . ... .. ...
16 Energy Performance Tradeofffor GER. . . . . . . ... ... ...
17 Energy Performance Tradeofffor GSR . . . ... ... ... ...
18 Energy Performance TradeoffforHydro . . . . .. ... ... ...
19 Energy Performance Tradeoff for Hydrodynamics. ... . . . .. ..
20 Energy Performance TradeoffforICCG . . . . ... .. ... ...
21 Energy Performance Tradeoff for Innerprod . . . . . . ... .. ..
22 Energy Performance Tradeoff forintegrate . . . . . . . ... .. ..
23 Energy Performance Tradeoff forIntpred . . . ... .. ... ...
24  Energy Performance Tradeoff for Linear . . . . ... .. ... ...
25 Energy Performance Tradeoff for Lineareqn .. . . . .. ... ...
26 Energy Performance Tradeoff for Partpush. ... . . . ... .. ...
27 Energy Performance TradeoffforPlanc . . .. ... ... ... ..
28 Energy Performance Tradeoff for Recurrence . . . . . . ... ...
29 Energy Performance Tradeoff for Stateexcerpt e
30 Energy Performance Tradeoff for Tridiag . . . ... ... .. ...
31 Energy Performance Tradeoff for Wavelet . . . .. . ... .. ...
List of Tables

1 Benchmarks . . . . . . . .. ... ..
2  The memory subsystem configurations . . . .. . ... ... .. ..



1 Introduction

Memory represents a major cost, power and performance bottleneck for a large class of em-
bedded systems [29]. Thus system designers pay great attention to the design and tuning of the
memory architecture early in the design process. However, not many system-level tools exist to
help the system designers evaluate the effects of novel memory architectures, and facilitate simul-
taneous exploration of the processor and memory subsystem.

While a traditional memory architecture for programmable systems was organized as a cache
hierarchy, the widening processor/memory performance gap [31] requires more aggressive use of
memory configurationgzustomizedor the specific target applications. To address this problem,
on one hand recent advances in memory technology have generated a plethora of new and efficient
memory modules (e.g., SDRAM, DDRAM, RAMBUS, etc.), exhibiting a heterogeneous set of
features (e.g., page-mode, burst-mode, pipelined accesses). On the other hand, many embedded
applications exhibit varied memory access patterns that naturally map into a range of heteroge-
neous memory configurations (containing for instance multiple cache hierarchies, stream buffers,
on-chip and off-chip direct mapped memories). In the design of traditional programmable systems,
the processor architect typically assumed a fixed cache hierarchy, and spent significant amount of
time optimizing the processor architecture; thus the memory architecture is implicitly fixed (trans-
parent to the processor) and optimized separately from the processor architecture. Due to the
heterogeneity in recent memory organizations and modules, there is a critical need to address the
memory-related optimizations simultaneously with the processor architecture and the target ap-
plication. Through co-exploration of the processor and the memory architecture, it is possible to
better exploit the heterogeneity in the memory subsystem organizations, and better trade-off system
attributes such as cost, performance, and power. However, such processor-memory co-exploration
requires the capability to explicitly capture, exploit, and refine both the processor as well as the
memory architecture.

Recent approaches on language-driven Design Space Exploration (DSE) ([1], [3], [9], [14], [16],
[23], [30], [34], [35]), use Architectural Description Languages (ADL) to capture the processor ar-
chitecture, generate automatically a software toolkit (including compiler, simulator, assembler) for
that processor, and provide feedback to the designer on the quality of the architecture. While these
approaches extensively address processor features (such as instruction set, number of functional
units, etc.) to our knowledge no previous approach allows explicit capture of a customized, het-
erogeneous memory architecture, and the attendant tasks of generating a software toolkit that fully
exploits this memory architecture.

The contribution of this paper is the explicit description of a customized, heterogeneous memory
architecture in our EXPRESSION ADL [23], permitting co-exploration of the processor and the
memory architecture. By viewing the memory subsystem as a “first class object”, we generate
a memory-aware software toolkit (compiler and simulator), and allow for memory-aware Design
Space Exploration (DSE).

The rest of the paper is organized as follows. Section 2 presents related work addressing ADL-
driven DSE approaches. Section 3 outlines our approach and the overall flow of our environment.
Section 4 presents a simple example to illustrate how compiler can exploit memory subsystem



description. Section 5 presents the memory subsystem description in EXPRESSION, followed
by a contemporary example architecture in Section 6. Section 7 illustrates memory architecture
exploration using experiments on the TIC6211 processor, with varying memory configurations to
explore design points for cost, power and performance attributes. Section 8 concludes the paper.

2 Related Work

We discuss related research in two categories. First, we survey recent approaches on Archi-
tecture Description Language (ADL) driven Design Space Exploration, and second, we discuss
previous works on embedded system exploration.

An extensive body of recent research addresses ADL driven software toolkit generation and
Design Space Exploration (DSE) for processor-based embedded systems, in both academia: ISDL
[9], Valen-C [10], MIMOLA [14], LISA [15], nML [16], [30], and industry: ARC [1], Axys [2],

RADL [32], Target [33], Tensilica [34], MDES [35].

While these approaches explicitly capture the processor features to varying degrees (e.g., in-
struction set, structure, pipelining, resources), to our knowledge, no previous approach has explicit
mechanisms for specification of a customized memory architecture that describes the specific types
of memory modules (e.g., caches, stream/prefetch buffers), their complex memory features (e.g.,
page-mode, burst-mode accesses), their detailed timings, resource utilization, and the overall orga-
nization of the memory architecture (e.g., multiple cache hierarchies, partitioned memory spaces,
direct-mapped memories, etc.)

Memory exploration for embedded systems has been addressed by Panda et al. [27]. The metric
used for the system are data cache size and number of processor cycles. The method has been
extended by Shiue et al. [26] to include energy consumption as one of the metric. Catthoor et
al. [20] have presented a methodology for memory hierarchy and data reuse decision exploration.
Grun et al. proposed techniques for early memory [18] and connectivity [19] architecture explo-
ration. A system level performance analysis and design space exploration methodology (SPADE)
is proposed by Lieverse et al. [8]. In this methodology application tuning is driven manually by
the designer. Several design space exploration approaches use heuristics to prune the potentially
large design space. Givargis et al. [11] used a clustering based technique for system-level explo-
ration in which independent parameters are grouped into different clusters. An exhaustive search
is performed only on elements within a cluster (i.e., on dependent parameters) there by reducing
the search space. Ascia et al. [13] proposed a technique to map the exploration problem to a ge-
netic algorithm. Fornaciari et al. [12] use a sensitivity based technique in which the sensitivity of
the each parameter over the design objective is determined using experiments. The exploration is
performed on each parameter independently in the order determined by the sensitivities.

These approaches assumed a relatively fixed memory structure. Also, the memory modules
considered are traditional cache hierarchies and SRAMs. Our framework allows exploration of
generic memory configurations consisting of any memory connectivity and modules chosen from
memory IP library. This memory subsystem exploration is performed along with any processor
structure driven by an ADL. Designers specify the processor and memory subsystem configuration
in an ADL as an input to our automatic exploration framework. Any of the exploration algorithms



and pruning techniques proposed in the abovementioned approaches can be used to generate the
ADL description during design space exploration.

3 Our Approach

Figure 1 shows the flow in our approach. In our IP library based Design Space Exploration
(DSE) scenario, the designer starts by selecting a set of components from a processor IP library
and memory IP library. Our EXPRESSION Architectural Description Language (ADL) descrip-
tion (containing a mix of such IP components and custom blocks) is then used to generate the in-
formation necessary to target both the compiler and the simulator to the specific processor-memory
system.

Traditionally, the memory subsystem was transparent (assumed an implicitly defined memory
architecture, e.g., a fixed cache hierarchy) to the processor and the software toolkit. While the pro-
cessor pipeline was captured in detail to allow aggressive scheduling in the compiler, the memory
subsystem pipeline was not explicitly captured and exploited by the compiler. However, by de-
scribing the pipelining and parallelism available in recent memory organizations, there is tremen-
dous opportunity for the compiler to generate performance improvements. Figure 1 shows our
processor-memory co-exploration framework. Our previous work on reservation table [22] and
operation timing generation [17] algorithms can exploit this detailed timing information to hide
the latency of the lengthy memory operations. Section 4 shows an example of performance im-
provement due to this detailed memory subsystem timing information [17]. Such aggressive op-
timizations in the presence of efficient memory access modes (e.g., page/burst modes) and cache
hierarchies [21] are only possible due to the explicit representation of the detailed memory archi-
tecture.

The contribution of this paper is the memory subsystem description in EXPRESSION that en-
ables the compiler to exploit the memory features along with processor details. We also present
the memory simulator generation (shown shaded in Figure 1) that is integrated into the SIMPRESS
[25] simulator, allowing for detailed feedback on the memory subsystem architecture and its match
to the target applications.

4 Motivating Example

A typical efficient access mode for contemporary DRAMs (e.g., SDRAM) is burst mode access,
that is not fully exploited by traditional compilers. This example shows the performance im-
provement made possible by compiler exploitation of such access modes through a more accurate
memory timing model.

The sample memory library module used here is the IBM0316409C [37] Synchronous DRAM.
This memory contains 2 banks, organized as arrays of 2048 rows x 1024 columns, and supports
normal, page mode, and burst mode accesses. A normal read access starts by a row decode (acti-
vate) stage, where the entire selected row is copied into the row buffer. During column decode, the
column address is used to select a particular element from the row buffer, and output it. The normal
read operation ends with a precharge (or deactivate) stage, wherein the data lines are restored to
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Figure 1. The Flow in our approach

their original values. For page mode reads, if the next access is to the same row, the row decode
stage can be omitted, and the element can be fetched directly from the row buffer, leading to a sig-
nificant performance gain. Before accessing another row, the current row needs to be precharged.
During a burst mode read, starting from an initial address input, a number of words equal to the
burst length are clocked out on consecutive cycles without having to send the addresses at each
cycle.

Another architectural feature which leads to higher bandwidth in this DRAM is the presence of
two banks. While one bank is bursting out data, the other can perform a row decode or precharge.
Thus, by alternating between the two banks, the row decode and precharge times can be hidden.
Traditionally, the architecture would rely on the memory controller to exploit the page/burst access
modes, while the compiler would not use the detailed timing model. In our approach, we incor-
porate accurate timing information into the compiler, which allows the compiler to exploit more
globally such parallelism, and better hide the latencies of the memory operations.

A sample code shown in (a) of Figure 2 is used to demonstrate the performance of the system
in three cases: (l) without efficient access modes, (lI) optimized for burst mode accesses, but
without an accurate timing model, and (l1l) optimized for burst mode accesses with an accurate
timing model. The primitive access mode operations for a Synchronous DRAM are shown in (b)
of Figure 2: the un-shaded node represents the row decode operation (taking 2 cycles), the solid
node represents the column decode (taking 1 cycle), and the shaded node represents the precharge
operation (taking 2 cycles). Figure 2 (c) shows the schedule for the unoptimized version, where all
reads are normal memory accesses (composed of a row decode, column decode, and precharge).
The dynamic cycle count for this case is 9 x (5 x 4) = 180 cycles.

In order to increase the data locality and allow burst mode access to read consecutive data loca-
tions, an optimizing compiler would unroll the loop 3 times. Figure 2 (d) shows the unrolled code.
Figure 2 (e) shows the static and the dynamic (run-time) schedule of the éoide schedule with
no accurate timing. Traditionally, the memory controller would handle all the special access modes

1In Figure 2 (c) the static schedule and the run-time behavior were the same. They are different in this case due to
the stalls inserted by the memory controller.
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Figure 2. A Motivating Example

implicitly, and the compiler would schedule the code optimistically, assuming that each memory
access takes 1 cycle (the length of a page mode access). During a memory access that takes longer
than expected, the memory controller has to freeze the pipeline, to avoid data hazards. Thus, even
though the static schedule seems faster, the dynamic cycle-count in this case is 3 x 28 = 84 cycles.

Figure 2 (f) shows the effect of scheduling using accurate memory timing on code that has
already been optimized for burst mode. Since the memory controller does not need to insert stalls
anymore, the dynamic schedule is the same as the static one. Since accurate timing is available,
the scheduler can hide the latency of the precharge and row decode stages, by precharging the two
banks at the same time, or executing row decode while the other bank bursts out data. The dynamic
cycle count here is 3 x 20 = 60 cycles, resulting in a 40% improvement over the best schedule a
traditional optimizing compiler would generate.

Thus, by providing the compiler with more detailed information, the efficient memory access
modes can be better exploited. The more accurate timing model creates a significant performance
improvement, in addition to the page/burst mode optimizations.

5 The Memory Subsystem Description in EXPRESSION
In order to explicitly describe the memory architecture in EXPRESSION, we need to capture

both structure and behavior of the memory subsystem. The memory structure refers to the orga-
nization of the memory subsystem containing memory modules and the connectivity among them.
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The behavior refers to the memory subsystem instruction set.

The memory subsystem instruction set represents the possible operations that can occur in the
memory subsystem, such as data transfers between different memory modules or to the proces-
sor (e.g., load, store etc.), control instructions for the different memory components (such as the
DMA), or explicit cache control instructions (e.g., cache freeze, prefetch, replace, refill etc.).

The memory subsystem structure represents the abstract memory modules (such as caches,
stream buffers, RAM modules), their connectivity, and characteristics (e.g., cache properties). The
memory subsystem structure is represented as a netlist of memory components connected through
ports and connections. The memory components are described and attributed with their character-
istics (such as cache line size, replacement policy, write policy).

The pipeline stages and parallelism for each memory module, its connections and ports, as well
as the latches between the pipeline stages are described explicitly, to allow modeling of resource
and timing conflicts in the pipeline. The semantics of each component is represented in C, as part
of a parameterizable components library. We are able to describe the memory subsystem for wide
varieties of architectures, including RISC, DSP, VLIW, and Superscalar. Further details on the
memory subsystem description in EXPRESSION can be found in [28].

6 Example Memory Architecture

We illustrate our Memory-Aware Architectural Description Language (ADL) using the Texas
Instruments TIC6211 VLIW DSP [36] processor that has several novel memory features. Figure 3
shows the example architecture, containing an off-chip DRAM, an on-chip SRAM, and two levels
of cache (L1 and L2), attached to the memory controller of the TIC6211 processor. For illustration
purposes we present only the D1 ld/st functional unit of the TIC6211 processor, and we omitted
the External Memory Interface unit from the Figure 2. TI C6211 is an 8-way VLIW DSP processor
with a deep pipeline, composed of 4 fetch stages (PG, PS, PR, PW), 2 decode stages (DP, DC),
followed by the 8 functional units. The D1 load/store functional unit pipeline is composed of
D1 E1, D1E2, and the 2 memory controller stages: Mem(Eitland MemCtrlE2.

The L1 cache is a 2-way set associative cache, with a size of 64 lines, a line size of 4 words,
and word size of 4 bytes. The replacement policy is Least Recently Used (LRU), and the write
policy is write-back. The cache is composed of a TRGOCK, a DATA_BLOCK, and the cache
controller, pipelined in 2 stages (L1, L1.S2). The cache characteristics are described as part of
the STORAGESECTION in EXPRESSION [23]:

(L1_CACHE
(TYPE DCACHE)
(NUM_LINES 64)
(LINESIZE 4)
(WORDSIZE 4)
(ASSOCIATIVITY 2)
(REPLACEMENT_POLICY LRU)
(WRITE_POLICY WRITE_BACK)
(SUB_UNITS TAG_BLOCK DATA_BLOCK L1_S1 L1_S2)

The memory subsystem instruction set description is represented as part of the Operation Section
in EXPRESSION [23]:



(OPCODE LDW (OPERANDS (SRC1 reg) (SRC2 reg) (DST reg))

The internal memory subsystem data transfers are represented explicitly in EXPRESSION as
operations. For instance, the L1 cache line fill from L2 triggered on a cache miss is repre-
sented through the LDVIL1_MISS operation, with the memory subsystem source and destination
operands described explicitly:

(OPCODE LDW_L1_MISS (OPERANDS (SRC1 reg)

(SRC2 reg) (DST reg) (MEM_SRC1 L1_CACHE)
(MEM_SRC2 L2_CACHE) (MEM_DST1 L1_CACHE))

This explicit representation of the internal memory subsystem data transfers (traditionally not
present in ADLS) allows the designer to reason about the memory subsystem configuration. Fur-
thermore it allows the compiler to exploit the organization of the memory subsystem, and the
simulator to provide detailed feedback on the internal memory subsystem traffic. We do not mod-
ify the processor instruction set, but rather represent explicitly operations which are implicit in the
processor and memory subsystem behavior.

The pipelining and parallelism between the cache operations are described in EXPRESSION
through PIPELINEPATHS [23]. Pipeline Paths represent the ordering between pipeline stages
in the architecture (represented as bold arrows in Figure 3). For instance, a load operation to a
DRAM address traverses first the 4 fetch stages (PG, PS, PR, PW) of the processor, followed by
the 2 decode stages (DP, DC), and then it is directed to the load/store unit D1. Here it traverses
the D1E1 and D1E2 stages, and is directed by the Mem@ifl stage to the L1 cache, where it
traverses the LE1 stage. If the access is a hit, it is then directed to th&2 ktage, and the data is
sent back to the MemCti&E1 and MemCtrlE2 (to keep the figure simple, we omitted the reverse
arrows bringing the data back to the CPU). Thus the pipeline path traversed by the example load
operation is:

(PIPELINE PG, PS, PR, PW, DP, DC, D1_E1, D1_E2,
MemCtrl_E1, L1_S1, L1_S2, MemCtrl_E1, MemCtrl_E2)

Even though this example pipeline path is flattened, the pipeline paths in EXPRESSION are
described in a hierarchical manner. In case of an L1 miss, the data request is redirected from
L1_S1 to the L2 cache controller, as shown by the pipeline path (the bold arrow) to L2 in Figure 3.

The L2 cache is 4-way set associative, with a size of 1024 lines, and line size of 8 words. The
L2 cache controller is non-pipelined, with a latency of 6 cycles:

(L2_CTRL (LATENCY 6))

During the third cycle of the L2 cache controller, if a miss is detected it is sent to the off-chip
DRAM. The DRAM module is composed of the DRAM data block and the DRAM controller,
and supports normal, page-mode and burst-mode accesses. A normal access starts with a row
decode, where the row part of the address is used to select a particular row from the data array,
and copy it into the row buffer. During the column decode, the column part of the address is used
to select a particular element from the row buffer and output it. During the precharge, the bank is
deactivated. In a page-mode access, if the next access is to the same row, the data can be fetched
directly form the row buffer, omitting the column decode and precharge operations. During a burst
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Figure 3. Sample Memory Architecture for TIC6211

access, consecutive elements from the row buffer are clocked out on consecutive cycles. Both
page-mode and burst-mode accesses, when exploited judiciously generate substantial performance
improvements [17]. The timings of each such access mode is represented using the pipeline paths
and LATENCY constructs. For instance, the normal read access (NR), composed of a column
decode, a row decode and a precharge, is represented by the pipeline path:

(PIPELINE ROW_DEC COL_DEC PRECHARGE)

(ROW_DEC (LATENCY 6))
(COL_DEC (LATENCY 1))
(PRECHAREGE (LATENCY 6))

where the latency of the ROWEC is 6 cycles, of COLDEC is 1 cycle, and of the PRECHARGE
is 6 cycles.

In this manner EXPRESSION can model a variety of memory modules and their characteristics.
A unique feature of EXPRESSION is the ability to model freaallelismand pipelining avail-
able in and between the memory modules, such as number of outstanding hits, misses or parallel
loads, and generate timing and resource information to allow aggressive scheduling to hide the
latency of the lengthy memory operations. The EXPRESSION description can be used to drive
the generation of both a memory-aware compiler [17], [21], and cycle-accurate structural memory
subsystem simulator, and thus enable Design Space Exploration and co-design of the memory and
processor architecture. For more details on the memory subsystem description in EXPRESSION
and automatic simulator generation, please refer to [28].

7 EXxperiments

As described earlier, we have already used this Memory-Aware Architectural Description Lan-
guage (ADL) approach to generate a Memory-Aware Compiler [17] and manage the memory miss
traffic [21], resulting in significantly improved performance. In this section we demonstrate further
use of the memory subsystem specification to describe different memory configurations and per-
form design space exploration with the goal of evaluating different memory configurations for cost,

11



power and performance. We describe the experimental setup, followed by the estimation models
used in our framework for performance, area, and energy computations. Finally, we present the

results.

7.1 Experimental Setup

We performed a set of experiments starting from the base Tl C6211 [36] processor architecture,
and varied the memory subsystem architecture. We generated a cycle-accurate simulator, and
performed Design Space Exploration of the memory subsystem. The memory organization of
the TIC6211 is varied by using separate L1 instruction and data caches, an L2 cache, an off-
chip DRAM module, an on-chip SRAM module and a stream buffer module [24] with varied
connectivity among these modules.

We used benchmarks from the multimedia and DSP domains for our experiments. The list of the
benchmarks is shown in Table 1. The benchmarks are compiled using the EXPRESS compiler. We
collected the statistics information using the SIMPRESS cycle-accurate simulator, which models
both the TIC6211 processor and the memory subsystem.

Benchmark Description

Compress Image compression scheme

GSR Red-black Gauss-Seidel relaxation method
Hydro Hydro fragment

DiffPred Difference predictors

FirstSum First sum

FirstDiff First difference

PartPush 2-D PIC (Particle In Cell)

1DPartPush 1-D PIC (Particle In Cell)

CondCompute | Implicit, conditional computation

Hydrodynamics
GLRE

ICCG
MatMult
Planc
2DHydro
FirstMin
InnerProd
LinearEgn
TriDiag
Recurrence
StateExcerpt
Integrate
IntPred
Laplace
Linear
Wavelet

2-D explicit hydrodynamics fragment

General linear recurrence equations

ICCG excerpt (Incomplete Cholesky Conjugate Gradieg
Matrix*matrix product

Planckian distribution

2-D implicit hydrodynamics fragment

Find location of first minimum in array

Inner product

Banded linear equations

Tri-diagonal elimination, below diagonal

General linear recurrence equations

Equation of state fragment

ADI integration

Integrate predictors

Laplace algorithm to perform edge enhancement
Implements a general linear recurrence solver
Debaucles 4-Coefficient Wavelet filter

2Nt)

Table 1. Benchmarks
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We used a greedy algorithm to modify the ADL description of the memory architecture for each
exploration run. The simulator extracts the necessary parameters (e.g., cache parameters, connec-
tivity etc.) from the ADL description automatically for each exploration run. We modify each
parameter value in powers of 2. For each module we used certain heuristics for size limitations.
For example, when certain program or data cache returns 98% hit ratio for a set of application pro-
grams we do not increase its size any more. However, as we explained earlier, any of the existing
exploration algorithms and pruning techniques can be used to generate the ADL description during
design space exploration.

7.2 Estimation Models

There are different kinds of estimation models available in the literature for area and energy
computations. Each of these models are specific to certain types of architectures. We have used
area models from Mulder et al. [4] and energy models from Wattch [5]. These models are adapted
to enable estimation of wide variety of memory configurations available in DSP, RISC, VLIW, and
Superscalar architectures. The estimation models for performance, area, and energy are described
below.

7.2.1 Performance Computation

We compute performance of a particular memory configuration for a given application program
using the number of clock cycles it takes to execute the application in cycle-accurate structural
simulator SIMPRESS [25] for that memory configuration. We divide this cycle count by 2000 to
show both energy and performance plots in the same figure.

7.2.2 Area Computation

We have used the area model of Mulder et al. [4] to compute the silicon area occupied by each
memory configuration. The unit for the area model is a technology independent notion of a register-
bit equivalent orbe. The advantage of this is the relatively straightforward relation between area
and size, facilitating interpretation of area figures. @eequals the area of a bit storage cell.

We present here the area model for set-associative cache and SRAM that we have used during
area computation of memory configurations. We use the area model for set-associative cache to
compute area for stream buffer as well. The area model for other memory components can be
found in [4]. The area equation for static memory with memory asiag, words each ofiney
bits long is

areasram= 0.6(sizgy+ 6)(line, + 6) rbe Q)
The area for set-associative cache is a function of the storage capaeifythe degree of as-
sociativity assog the line sizdiney,, and the size of a transfer-uitansfe,. The area of a set-
associative cache using statiz¢a821% and dynamic cellsareaiie®™ are given below using the

number of transfer units in a linenits the total number of address taggs and the total number
of tag and status bitsh,. Here,y equals 2 for a write-back cache and 1 for a write-through cache.

13
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7.2.3 Energy Computation

We use the power models described in Wattch [5] for energy computation of array structures in
memory configurations. We briefly explain the power models proposed in Wattch. In CMOS
microprocessors, dynamic power consumpiyns the main source of power consumption, and

is defined asPy = Cvdzdaf. Here,C is the load capacitanc®yq is the supply voltage, anflis the

clock frequency. The activity factoa, is a fraction between 0 and 1 indicating how often clock
ticks lead to switching activity on averag€.is calculated based on the circuit and the transistor
sizings as described belowyq and f depend on the assumed process technology. The technology
parameters for 0.35u process are used from [6].

The array structure power model is parameterized based on the number of rows (entries), columns
(width of each entry), and the number of read/write ports. These parameters affect the size, the
number of decoders, the number of wordlines, and the number of bitlines. In addition, these param-
eters are used to estimate the length of the pre-decode wires as well as the lengths of the wordlines
and bitlines which determine the capacitive loading on the lines.

The capacitances are modeled in Wattch using assumptions that are similar to those made by [7]
and [6] in which the authors performed delay analysis on many units. In both of the above works,
the authors reduced the units into stages and formed RC circuits for each stage. This allowed them
to estimate the delay for each stage, and by summing these, the delay for the entire unit.

Similar steps are performed for the power analysis in Wattch with two key differences. First, they
are only interested in the capacitance of each stage, rather thaR bothC. Second, in Wattch
the power consumption @ill paths are analyzed and summed together. This is in contrast with the
delay analysis approach in [7], where the expected critical path is of interest. The analytical model
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for the capacitance estimation for Wordline (WL) and Bitline (BL) are given below. Figure 4 shows
a schematic of the wordlines and bitlines in the array structure.

W LCapacitance= Cyjt (W LDriver) + Cgate(CellAccesyx NumBitLinest- Cyetai x W LLeNgth
BLCapacitance= Cyjt f (PreCharge + Cyis t (CellAccessx NumW Lines- Cyeta X BLLength

For more details on computation of power consumption refer to [5]

Prechaga [Ar Prechaﬂa S H’echaE(a [ér Prechaga [Ar
Bit Bit'
Number of Bitlines
Wordline Driver,
Cell access
from transstios | _ _ _ _ _
Decoder T 1 T T
1 1 1 1
1 1 1 1
Number of
wordlines
T T L L
Cell Cell

to sense amps to sense amps

Figure 4. Schematic of wordlines and bitlines in array structures

7.3 Results

Some of the configurations we experimented with are presented in Table 2. The numbers in
Table 2 represent: the size of the memory module (e.g., the size of L1 in configuration 1 is 256
bytes), the cache/stream buffer organizationsnlinesx line_sizex numwaysx word_size The
LRU replacement policy is used. The latency is defined in number of processor cycles. Note that
for the stream buffer, nunways represents the number of FIFO queues present.

The configurations in Table 2 are presented in increasing order of the cost in terms of area. We
have used the area model of Mulder et al.[4] (as described in Section 7.2.2) to derive the area
of each on-chip memory configuration. The unit for the area model is a technology independent
notion of a register-bit equivalent doe. The first configuration contains an L1 instruction cache
(256 bytes), L1 data cache (256 bytes) and a unified L2 cache (8K bytes). All the configurations
contain the same off-chip DRAM module with a latency of 150 cycles.

Here we analyze a subset of the experiments we ran with the goal of evaluating different memory
configurations for cost power and performance. The power performance tradeoff results for the
remaining benchmarks are shown in Section A. Figure 5 shows the exploration result@B ke
benchmark. The X-axis represents the memory configurations in the increasing order of cost. The
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Config Area | L1 ICache L1 DCache L2 Cache SRAM Stream Buffer
(rbe) | (latency=1) (latency=1) (latency=5) (latency=1) (latency=5)
1 54567 | 256B (8x2x4x4) | 256B (8x2x4x4) | 8K (256x8x1x4) - -
2 131376| 256B (8x2x4x4) | 256B (8x2x4x4) | 4K (64x2x8x4) 4K -
3 60449 | 256B (8x2x2x4) | 256B (8x2x4x4) | 8K (64x4x8x4) - -
4 66394 | 256B (8x2x4x4) | 256B (8x2x4x4) | 8K (64x4x8x4) - 512B (8x2x8x4)
5 405632 | 256B (8x2x4x4) | 256B (8x2x4x4) | 2K (16x4x8x4) 16K 512B (8x2x8x4)
6 51169| 128B (8x2x2x4) | 128B (8x2x2x4) | 8k (256x8x1x4) - -
7 52868 | 128B (8x2x2x4) | 256B (8x2x4x4) | 8k (256x8x1x4) - -
8 58198 | 128B (8x2x2x4) | 256B (8x4x2x4) | 8k (64x4x8x4) - -
9 52057 | 128B (8x2x2x4) | 256B (16x2x2x4)| 8k (256x8x1x4) - -
10 52868 | 256B (8x2x4x4) | 128B (8x2x2x4) | 8k (256x8x1x4) - -
11 33099 | 256B (8x4x2x4) | 256B (8x4x2x4) | 4k (64x4x4x4) - -
12 31698 | 256B (16x2x2x4)| 256B (16x2x2x4)| 4k (256x4x1x4) - -
13 33469 | 256B (16x2x2x4)| 512B (32x2x2x4)| 4k (256x4x1x4) - -
14 53847 | 512B (16x4x2x4)| 128B (8x2x2x4) | 8k (256x8x1x4) - -
15 33488 | 512B (16x4x2x4)| 256B (16x2x2x4)| 4k (256x4x1x4) - -
16 35259 | 512B (16x4x2x4)| 512B (32x2x2x4)| 4k (256x4x1x4) - -
17 58100| 512B (8x8x2x4) | 512B (8x8x2x4) | 8k (256x8x1x4) - -
18 36066 | 512B (8x8x2x4) | 512B (16x4x2x4)| 8k (256x4x1x4) - -
19 59156 | 512B (8x4x4x4) | 512B (8x4x4x4) | 8k (256x8x1x4) - -
20 125223| 256B (16x2x2x4)| 256B (16x2x2x4)| 4k (256x4x1x4) 4k -
21 123447| 128B (8x2x2x4) | 128B (8x2x2x4) | 4k (256x4x1x4) a4k -
22 216836| 128B (8x2x2x4) | 128B (8x2x2x4) | 4k (256x4x1x4) 8k -
23 36227 | 128B (8x2x2x4) | 256B (16x2x2x4)| 4k (256x4x1x4) - 512 (8x8x2x4)
24 33909 | 128B (8x2x2x4) | 256B (16x2x2x4)| 8k (256x4x1x4) - 256 (8x4x2x4)
25 246805| 128B (8x2x2x4) | 256B (16x2x2x4)| 8k (64x8x4x4) 8k 512 (8x8x2x4)
26 246805| 128B (8x2x2x4) | 256B (16x2x2x4)| 8k (64x8x4x4) 8k 512 (8x8x2x4)
27 155188 | 128B (8x2x2x4) | 512B (32x2x2x4)| 8k (64x8x4x4) a4k 512 (8x8x2x4)

Y-axis represents values for both performance and energy. The performance value is normalized
by dividing cycle count by 2000. The energy value is given in uJ. Although the cost for memory
configurations 6 and 9 are much lower than the cost of configuration 5. The former ( 6 and 9)
configurations deliver better in terms of area, energy and performance. The configuration 21 is
better than configuration 6 in terms of energy and performance. However, the former is worse than
the latter in terms of area. So depending on the priority among area, energy and performance, one

Table 2. The memory subsystem configurations

of the configuration can be selected.

When area consideration is not very important we can view the pareto-optimal configurations
from energy-performance trade-offs. Figure 6 shows the energy performance trade-Gitsrfor
pressbenchmark. It is interesting to note that a set a memory configurations (with varied parame-
ters, modules and connectivity) deliver similar performance result€donpresvenchmark. As
we can see that there are three distinct performance zones. The first zone has performance values
between 5 and 10. This zone consists of memory configurations 21, 20, 2, 27, 22, 25, 26 and
5. The power values are different due to the fact that each configuration has different parameters,
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Figure 5. Memory Exploration Results for GSR

modules, connectivity and area. However, the performance is almost similar since the data fits in
SRAM of size 2K for these configurations. Similarly, the second zone (configurations 6, 9, 10, 7,
14, 1, 17, 19) has performance values between 15 and 20 with very different power values. The
performance is almost same for these configurations because the L2 cache size of 8K or larger
has very high hit ratio and as a result for all these memory configurations L2 dominates and L2 to
DRAM access remains almost constant. Similarly for the third zone (configurations 12, 11, 13, 15,
24, 16, 18, 23, 8, 3, 4) has almost same performance with different power values. This is due to
the fact that each of these configuration has 4 as L2 line size that dominates over other parameters
for these configurations. This line size is the reason why configurations in third zone is worse than
configuration in second zone. The same phenomenon can be observed in the benélrstarks

Sum FirstDiff, FirstMin. The benchmarknnerProdhas four such zones whereas the benchmark
Tridiag has five such performance zones. The pareto-optimal configurations are shown using sym-
bol X and the corresponding memory configuration is mentioned in the figure. Depending of on
the priority among cost, energy and performance one of three configurations (Config 11, 17, 26)
can be chosen.

However, for some set of benchmarks the energy performance tradeoff points are scattered in
the design space and thus the pareto-optimal configurations are of interest. Figure 8 shows the
energy performance tradeoff for the benchmark MatMult. It has only one pareto-optimal pointi.e.,
configuration 5. However, the benchmark Figure 7 has two pareto-optimal points. The configura-
tion 5 consumes more energy and area than configuration 17. However, configuration 17 is better
in terms of performance than configuration 5. Depending on the priority among area, energy and
performance one of the two configurations can be selected.

Thus, using our Memory-Aware ADL-based Design Space Exploration approach, we obtained
design points with varying cost, energy and performance. We observed various trends for different
application classes, allowing customization of the memory architecture tuned to the applications.
Note that this cannot be determined through analysis alone; the customized memory subsystem
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must be explicitly captured, and the applications have to be executed on the configured processor-
memory system, as we demonstrated in this section.

8 Summary

Memory represents a critical driver in terms of cost, performance and power for embedded sys-
tems. To address this problem, a large variety of modern memory technologies, and heterogeneous
memory organizations have been proposed.

On one hand the application is characterized by a variety of access patterns (such as stream,
locality-based, etc.). On the other hand, new memory modules and organizations provide a set
of features which exploit specific applications needs (e.g., caches, stream buffers, page-mode,
burst-mode, DMA). To find the best match between the application characteristics and the mem-
ory organization features, the designer needs to explore different memory configurations in com-
bination with different processor architectures, and evaluate each such system for a set of met-
rics (such as cost, power, performance). Performing such processor-memory co-exploration re-
quires the capability to capture the memory subsystems, and perform a compiler-in-the-loop ex-
ploration/evaluation.

In this paper we presented a Memory-Aware Architectural Description Language (ADL) ap-
proach which captures the memory subsystem explicitly.

This Memory-Aware ADL approach is used to drive the generation of a cycle accurate memory
simulator, and also facilitate the exploration of various memory configurations, and trade-off cost
versus performance. Our experimental results show that varying price-performance design points
can be uncovered using the processor-memory co-exploration approach.

Our ongoing work targets the use of this ADL approach for further memory exploration exper-
iments, using larger applications, to study the impact of different parts of the application (such as
loop nests) on the memory organization behavior and overall performance, as well as on system
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power.
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