
A Framework for Memory Subsystem Exploration

Prabhat Mishra Mahesh Mamidipaka Nikil Dutt
pmishra@cecs.uci.edu maheshmn@cecs.uci.edu dutt@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES)
Center for Embedded Computer Systems, University of California, Irvine, CA, USA

CECS Technical Report #02-19
Center for Embedded Computer Systems

University of California, Irvine, CA 92697, USA

May 24, 2002

Abstract
Memory represents a major bottleneck in modern embedded systems in terms of cost, power

and performance. Traditionally, memory organizations for programmable systems assume a fixed
cache hierarchy. With the widening processor-memory gap, more aggressive memory technologies
and organizations have appeared, allowing customization of a heterogeneous memory architecture
tuned for the application. However, such a processor-memory co-exploration approach critically
needs the ability to explicitly capture heterogeneous memory architectures. We present in this
paper a language-based approach to explicitly capture the memory subsystem configuration, and
perform exploration of the memory architecture to meet diverse requirements: low power, better
performance, smaller die size etc. We present a set of experiments using our Memory-Aware Archi-
tectural Description Language to drive the exploration of the memory subsystem for the TI C6211
processor architecture, demonstrating a range of cost, performance, and energy attributes.

Contents

1 Introduction 4

2 Related Work 5

3 Our Approach 6

4 Motivating Example 6

5 The Memory Subsystem Description in EXPRESSION 8

6 Example Memory Architecture 9

7 Experiments 11
7.1 Experimental Setup . 12
7.2 Estimation Models . 13

7.2.1 Performance Computation 13
7.2.2 Area Computation . 13
7.2.3 Energy Computation . 14

7.3 Results . 15

8 Summary 19

9 Acknowledgments 20

A Appendix 22

2

List of Figures

1 The Flow in our approach . 7
2 A Motivating Example . 8
3 Sample Memory Architecture for TIC6211 .. 11
4 Schematic of wordlines and bitlines in array structures 15
5 Memory Exploration Results for GSR . 17
6 Energy Performance Tradeoff for Compress .. 18
7 Energy Performance Tradeoff for Laplace . .. 18
8 Energy Performance Tradeoff for MatMult .. 19
9 Energy Performance Tradeoff for 1dpartpush. 22
10 Energy Performance Tradeoff for 2dhydro . .. 22
11 Energy Performance Tradeoff for Condcompute 23
12 Energy Performance Tradeoff for Diffpred .. 23
13 Energy Performance Tradeoff for Firstdiff . .. 23
14 Energy Performance Tradeoff for Firstmin .. 24
15 Energy Performance Tradeoff for Firstsum .. 24
16 Energy Performance Tradeoff for GLRE . 24
17 Energy Performance Tradeoff for GSR 25
18 Energy Performance Tradeoff for Hydro 25
19 Energy Performance Tradeoff for Hydrodynamics 25
20 Energy Performance Tradeoff for ICCG 26
21 Energy Performance Tradeoff for Innerprod .. 26
22 Energy Performance Tradeoff for integrate .. 26
23 Energy Performance Tradeoff for Intpred . .. 27
24 Energy Performance Tradeoff for Linear 27
25 Energy Performance Tradeoff for Lineareqn .. 27
26 Energy Performance Tradeoff for Partpush .. 28
27 Energy Performance Tradeoff for Planc 29
28 Energy Performance Tradeoff for Recurrence. 29
29 Energy Performance Tradeoff for Stateexcerpt 30
30 Energy Performance Tradeoff for Tridiag . .. 30
31 Energy Performance Tradeoff for Wavelet . .. 30

List of Tables

1 Benchmarks . 12
2 The memory subsystem configurations 16

3

1 Introduction

Memory represents a major cost, power and performance bottleneck for a large class of em-
bedded systems [29]. Thus system designers pay great attention to the design and tuning of the
memory architecture early in the design process. However, not many system-level tools exist to
help the system designers evaluate the effects of novel memory architectures, and facilitate simul-
taneous exploration of the processor and memory subsystem.

While a traditional memory architecture for programmable systems was organized as a cache
hierarchy, the widening processor/memory performance gap [31] requires more aggressive use of
memory configurations,customizedfor the specific target applications. To address this problem,
on one hand recent advances in memory technology have generated a plethora of new and efficient
memory modules (e.g., SDRAM, DDRAM, RAMBUS, etc.), exhibiting a heterogeneous set of
features (e.g., page-mode, burst-mode, pipelined accesses). On the other hand, many embedded
applications exhibit varied memory access patterns that naturally map into a range of heteroge-
neous memory configurations (containing for instance multiple cache hierarchies, stream buffers,
on-chip and off-chip direct mapped memories). In the design of traditional programmable systems,
the processor architect typically assumed a fixed cache hierarchy, and spent significant amount of
time optimizing the processor architecture; thus the memory architecture is implicitly fixed (trans-
parent to the processor) and optimized separately from the processor architecture. Due to the
heterogeneity in recent memory organizations and modules, there is a critical need to address the
memory-related optimizations simultaneously with the processor architecture and the target ap-
plication. Through co-exploration of the processor and the memory architecture, it is possible to
better exploit the heterogeneity in the memory subsystem organizations, and better trade-off system
attributes such as cost, performance, and power. However, such processor-memory co-exploration
requires the capability to explicitly capture, exploit, and refine both the processor as well as the
memory architecture.

Recent approaches on language-driven Design Space Exploration (DSE) ([1], [3], [9], [14], [16],
[23], [30], [34], [35]), use Architectural Description Languages (ADL) to capture the processor ar-
chitecture, generate automatically a software toolkit (including compiler, simulator, assembler) for
that processor, and provide feedback to the designer on the quality of the architecture. While these
approaches extensively address processor features (such as instruction set, number of functional
units, etc.) to our knowledge no previous approach allows explicit capture of a customized, het-
erogeneous memory architecture, and the attendant tasks of generating a software toolkit that fully
exploits this memory architecture.

The contribution of this paper is the explicit description of a customized, heterogeneous memory
architecture in our EXPRESSION ADL [23], permitting co-exploration of the processor and the
memory architecture. By viewing the memory subsystem as a “first class object”, we generate
a memory-aware software toolkit (compiler and simulator), and allow for memory-aware Design
Space Exploration (DSE).

The rest of the paper is organized as follows. Section 2 presents related work addressing ADL-
driven DSE approaches. Section 3 outlines our approach and the overall flow of our environment.
Section 4 presents a simple example to illustrate how compiler can exploit memory subsystem

4

description. Section 5 presents the memory subsystem description in EXPRESSION, followed
by a contemporary example architecture in Section 6. Section 7 illustrates memory architecture
exploration using experiments on the TIC6211 processor, with varying memory configurations to
explore design points for cost, power and performance attributes. Section 8 concludes the paper.

2 Related Work

We discuss related research in two categories. First, we survey recent approaches on Archi-
tecture Description Language (ADL) driven Design Space Exploration, and second, we discuss
previous works on embedded system exploration.

An extensive body of recent research addresses ADL driven software toolkit generation and
Design Space Exploration (DSE) for processor-based embedded systems, in both academia: ISDL
[9], Valen-C [10], MIMOLA [14], LISA [15], nML [16], [30], and industry: ARC [1], Axys [2],
RADL [32], Target [33], Tensilica [34], MDES [35].

While these approaches explicitly capture the processor features to varying degrees (e.g., in-
struction set, structure, pipelining, resources), to our knowledge, no previous approach has explicit
mechanisms for specification of a customized memory architecture that describes the specific types
of memory modules (e.g., caches, stream/prefetch buffers), their complex memory features (e.g.,
page-mode, burst-mode accesses), their detailed timings, resource utilization, and the overall orga-
nization of the memory architecture (e.g., multiple cache hierarchies, partitioned memory spaces,
direct-mapped memories, etc.)

Memory exploration for embedded systems has been addressed by Panda et al. [27]. The metric
used for the system are data cache size and number of processor cycles. The method has been
extended by Shiue et al. [26] to include energy consumption as one of the metric. Catthoor et
al. [20] have presented a methodology for memory hierarchy and data reuse decision exploration.
Grun et al. proposed techniques for early memory [18] and connectivity [19] architecture explo-
ration. A system level performance analysis and design space exploration methodology (SPADE)
is proposed by Lieverse et al. [8]. In this methodology application tuning is driven manually by
the designer. Several design space exploration approaches use heuristics to prune the potentially
large design space. Givargis et al. [11] used a clustering based technique for system-level explo-
ration in which independent parameters are grouped into different clusters. An exhaustive search
is performed only on elements within a cluster (i.e., on dependent parameters) there by reducing
the search space. Ascia et al. [13] proposed a technique to map the exploration problem to a ge-
netic algorithm. Fornaciari et al. [12] use a sensitivity based technique in which the sensitivity of
the each parameter over the design objective is determined using experiments. The exploration is
performed on each parameter independently in the order determined by the sensitivities.

These approaches assumed a relatively fixed memory structure. Also, the memory modules
considered are traditional cache hierarchies and SRAMs. Our framework allows exploration of
generic memory configurations consisting of any memory connectivity and modules chosen from
memory IP library. This memory subsystem exploration is performed along with any processor
structure driven by an ADL. Designers specify the processor and memory subsystem configuration
in an ADL as an input to our automatic exploration framework. Any of the exploration algorithms

5

and pruning techniques proposed in the abovementioned approaches can be used to generate the
ADL description during design space exploration.

3 Our Approach

Figure 1 shows the flow in our approach. In our IP library based Design Space Exploration
(DSE) scenario, the designer starts by selecting a set of components from a processor IP library
and memory IP library. Our EXPRESSION Architectural Description Language (ADL) descrip-
tion (containing a mix of such IP components and custom blocks) is then used to generate the in-
formation necessary to target both the compiler and the simulator to the specific processor-memory
system.

Traditionally, the memory subsystem was transparent (assumed an implicitly defined memory
architecture, e.g., a fixed cache hierarchy) to the processor and the software toolkit. While the pro-
cessor pipeline was captured in detail to allow aggressive scheduling in the compiler, the memory
subsystem pipeline was not explicitly captured and exploited by the compiler. However, by de-
scribing the pipelining and parallelism available in recent memory organizations, there is tremen-
dous opportunity for the compiler to generate performance improvements. Figure 1 shows our
processor-memory co-exploration framework. Our previous work on reservation table [22] and
operation timing generation [17] algorithms can exploit this detailed timing information to hide
the latency of the lengthy memory operations. Section 4 shows an example of performance im-
provement due to this detailed memory subsystem timing information [17]. Such aggressive op-
timizations in the presence of efficient memory access modes (e.g., page/burst modes) and cache
hierarchies [21] are only possible due to the explicit representation of the detailed memory archi-
tecture.

The contribution of this paper is the memory subsystem description in EXPRESSION that en-
ables the compiler to exploit the memory features along with processor details. We also present
the memory simulator generation (shown shaded in Figure 1) that is integrated into the SIMPRESS
[25] simulator, allowing for detailed feedback on the memory subsystem architecture and its match
to the target applications.

4 Motivating Example

A typical efficient access mode for contemporary DRAMs (e.g., SDRAM) is burst mode access,
that is not fully exploited by traditional compilers. This example shows the performance im-
provement made possible by compiler exploitation of such access modes through a more accurate
memory timing model.

The sample memory library module used here is the IBM0316409C [37] Synchronous DRAM.
This memory contains 2 banks, organized as arrays of 2048 rows x 1024 columns, and supports
normal, page mode, and burst mode accesses. A normal read access starts by a row decode (acti-
vate) stage, where the entire selected row is copied into the row buffer. During column decode, the
column address is used to select a particular element from the row buffer, and output it. The normal
read operation ends with a precharge (or deactivate) stage, wherein the data lines are restored to

6

Code
ObjectEXPRESS

Compiler

A
p

p
lica

tion
P

rogra
m

IP LIBRARY IP LIBRARY

EXPRESSION ADL

Feedback

Generate
Reservation

Tables Timings
Operation
Generate Generate

Processor
Simulator

Generate
Memory
Simulator

Processor
Core Subsystem

Memory

SIMPRESS

Simulator

MEMORYPROCESSOR

Figure 1. The Flow in our approach

their original values. For page mode reads, if the next access is to the same row, the row decode
stage can be omitted, and the element can be fetched directly from the row buffer, leading to a sig-
nificant performance gain. Before accessing another row, the current row needs to be precharged.
During a burst mode read, starting from an initial address input, a number of words equal to the
burst length are clocked out on consecutive cycles without having to send the addresses at each
cycle.

Another architectural feature which leads to higher bandwidth in this DRAM is the presence of
two banks. While one bank is bursting out data, the other can perform a row decode or precharge.
Thus, by alternating between the two banks, the row decode and precharge times can be hidden.
Traditionally, the architecture would rely on the memory controller to exploit the page/burst access
modes, while the compiler would not use the detailed timing model. In our approach, we incor-
porate accurate timing information into the compiler, which allows the compiler to exploit more
globally such parallelism, and better hide the latencies of the memory operations.

A sample code shown in (a) of Figure 2 is used to demonstrate the performance of the system
in three cases: (I) without efficient access modes, (II) optimized for burst mode accesses, but
without an accurate timing model, and (III) optimized for burst mode accesses with an accurate
timing model. The primitive access mode operations for a Synchronous DRAM are shown in (b)
of Figure 2: the un-shaded node represents the row decode operation (taking 2 cycles), the solid
node represents the column decode (taking 1 cycle), and the shaded node represents the precharge
operation (taking 2 cycles). Figure 2 (c) shows the schedule for the unoptimized version, where all
reads are normal memory accesses (composed of a row decode, column decode, and precharge).
The dynamic cycle count for this case is 9 x (5 x 4) = 180 cycles.

In order to increase the data locality and allow burst mode access to read consecutive data loca-
tions, an optimizing compiler would unroll the loop 3 times. Figure 2 (d) shows the unrolled code.
Figure 2 (e) shows the static and the dynamic (run-time) schedule of the code1 for a schedule with
no accurate timing. Traditionally, the memory controller would handle all the special access modes

1In Figure 2 (c) the static schedule and the run-time behavior were the same. They are different in this case due to
the stalls inserted by the memory controller.

7

for(i=0;i<9;i++){
 a = a + x[i] + y[i];
 b = b + z[i] + u[i];
}

(a) Sample code

= row decode (2 cycles)

= column decode (1 cycle)

= precharge (2 cycles)

(b) Synchronous DRAM access primitives

Dynamic cycle count = 9 x (5 x 4) = 180 cycles

(c) Unoptimized schedule

for(i=0;i<9;i+=3){
 a = a + x[i] + x[i+1] + x[i+2] +
 y[i] + y[i+1] + y[i+2];
 b = b + z[i] + z[i+1] + z[i+2]+
 u[i] + u[i+1] + u[i+2];
}

(d) Loop unrolled to allow burst mode

Static schedule

Dynamic behavior (dynamic cycle count = 3 x 28 = 84 cycles)

(e) Optimized code without accurate timing

Dynamic cycle count = 3 x 20 = 60 cycles

(f) Optimized code with accurate timing

Figure 2. A Motivating Example

implicitly, and the compiler would schedule the code optimistically, assuming that each memory
access takes 1 cycle (the length of a page mode access). During a memory access that takes longer
than expected, the memory controller has to freeze the pipeline, to avoid data hazards. Thus, even
though the static schedule seems faster, the dynamic cycle-count in this case is 3 x 28 = 84 cycles.

Figure 2 (f) shows the effect of scheduling using accurate memory timing on code that has
already been optimized for burst mode. Since the memory controller does not need to insert stalls
anymore, the dynamic schedule is the same as the static one. Since accurate timing is available,
the scheduler can hide the latency of the precharge and row decode stages, by precharging the two
banks at the same time, or executing row decode while the other bank bursts out data. The dynamic
cycle count here is 3 x 20 = 60 cycles, resulting in a 40% improvement over the best schedule a
traditional optimizing compiler would generate.

Thus, by providing the compiler with more detailed information, the efficient memory access
modes can be better exploited. The more accurate timing model creates a significant performance
improvement, in addition to the page/burst mode optimizations.

5 The Memory Subsystem Description in EXPRESSION

In order to explicitly describe the memory architecture in EXPRESSION, we need to capture
both structure and behavior of the memory subsystem. The memory structure refers to the orga-
nization of the memory subsystem containing memory modules and the connectivity among them.

8

The behavior refers to the memory subsystem instruction set.
The memory subsystem instruction set represents the possible operations that can occur in the

memory subsystem, such as data transfers between different memory modules or to the proces-
sor (e.g., load, store etc.), control instructions for the different memory components (such as the
DMA), or explicit cache control instructions (e.g., cache freeze, prefetch, replace, refill etc.).

The memory subsystem structure represents the abstract memory modules (such as caches,
stream buffers, RAM modules), their connectivity, and characteristics (e.g., cache properties). The
memory subsystem structure is represented as a netlist of memory components connected through
ports and connections. The memory components are described and attributed with their character-
istics (such as cache line size, replacement policy, write policy).

The pipeline stages and parallelism for each memory module, its connections and ports, as well
as the latches between the pipeline stages are described explicitly, to allow modeling of resource
and timing conflicts in the pipeline. The semantics of each component is represented in C, as part
of a parameterizable components library. We are able to describe the memory subsystem for wide
varieties of architectures, including RISC, DSP, VLIW, and Superscalar. Further details on the
memory subsystem description in EXPRESSION can be found in [28].

6 Example Memory Architecture

We illustrate our Memory-Aware Architectural Description Language (ADL) using the Texas
Instruments TIC6211 VLIW DSP [36] processor that has several novel memory features. Figure 3
shows the example architecture, containing an off-chip DRAM, an on-chip SRAM, and two levels
of cache (L1 and L2), attached to the memory controller of the TIC6211 processor. For illustration
purposes we present only the D1 ld/st functional unit of the TIC6211 processor, and we omitted
the External Memory Interface unit from the Figure 2. TI C6211 is an 8-way VLIW DSP processor
with a deep pipeline, composed of 4 fetch stages (PG, PS, PR, PW), 2 decode stages (DP, DC),
followed by the 8 functional units. The D1 load/store functional unit pipeline is composed of
D1 E1, D1 E2, and the 2 memory controller stages: MemCtrlE1 and MemCtrlE2.

The L1 cache is a 2-way set associative cache, with a size of 64 lines, a line size of 4 words,
and word size of 4 bytes. The replacement policy is Least Recently Used (LRU), and the write
policy is write-back. The cache is composed of a TAGBLOCK, a DATA BLOCK, and the cache
controller, pipelined in 2 stages (L1S1, L1 S2). The cache characteristics are described as part of
the STORAGESECTION in EXPRESSION [23]:
(L1_CACHE

(TYPE DCACHE)
(NUM_LINES 64)
(LINESIZE 4)
(WORDSIZE 4)
(ASSOCIATIVITY 2)
(REPLACEMENT_POLICY LRU)
(WRITE_POLICY WRITE_BACK)
(SUB_UNITS TAG_BLOCK DATA_BLOCK L1_S1 L1_S2)

)

The memory subsystem instruction set description is represented as part of the Operation Section
in EXPRESSION [23]:

9

(OPCODE LDW (OPERANDS (SRC1 reg) (SRC2 reg) (DST reg))

The internal memory subsystem data transfers are represented explicitly in EXPRESSION as
operations. For instance, the L1 cache line fill from L2 triggered on a cache miss is repre-
sented through the LDWL1 MISS operation, with the memory subsystem source and destination
operands described explicitly:

(OPCODE LDW_L1_MISS (OPERANDS (SRC1 reg)
(SRC2 reg) (DST reg) (MEM_SRC1 L1_CACHE)
(MEM_SRC2 L2_CACHE) (MEM_DST1 L1_CACHE))

This explicit representation of the internal memory subsystem data transfers (traditionally not
present in ADLs) allows the designer to reason about the memory subsystem configuration. Fur-
thermore it allows the compiler to exploit the organization of the memory subsystem, and the
simulator to provide detailed feedback on the internal memory subsystem traffic. We do not mod-
ify the processor instruction set, but rather represent explicitly operations which are implicit in the
processor and memory subsystem behavior.

The pipelining and parallelism between the cache operations are described in EXPRESSION
through PIPELINEPATHS [23]. Pipeline Paths represent the ordering between pipeline stages
in the architecture (represented as bold arrows in Figure 3). For instance, a load operation to a
DRAM address traverses first the 4 fetch stages (PG, PS, PR, PW) of the processor, followed by
the 2 decode stages (DP, DC), and then it is directed to the load/store unit D1. Here it traverses
the D1E1 and D1E2 stages, and is directed by the MemCtrlE1 stage to the L1 cache, where it
traverses the L1S1 stage. If the access is a hit, it is then directed to the L1S2 stage, and the data is
sent back to the MemCtrlE1 and MemCtrlE2 (to keep the figure simple, we omitted the reverse
arrows bringing the data back to the CPU). Thus the pipeline path traversed by the example load
operation is:

(PIPELINE PG, PS, PR, PW, DP, DC, D1_E1, D1_E2,
MemCtrl_E1, L1_S1, L1_S2, MemCtrl_E1, MemCtrl_E2)

Even though this example pipeline path is flattened, the pipeline paths in EXPRESSION are
described in a hierarchical manner. In case of an L1 miss, the data request is redirected from
L1 S1 to the L2 cache controller, as shown by the pipeline path (the bold arrow) to L2 in Figure 3.

The L2 cache is 4-way set associative, with a size of 1024 lines, and line size of 8 words. The
L2 cache controller is non-pipelined, with a latency of 6 cycles:

(L2_CTRL (LATENCY 6))

During the third cycle of the L2 cache controller, if a miss is detected it is sent to the off-chip
DRAM. The DRAM module is composed of the DRAM data block and the DRAM controller,
and supports normal, page-mode and burst-mode accesses. A normal access starts with a row
decode, where the row part of the address is used to select a particular row from the data array,
and copy it into the row buffer. During the column decode, the column part of the address is used
to select a particular element from the row buffer and output it. During the precharge, the bank is
deactivated. In a page-mode access, if the next access is to the same row, the data can be fetched
directly form the row buffer, omitting the column decode and precharge operations. During a burst

10

MemCtrl_E1

MemCtrl_E2

D1_E1

D1_E2

PS

PW

PR

DP

DC

PG

Register
 File

RFA

DATA

DATA

ADDR

ADDR

Other
 FUs

DATA

TAGS

L2 CACHE

L2_CTRL

L1 CACHE

DATA

TAGS

L1_S1

L1_S2

SRAM

DATA SRAM
 CTRL

L1_CTRL

DATA

DRAM

P
R

E
C

H
A

R
G

E
R

O
W

 D
E

C
C

O
L

D
E

C

NR

FPMR NPMR

LPMR

NBR

NR − Normal Read
FPMR − First Page Mode Read
NPMR − Next Page Mode Read
NBR − Next Burst Read
LPMR − Last Page Mode Read

DRAM_CTRL

Figure 3. Sample Memory Architecture for TIC6211

access, consecutive elements from the row buffer are clocked out on consecutive cycles. Both
page-mode and burst-mode accesses, when exploited judiciously generate substantial performance
improvements [17]. The timings of each such access mode is represented using the pipeline paths
and LATENCY constructs. For instance, the normal read access (NR), composed of a column
decode, a row decode and a precharge, is represented by the pipeline path:

(PIPELINE ROW_DEC COL_DEC PRECHARGE)
...
(ROW_DEC (LATENCY 6))
(COL_DEC (LATENCY 1))
(PRECHAREGE (LATENCY 6))

where the latency of the ROWDEC is 6 cycles, of COLDEC is 1 cycle, and of the PRECHARGE
is 6 cycles.

In this manner EXPRESSION can model a variety of memory modules and their characteristics.
A unique feature of EXPRESSION is the ability to model theparallelismandpipelining avail-
able in and between the memory modules, such as number of outstanding hits, misses or parallel
loads, and generate timing and resource information to allow aggressive scheduling to hide the
latency of the lengthy memory operations. The EXPRESSION description can be used to drive
the generation of both a memory-aware compiler [17], [21], and cycle-accurate structural memory
subsystem simulator, and thus enable Design Space Exploration and co-design of the memory and
processor architecture. For more details on the memory subsystem description in EXPRESSION
and automatic simulator generation, please refer to [28].

7 Experiments

As described earlier, we have already used this Memory-Aware Architectural Description Lan-
guage (ADL) approach to generate a Memory-Aware Compiler [17] and manage the memory miss
traffic [21], resulting in significantly improved performance. In this section we demonstrate further
use of the memory subsystem specification to describe different memory configurations and per-
form design space exploration with the goal of evaluating different memory configurations for cost,

11

power and performance. We describe the experimental setup, followed by the estimation models
used in our framework for performance, area, and energy computations. Finally, we present the
results.

7.1 Experimental Setup

We performed a set of experiments starting from the base TI C6211 [36] processor architecture,
and varied the memory subsystem architecture. We generated a cycle-accurate simulator, and
performed Design Space Exploration of the memory subsystem. The memory organization of
the TIC6211 is varied by using separate L1 instruction and data caches, an L2 cache, an off-
chip DRAM module, an on-chip SRAM module and a stream buffer module [24] with varied
connectivity among these modules.

We used benchmarks from the multimedia and DSP domains for our experiments. The list of the
benchmarks is shown in Table 1. The benchmarks are compiled using the EXPRESS compiler. We
collected the statistics information using the SIMPRESS cycle-accurate simulator, which models
both the TIC6211 processor and the memory subsystem.

Benchmark Description
Compress Image compression scheme
GSR Red-black Gauss-Seidel relaxation method
Hydro Hydro fragment
DiffPred Difference predictors
FirstSum First sum
FirstDiff First difference
PartPush 2-D PIC (Particle In Cell)
1DPartPush 1-D PIC (Particle In Cell)
CondCompute Implicit, conditional computation
Hydrodynamics 2-D explicit hydrodynamics fragment
GLRE General linear recurrence equations
ICCG ICCG excerpt (Incomplete Cholesky Conjugate Gradient)
MatMult Matrix*matrix product
Planc Planckian distribution
2DHydro 2-D implicit hydrodynamics fragment
FirstMin Find location of first minimum in array
InnerProd Inner product
LinearEqn Banded linear equations
TriDiag Tri-diagonal elimination, below diagonal
Recurrence General linear recurrence equations
StateExcerpt Equation of state fragment
Integrate ADI integration
IntPred Integrate predictors
Laplace Laplace algorithm to perform edge enhancement
Linear Implements a general linear recurrence solver
Wavelet Debaucles 4-Coefficient Wavelet filter

Table 1. Benchmarks

12

We used a greedy algorithm to modify the ADL description of the memory architecture for each
exploration run. The simulator extracts the necessary parameters (e.g., cache parameters, connec-
tivity etc.) from the ADL description automatically for each exploration run. We modify each
parameter value in powers of 2. For each module we used certain heuristics for size limitations.
For example, when certain program or data cache returns 98% hit ratio for a set of application pro-
grams we do not increase its size any more. However, as we explained earlier, any of the existing
exploration algorithms and pruning techniques can be used to generate the ADL description during
design space exploration.

7.2 Estimation Models

There are different kinds of estimation models available in the literature for area and energy
computations. Each of these models are specific to certain types of architectures. We have used
area models from Mulder et al. [4] and energy models from Wattch [5]. These models are adapted
to enable estimation of wide variety of memory configurations available in DSP, RISC, VLIW, and
Superscalar architectures. The estimation models for performance, area, and energy are described
below.

7.2.1 Performance Computation

We compute performance of a particular memory configuration for a given application program
using the number of clock cycles it takes to execute the application in cycle-accurate structural
simulator SIMPRESS [25] for that memory configuration. We divide this cycle count by 2000 to
show both energy and performance plots in the same figure.

7.2.2 Area Computation

We have used the area model of Mulder et al. [4] to compute the silicon area occupied by each
memory configuration. The unit for the area model is a technology independent notion of a register-
bit equivalent orrbe. The advantage of this is the relatively straightforward relation between area
and size, facilitating interpretation of area figures. Onerbeequals the area of a bit storage cell.

We present here the area model for set-associative cache and SRAM that we have used during
area computation of memory configurations. We use the area model for set-associative cache to
compute area for stream buffer as well. The area model for other memory components can be
found in [4]. The area equation for static memory with memory arraysizew words each oflineb

bits long is

areasram= 0:6(sizew+6)(lineb+6) rbe (1)

The area for set-associative cache is a function of the storage capacitysizeb, the degree of as-
sociativityassoc, the line sizelineb, and the size of a transfer-unittrans f erb. The area of a set-
associative cache using static (areastatic

sac) and dynamic cells (areadynamic
sac) are given below using the

number of transfer units in a linetunits, the total number of address tagstags, and the total number
of tag and status bitstsbb. Here,γ equals 2 for a write-back cache and 1 for a write-through cache.

13

areastatic
sac = 195+0:6�ovhd1�sizeb+0:6�ovhd2� tsbitsrbe

areadynamic
sac = 195+0:3�ovhd3�sizeb+0:3�ovhd4� tsbitsrbe

tunits=
lineb

trans f erb

tags=
sizeb
lineb

tsbitsb= tsbb� tags= (1+ γ� tunits+ log2
230
�assoc
sizeb

)� tags

ovhd1 = 1+
6�assoc

tags
+

6
lineb�assoc

ovhd2 = 1+
12�assoc

tags
+

6
tsbb�assoc

ovhd3 = 1+
6�assoc

tags
+

12
lineb�assoc

ovhd4 = 1+
12�assoc

tags
+

12
tsbb�assoc

7.2.3 Energy Computation

We use the power models described in Wattch [5] for energy computation of array structures in
memory configurations. We briefly explain the power models proposed in Wattch. In CMOS
microprocessors, dynamic power consumptionPd is the main source of power consumption, and
is defined as:Pd =CV2

dda f . Here,C is the load capacitance,Vdd is the supply voltage, andf is the
clock frequency. The activity factor,a, is a fraction between 0 and 1 indicating how often clock
ticks lead to switching activity on average.C is calculated based on the circuit and the transistor
sizings as described below.Vdd and f depend on the assumed process technology. The technology
parameters for 0.35u process are used from [6].

The array structure power model is parameterized based on the number of rows (entries), columns
(width of each entry), and the number of read/write ports. These parameters affect the size, the
number of decoders, the number of wordlines, and the number of bitlines. In addition, these param-
eters are used to estimate the length of the pre-decode wires as well as the lengths of the wordlines
and bitlines which determine the capacitive loading on the lines.

The capacitances are modeled in Wattch using assumptions that are similar to those made by [7]
and [6] in which the authors performed delay analysis on many units. In both of the above works,
the authors reduced the units into stages and formed RC circuits for each stage. This allowed them
to estimate the delay for each stage, and by summing these, the delay for the entire unit.

Similar steps are performed for the power analysis in Wattch with two key differences. First, they
are only interested in the capacitance of each stage, rather than bothR andC. Second, in Wattch
the power consumption ofall paths are analyzed and summed together. This is in contrast with the
delay analysis approach in [7], where the expected critical path is of interest. The analytical model

14

for the capacitance estimation for Wordline (WL) and Bitline (BL) are given below. Figure 4 shows
a schematic of the wordlines and bitlines in the array structure.

WLCapacitance=Cdi f f (WLDriver)+Cgate(CellAccess)�NumBitLines+Cmetal�WLLength

BLCapacitance=Cdi f f (PreCharge)+Cdi f f (CellAccess)�NumWLines+Cmetal�BLLength

For more details on computation of power consumption refer to [5]

Cell

Cell

Cell

Cell

Number of
wordlines

Number of Bitlines

Decoder
from

Wordline Driver

to sense ampsto sense amps

Cell access
transistiors

Precharge Precharge Precharge Precharge

Bit Bit’

Figure 4. Schematic of wordlines and bitlines in array structures

7.3 Results

Some of the configurations we experimented with are presented in Table 2. The numbers in
Table 2 represent: the size of the memory module (e.g., the size of L1 in configuration 1 is 256
bytes), the cache/stream buffer organizations:numlines� line size�numways�word size. The
LRU replacement policy is used. The latency is defined in number of processor cycles. Note that
for the stream buffer, numways represents the number of FIFO queues present.

The configurations in Table 2 are presented in increasing order of the cost in terms of area. We
have used the area model of Mulder et al.[4] (as described in Section 7.2.2) to derive the area
of each on-chip memory configuration. The unit for the area model is a technology independent
notion of a register-bit equivalent orrbe. The first configuration contains an L1 instruction cache
(256 bytes), L1 data cache (256 bytes) and a unified L2 cache (8K bytes). All the configurations
contain the same off-chip DRAM module with a latency of 150 cycles.

Here we analyze a subset of the experiments we ran with the goal of evaluating different memory
configurations for cost power and performance. The power performance tradeoff results for the
remaining benchmarks are shown in Section A. Figure 5 shows the exploration result for theGSR
benchmark. The X-axis represents the memory configurations in the increasing order of cost. The

15

Config Area L1 ICache L1 DCache L2 Cache SRAM Stream Buffer
(rbe) (latency=1) (latency=1) (latency=5) (latency=1) (latency=5)

1 54567 256B (8x2x4x4) 256B (8x2x4x4) 8K (256x8x1x4) - -
2 131376 256B (8x2x4x4) 256B (8x2x4x4) 4K (64x2x8x4) 4K -
3 60449 256B (8x2x2x4) 256B (8x2x4x4) 8K (64x4x8x4) - -
4 66394 256B (8x2x4x4) 256B (8x2x4x4) 8K (64x4x8x4) - 512B (8x2x8x4)
5 405632 256B (8x2x4x4) 256B (8x2x4x4) 2K (16x4x8x4) 16K 512B (8x2x8x4)
6 51169 128B (8x2x2x4) 128B (8x2x2x4) 8k (256x8x1x4) - -
7 52868 128B (8x2x2x4) 256B (8x2x4x4) 8k (256x8x1x4) - -
8 58198 128B (8x2x2x4) 256B (8x4x2x4) 8k (64x4x8x4) - -
9 52057 128B (8x2x2x4) 256B (16x2x2x4) 8k (256x8x1x4) - -
10 52868 256B (8x2x4x4) 128B (8x2x2x4) 8k (256x8x1x4) - -
11 33099 256B (8x4x2x4) 256B (8x4x2x4) 4k (64x4x4x4) - -
12 31698 256B (16x2x2x4) 256B (16x2x2x4) 4k (256x4x1x4) - -
13 33469 256B (16x2x2x4) 512B (32x2x2x4) 4k (256x4x1x4) - -
14 53847 512B (16x4x2x4) 128B (8x2x2x4) 8k (256x8x1x4) - -
15 33488 512B (16x4x2x4) 256B (16x2x2x4) 4k (256x4x1x4) - -
16 35259 512B (16x4x2x4) 512B (32x2x2x4) 4k (256x4x1x4) - -
17 58100 512B (8x8x2x4) 512B (8x8x2x4) 8k (256x8x1x4) - -
18 36066 512B (8x8x2x4) 512B (16x4x2x4) 8k (256x4x1x4) - -
19 59156 512B (8x4x4x4) 512B (8x4x4x4) 8k (256x8x1x4) - -
20 125223 256B (16x2x2x4) 256B (16x2x2x4) 4k (256x4x1x4) 4k -
21 123447 128B (8x2x2x4) 128B (8x2x2x4) 4k (256x4x1x4) 4k -
22 216836 128B (8x2x2x4) 128B (8x2x2x4) 4k (256x4x1x4) 8k -
23 36227 128B (8x2x2x4) 256B (16x2x2x4) 4k (256x4x1x4) - 512 (8x8x2x4)
24 33909 128B (8x2x2x4) 256B (16x2x2x4) 8k (256x4x1x4) - 256 (8x4x2x4)
25 246805 128B (8x2x2x4) 256B (16x2x2x4) 8k (64x8x4x4) 8k 512 (8x8x2x4)
26 246805 128B (8x2x2x4) 256B (16x2x2x4) 8k (64x8x4x4) 8k 512 (8x8x2x4)
27 155188 128B (8x2x2x4) 512B (32x2x2x4) 8k (64x8x4x4) 4k 512 (8x8x2x4)

Table 2. The memory subsystem configurations

Y-axis represents values for both performance and energy. The performance value is normalized
by dividing cycle count by 2000. The energy value is given in uJ. Although the cost for memory
configurations 6 and 9 are much lower than the cost of configuration 5. The former (6 and 9)
configurations deliver better in terms of area, energy and performance. The configuration 21 is
better than configuration 6 in terms of energy and performance. However, the former is worse than
the latter in terms of area. So depending on the priority among area, energy and performance, one
of the configuration can be selected.

When area consideration is not very important we can view the pareto-optimal configurations
from energy-performance trade-offs. Figure 6 shows the energy performance trade-offs forCom-
pressbenchmark. It is interesting to note that a set a memory configurations (with varied parame-
ters, modules and connectivity) deliver similar performance results forCompressbenchmark. As
we can see that there are three distinct performance zones. The first zone has performance values
between 5 and 10. This zone consists of memory configurations 21, 20, 2, 27, 22, 25, 26 and
5. The power values are different due to the fact that each configuration has different parameters,

16

Figure 5. Memory Exploration Results for GSR

modules, connectivity and area. However, the performance is almost similar since the data fits in
SRAM of size 2K for these configurations. Similarly, the second zone (configurations 6, 9, 10, 7,
14, 1, 17, 19) has performance values between 15 and 20 with very different power values. The
performance is almost same for these configurations because the L2 cache size of 8K or larger
has very high hit ratio and as a result for all these memory configurations L2 dominates and L2 to
DRAM access remains almost constant. Similarly for the third zone (configurations 12, 11, 13, 15,
24, 16, 18, 23, 8, 3, 4) has almost same performance with different power values. This is due to
the fact that each of these configuration has 4 as L2 line size that dominates over other parameters
for these configurations. This line size is the reason why configurations in third zone is worse than
configuration in second zone. The same phenomenon can be observed in the benchmarksFirst-
Sum, FirstDiff, FirstMin. The benchmarkInnerProdhas four such zones whereas the benchmark
Tridiag has five such performance zones. The pareto-optimal configurations are shown using sym-
bol X and the corresponding memory configuration is mentioned in the figure. Depending of on
the priority among cost, energy and performance one of three configurations (Config 11, 17, 26)
can be chosen.

However, for some set of benchmarks the energy performance tradeoff points are scattered in
the design space and thus the pareto-optimal configurations are of interest. Figure 8 shows the
energy performance tradeoff for the benchmark MatMult. It has only one pareto-optimal point i.e.,
configuration 5. However, the benchmark Figure 7 has two pareto-optimal points. The configura-
tion 5 consumes more energy and area than configuration 17. However, configuration 17 is better
in terms of performance than configuration 5. Depending on the priority among area, energy and
performance one of the two configurations can be selected.

Thus, using our Memory-Aware ADL-based Design Space Exploration approach, we obtained
design points with varying cost, energy and performance. We observed various trends for different
application classes, allowing customization of the memory architecture tuned to the applications.
Note that this cannot be determined through analysis alone; the customized memory subsystem

17

Figure 6. Energy Performance Tradeoff for Compress

Figure 7. Energy Performance Tradeoff for Laplace

18

Figure 8. Energy Performance Tradeoff for MatMult

must be explicitly captured, and the applications have to be executed on the configured processor-
memory system, as we demonstrated in this section.

8 Summary

Memory represents a critical driver in terms of cost, performance and power for embedded sys-
tems. To address this problem, a large variety of modern memory technologies, and heterogeneous
memory organizations have been proposed.

On one hand the application is characterized by a variety of access patterns (such as stream,
locality-based, etc.). On the other hand, new memory modules and organizations provide a set
of features which exploit specific applications needs (e.g., caches, stream buffers, page-mode,
burst-mode, DMA). To find the best match between the application characteristics and the mem-
ory organization features, the designer needs to explore different memory configurations in com-
bination with different processor architectures, and evaluate each such system for a set of met-
rics (such as cost, power, performance). Performing such processor-memory co-exploration re-
quires the capability to capture the memory subsystems, and perform a compiler-in-the-loop ex-
ploration/evaluation.

In this paper we presented a Memory-Aware Architectural Description Language (ADL) ap-
proach which captures the memory subsystem explicitly.

This Memory-Aware ADL approach is used to drive the generation of a cycle accurate memory
simulator, and also facilitate the exploration of various memory configurations, and trade-off cost
versus performance. Our experimental results show that varying price-performance design points
can be uncovered using the processor-memory co-exploration approach.

Our ongoing work targets the use of this ADL approach for further memory exploration exper-
iments, using larger applications, to study the impact of different parts of the application (such as
loop nests) on the memory organization behavior and overall performance, as well as on system

19

power.

9 Acknowledgments

This work was partially supported by grants from DARPA (F33615-00-C-1632), Hitachi Ltd.,
and Motorola Inc. We would like to acknowledge Prof. Alex Nicolau, Dr. Peter Grun and Ashok
Halambi for their contribution to the exploration work.

References

[1] ARC Cores.http://www.arccores.com.

[2] Axys Design Automation.http://www.axysdesign.com.

[3] D. Lanneer et al. CHESS: Retargetable Code Generation for Embedded DSP Processors.Code Gen-
eration for Embedded Processors.Kluwer, 1997.

[4] J. Mulder et al. An Area Model for On-Chip Memories and its Application.IEEE Journal of Solid-
State Circuits, Vol 26, No 2, pages 98–106, 1991.

[5] D. Brooks et al. Wattch: A Framework for Architectural-Level Power Analysis and Optimizations.
ISCA, 2000.

[6] S. Palacharla et al. Complexity-Effective Superscalar Processors.ISCA, 1997.

[7] S. Wilton et al. An Enhanced Access and Cycle Time Model for On-Chip Caches.WRL Research
Report 93/5, DEC Western Research Laboratory, 1994.

[8] P. Lieverse et al. A Methodology for Architecture Exploration of Heterogeneous Signal Processing
Systems.IEEE Workshop on Signal Processing Systems, 1999.

[9] G. Hadjiyiannis et al. ISDL: An instruction set description language for retargetability.DAC, 1997.

[10] H. Yasuura et al. A programming language for processor based embedded systems.APCHDL, 1998.

[11] T. Givargis et al. System-Level Exploration for Pareto-Optimal Configurations in Parameterized
System-on-a-Chip.ICCAD, 2001.

[12] W. Fornaciari et al. A Design Framework to Efficiently Explore Energy Delay Tradeoffs.CODES,
2001.

[13] G. Ascia et al. Parameterized System Design Based on Genetic Algorithms.CODES, 2001.

[14] R. Leupers et al. Retargetable generation of code selectors from HDL processor models.EDTC, 1997.

[15] V. Zivojnovic et al. LISA - machine description language and generic machine model for HW/SW
co-design.IEEE Workshop on VLSI Signal Processing, 1996.

[16] M. Freericks. The nML machine description formalism. Technical Report TR SM-IMP/DIST/08, TU
Berlin CS Dept., 1993.

20

[17] P. Grun et al. Memory aware compilation through accurate timing extraction.DAC, 2000.

[18] P. Grun et al. APEX: Access Pattern based Memory Architecture Customization.ISSS, 2001.

[19] P. Grun et al. Memory Connectivity Architecture Exploration.DATE, 2001.

[20] F. Catthoor et al. Custom Memory Management Methodology.Kluwer Academic Publishers, 1998.

[21] P. Grun et al. Mist: An algorithm for memory miss traffic management.ICCAD, 2000.

[22] P. Grun et al. RTGEN: An algorithm for automatic generation of reservation tables from architectural
descriptions.ISSS, 1999.

[23] A. Halambi et al. EXPRESSION: A language for architecture exploration through compiler/simulator
retargetability.DATE, 1999.

[24] N. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers.ISCA, 1990.

[25] A. Khare et al. V-SAT: A visual specification and analysis tool for system-on-chip exploration.EU-
ROMICRO, 1999.

[26] W. Shiue et al. Memory Exploration for Low Power Embedded Systems.DAC, 1999.

[27] P. Panda et al. Architectural Exploration and Optimization of Local Memory in Embedded Systems.
ISSS, 1997.

[28] P. Mishra et al. Memory subsystem description in EXPRESSION. Technical Report UCI-ICS 00-31,
University of California, Irvine, 2000.

[29] S. Przybylski. Sorting out the new DRAMs.Hot Chips Tutorial, Stanford, CA, 1997.

[30] V. Rajesh and R. Moona. Processor modeling for hardware software codesign.International Confer-
ence on VLSI Design, 1999.

[31] Semiconductor Industry Association.National technology roadmap for semiconductors: Technology
needs, 1998.

[32] C. Siska. A processor description language supporting retargetable multi-pipeline dsp program devel-
opment tools.Proc. ISSS, 1998.

[33] Target Compiler Technologies.http://www.retarget.com.

[34] Tensilica Incorporated.http://www.tensilica.com.

[35] Trimaran Release: http://www.trimaran.org.The MDES User Manual, 1997.

[36] http://www.ti.com/sc/docs/products/dsp/C6000/index.htm.TMS320C6000T M Highest Performance
DSP Platform.

[37] IBM Microelectronics, Data Sheets for Synchronous DRAM IBM0316409C.
www.chips.ibm.com/products/memory/08J3348/.

21

A Appendix

Figure 9. Energy Performance Tradeoff for 1dpartpush

Figure 10. Energy Performance Tradeoff for 2dhydro

22

Figure 11. Energy Performance Tradeoff for Condcompute

Figure 12. Energy Performance Tradeoff for Diffpred

Figure 13. Energy Performance Tradeoff for Firstdiff

23

Figure 14. Energy Performance Tradeoff for Firstmin

Figure 15. Energy Performance Tradeoff for Firstsum

Figure 16. Energy Performance Tradeoff for GLRE

24

Figure 17. Energy Performance Tradeoff for GSR

Figure 18. Energy Performance Tradeoff for Hydro

Figure 19. Energy Performance Tradeoff for Hydrodynamics

25

Figure 20. Energy Performance Tradeoff for ICCG

Figure 21. Energy Performance Tradeoff for Innerprod

Figure 22. Energy Performance Tradeoff for integrate

26

Figure 23. Energy Performance Tradeoff for Intpred

Figure 24. Energy Performance Tradeoff for Linear

Figure 25. Energy Performance Tradeoff for Lineareqn

27

Figure 26. Energy Performance Tradeoff for Partpush

28

Figure 27. Energy Performance Tradeoff for Planc

Figure 28. Energy Performance Tradeoff for Recurrence

29

Figure 29. Energy Performance Tradeoff for Stateexcerpt

Figure 30. Energy Performance Tradeoff for Tridiag

Figure 31. Energy Performance Tradeoff for Wavelet

30

