
SpecC Modeling Guidelines

Andreas Gerstlauer

Technical Report CECS-02-16
(revision of ICS-TR-00-48)

April 12, 2002

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

gerstl@cecs.uci.edu
http://www.cecs.uci.edu

SpecC Modeling Guidelines

Andreas Gerstlauer

Technical Report CECS-02-16
(revision of ICS-TR-00-48)

April 12, 2002

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

gerstl@cecs.uci.edu
http://www.cecs.uci.edu

Abstract

Raising the level of abstraction to the system level has been touted as the main solution for closing the productivity gap
designers of embedded systems-on-chip (SOCs) are facing increasingly. However, in order to achieve the required productivity
gains, a well-defined methodology enabling a synthesis-oriented flow is necessary. The basis for every methodology are clear
and unambiguous models at different levels of abstraction.

In this report, we will define the four models that comprise the SpecC system-level design methodology. Using actual code
templates, we will show their features and properties in detail. All together, this report provides comprehensive guidelines
for modeling a design at each level. In addition to standardizing manually written models, the exact definition of the models
builds the basis of all automated tools for exploration, refinement, synthesis or verification.

Contents

1 Introduction 1
1.1 System Design Flow . 2
1.2 SpecC Methodology .. 3
1.3 SpecC Language 4

2 Specification Model 4
2.1 Specification Model Example . 4
2.2 Concurrency . 5
2.3 Communication . 6
2.4 Summary . 7

3 Architecture Model 9
3.1 Architecture Model Example . 9
3.2 Storage . 11

3.2.1 Local Memory . 11
3.2.2 Global Memory . 11

3.3 Synchronization . 13
3.4 IP Components 14
3.5 Scheduling . 16
3.6 Time . 17
3.7 Summary . 17

4 Communication Model 18
4.1 Communication Model Example . 18

4.1.1 Bus Wires . 20
4.1.2 Bus Adapters . 20

4.2 Protocol Layer . 21
4.3 Application Layer . 23

4.3.1 Synchronization . 23
4.3.2 Addressing . 25
4.3.3 Data slicing . 25

4.4 Transducers . 25
4.5 Arbitration . 27
4.6 Timing . 29
4.7 Summary . 30

5 Implementation Model 30
5.1 Behavioral RTL . 31

5.1.1 Custom Hardware . 32
5.1.2 Programmable Processors . 33

5.2 Structural RTL . 35
5.2.1 Clock . 36
5.2.2 Controller . 36
5.2.3 Datapath . 37
5.2.4 Bus Interface . 37

5.3 Summary . 39

6 Summary and Conclusions 40

References 40

i

List of Figures

1 Y-Chart. 1
2 SpecC methodology. .. 3
3 SpecC models in the Y-Chart. 4
4 Specification model. 5
5 Specification model with explicit dependencies. . .. 6
6 Specification model with message-passing communication.. 7
7 Architecture model. 10
8 Shared memory architecture model. 12
9 Architecture model with multiple inter-component behavior transitions. 14
10 Architecture model with IP. . .. 16
11 Communication model. 20
12 PE bus adapters. 21
13 DSP56600 protocol timing diagram. .. 21
14 Application layer synchronization protocol. 23
15 Communication model with IP.. 25
16 Communication model with arbiter. .. 28
17 Implementation model. 30
18 Custom hardware bus interface FSMD. 33
19 Structural RTL model for custom hardware. 35

ii

List of Listings

1 Specification model. 5
2 Specification model with explicit dependencies. . .. 6
3 Message-passing channel. 7
4 Specification model with message-passing communication.. 7
5 Architecture model. 10
6 Shared memory architecture model. 12
7 Global memory component. .. 13
8 Shared memory accesses in leaf behaviors. 13
9 IP component model. .. 15
10 Architecture model with IP. . .. 16
11 IP accesses in leaf behaviorB3. 17
12 Behavior timing. 17
13 Communication model. 19
14 Signal channel for modeling of wires. 20
15 PE bus adapter interface. 21
16 Bus adapter protocol layer. 22
17 Bus adapter application layer. 24
18 Communication model with IP.. 26
19 Transducer component model.. 27
20 Communication model with arbiter. .. 28
21 Bus adapter with arbitration. .. 29
22 Arbiter component model. . .. 29
23 Implementation model. 31
24 Custom hardware behavioral RTL model. 31
25 Custom hardware bus interface FSMD. 32
26 DSP instruction set simulator (ISS) model. 34
27 Structural RTL model for custom hardware. 35
28 Clock generator. 36
29 Custom hardware controller. 36
30 State register. 36
31 Output logic. 37
32 Next state logic. 37
33 Custom hardware datapath. 38
34 Bus interface hardware unit. 38
35 Bus interface controller. 39

iii

SpecC Modeling Guidelines

A. Gerstlauer
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract

Raising the level of abstraction to the system level has been
touted as the main solution for closing the productivity gap
designers of embedded systems-on-chip (SOCs) are facing
increasingly. However, in order to achieve the required
productivity gains, a well-defined methodology enabling a
synthesis-oriented flow is necessary. The basis for every
methodology are clear and unambiguous models at differ-
ent levels of abstraction.

In this report, we will define the four models that com-
prise the SpecC system-level design methodology. Using
actual code templates, we will show their features and
properties in detail. All together, this report provides com-
prehensive guidelines for modeling a design at each level.
In addition to standardizing manually written models, the
exact definition of the models builds the basis of all auto-
mated tools for exploration, refinement, synthesis or verifi-
cation.

1 Introduction

The design of embedded computer systems is the process
of implementing a given specification of the desired sys-
tem on a chip in silicon. Following a formal methodology,
defined as a set of models and a set of transformation be-
tween the models, the design is gradually refined to lower
and lower levels of abstraction.

As depicted by the Y-Chart (Figure 1), four general lay-
ers of abstraction are commonly distinguished [1]:

(a) System level

(b) Register-transfer level (RTL)

(c) Gate level

(d) Transistor level

With lower levels, the design process focuses on more and
more detailed aspects of the system. At each level, the
designer works with a specific set of objects. Objects at
higher levels of abstraction are hierarchically composed

Transistor level

Gate level

Register-transfer level (RTL)

System level

Behavioral Structural

Physical

Figure 1: Y-Chart.

of lower-level design objects. For example, at the sys-
tem level, components of the system architecture are pro-
cessing elements (PEs) and system busses. At the register-
transfer level, in turn, the microarchitecture of PEs is build
out of functional units, registers, and so on.

At each layer, the design object at that level can be de-
scribed or modeled in three different views:

(a) A behavioral viewdescribes the functionality of the
design in terms of abstract concepts, independent of
any implementation details.

Building blocks of a behavioral description are ab-
stract entities that do not represent physical compo-
nents. Each block describes a piece of functional-
ity that takes inputs, processes them and finishes af-
ter producing its output. In a behavioral view, such
blocks are then arranged hierarchically to model the
control and data dependencies between them.

Parallelism in a behavioral description does not im-
ply true concurrency in hardware. Again, behavioral
blocks are abstract representations of algorithms that
are free of implementation assumptions.

(b) A structural viewdescribes the design as a netlist of
lower-level components and their connectivity.

1

Building blocks of a structural description represent
real, physical objects that are connected via wires.
As such, each of the blocks is active all the time,
constantly processing data. In a structural view, the
system is then modeled as a set of non-terminating,
concurrent processes representing the way the system
is composed out of tangible lower-level components.
Dependencies have to be modeled as part of the pro-
cesses’ functionality by inserting synchronization as
needed.

Since the processes of a structural description rep-
resent real hardware, the parallel composition of
the processes reflects the true concurrency available
among the set of physical components on the chip or
the board.

(c) A physical viewdescribes the spatial layout of the
lower-level components on the chip. A physical view
describes the floorplan of how the components and
their interconnect are placed and routed on the chip.

Points in the Y-Chart form specific levels of abstracting a
design. In addition to the amount of structure as shown by
the layers and views of the Y-Chart, models of the design
at certain abstraction levels are defined by the amount of
order in the model.

In general, given two eventse1 ande2, where an eventei

is a tuple(ai ; ti) of actionai occurring at timeti , e1 ande2

are ordered iff it can be determined thatt1 < t2 or t2 < t1. A
system is totally ordered if all pairs of events are ordered
as is the case with real time on the chip, for example. A
system is partially ordered if only subsets of all events are
ordered. For example, at higher levels, a relationship be-
tween independent parts is not specified. An abstraction
level employs a model of time to specify order. Real time
is abstracted as discrete logical time. Two unordered events
are modeled to occur at the same logical time, leaving the
freedom of implementing them in any oder in real time.

1.1 System Design Flow

Design is the process of moving from a behavioral to a
structural (and eventually physical) description at a cer-
tain level, implementing the desired functionality through
an architecture of subcomponents. The subcomponents, in
turn, are designed by moving from a behavioral description
to a structural (and physical) description of the subcompo-
nent at the next lower level of abstraction. For example, at
the system level, the designer will create a system architec-
ture consisting of a set of processing elements (PEs) con-
nected through system busses that implements the desired
system functionality. The processing element’s functional-
ity, in turn, is implemented by designing a microarchitec-

ture of functional units, registers files, and so on for the PE
at the register-transfer level.

A design flow can be bottom-up or top-down. In a
bottom-up approach, design moves from the lowest level
of abstraction up to the system level by assembling pre-
viously designed components such that the desired behav-
ior is achieved at each level. In a top-down approach, de-
sign starts with a specification of the system behavior and
moves down in the level of abstraction by mapping the de-
sired behavior at each level onto a set of components and
specifying the behavior of each component for the next
level.

In order to automate the design process with CAD tools,
the models and transformations of the design methodol-
ogy must be formalized. Languages with special support
to describe different views of the design at different levels
of abstraction in a formal and efficient manner are needed.
In addition to the application of formal methods for veri-
fication, an executable language allows validation through
simulation of the models.

Once the models for the different design views at differ-
ent abstraction levels are formally defined, CAD tools can
automate parts of the design process. Specifically, the for-
malized process of deriving a structural description from a
behavior description of the desired functionality is called
synthesis. The synthesis processes at the highest levels of
abstraction are:

(a) System synthesis
Given a specification of the system behavior, synthe-
size a system architecture consisting of processing el-
ements and system busses that implements the desired
functionality.

(b) High-level/behavioral synthesis
Given a behavioral description of a PE, synthesize a
microarchitecture implementation out of RTL compo-
nents like functional units, register files, and so on.

(c) Logic synthesis
Given a description of the functionality of an RTL
component, synthesize a gate netlist that implements
the combinatorial/sequential logic for the component.

In this report, we formalize the different models of the
SpecC system-level design methodology, representing dif-
ferent views of the design at different levels of abstrac-
tion. The SpecC methodology covers system and register-
transfer levels of abstraction. Formalizing the models of
the methodology forms the basis for developing the corre-
sponding system-level and high-level synthesis tools.

2

Capture

Architecture exploration

model
Specification

Architecture
model

Communication synthesis

Communication
model

Manufacturing

Hardware

synthesis

Software

compilation

model
Implementation

synthesis

Interface

LibraryLibrary
RTL

Library
Alg.

Library
Comp

LibraryLibrary
Bus

System synthesis

Backend

untimed

timed

timed

Gate netlist,
sub−cycle delays

RTL / ISS,

Structural,

Functional,

Bus−functional,

cycle−accurate

Figure 2: SpecC methodology.

1.2 SpecC Methodology

The SpecC system-level design methodology is shown in
Figure 2. The SpecC methodology is a set of four models
and three transformation steps that take a system specifica-
tion down to an RTL implementation [2].

The SpecC design flow consists of two main parts: (a)
system synthesis, and (b) a backend for high-level synthe-
sis and compilation. In the SpecC methodology, system
synthesis is further subdivided into two orthogonal tasks,
architecture exploration and communication synthesis. Ar-
chitecture exploration implements the computation behav-
ior of the specification on a set of processing elements that
form the system architecture. Communication synthesis,
on the other hand, implements the communication func-
tionality of the specification over the system busses.

Each system synthesis and backend task refines the
model of the design at the current stage of the design pro-
cess into a new model representing the details of the imple-
mentation added during the synthesis step. At the output of
each task, the model of the design reflects the implementa-

tion decisions made in the previous step. At the same time,
each model forms the input to the next task.

The system-level design process starts off with a speci-
fication of the desired system behavior. This specification
model is written by the user and forms the input to the de-
sign process. It is purely functional and free of any imple-
mentation details. There is no notion of time yet and only
a purely causal ordering of events, i.e. events in the sys-
tem are limited to synchronization events only which are
needed to ensure causality.

In the SpecC methodology, the first task of system syn-
thesis is architecture exploration. Architecture exploration
selects a set of processing elements and maps the compu-
tation behavior of the specification onto the PEs. Archi-
tecture exploration refines the specification model into the
intermediate architecture model. The architecture model
describes the PE structure of the system architecture and
the mapping of computation behaviors onto the PEs, in-
cluding estimated execution times for the behavior of each
PE.

Architecture exploration is followed by communication
synthesis to complete the system synthesis process. Com-
munication synthesis selects a set of system busses and
protocols, and maps the communication functionality of
the specification onto the system busses. Communication
synthesis creates the communication model which reflects
the bus architecture of the system and the mapping of com-
munication onto the busses.

The communication model is the result of the system
synthesis process. It describes the structure of the system
architecture consisting of PEs and busses, and the imple-
mentation of the system functionality on this architecture.
It is timed in both computation and communication, i.e.
simulation detail is increased by events for estimated exe-
cution and communication delays.

The communication model is a structural view at the sys-
tem level. At the same time, the specification of the func-
tionality of each PE of the system in the form of a behav-
ioral view at the register-transfer level forms the input to
the RTL synthesis of those components in the backend. In
a hierarchical fashion, each PE is synthesized separately in
the backend and the behavioral view of the PE is replaced
with a structural view of its RTL or instruction-set (IS) mi-
croarchitecture. The result of this backend process is the
implementation model.

The implementation model is a cycle-accurate, struc-
tural description of the RTL/IS architecture of the whole
system. In a hierarchical fashion, the implementation
model describes the system structure and the RTL structure
of each PE in the system. Simulation detail is increased
down to the clock level, i.e. the timing resolution is in terms
of clock events for each local PE clock.

3

Behavior Structure

Communication
modelmodel

Specification

Communication
model

Implementation
model

Implementation
model

Architecture model

High-level (RTL) synthesis

System synthesis

Logic (gate) synthesis

Figure 3: SpecC models in the Y-Chart.

Figure 3 summarizes the four models of the SpecC
methodology by their position in the views and abstraction
layers of the Y-Chart.

1.3 SpecC Language

The SpecC methodology is supported by the SpecC
system-level design language [2]. The SpecC language
was developed to satisfy all the requirements for an ef-
ficient formal description of the models in the SpecC
methodology. It supports behavioral and structural views
and contains features for describing a design at all levels
of abstraction.

In general, at all levels of abstraction, behavioral and
structural views of a SpecC behavior at any point in the
code hierarchy are defined as follows:

(a) A behavioral view is modeled as a serial-parallel com-
position of behaviors. Behaviors terminate after they
are finished processing the current input data set and
producing corresponding outputs. Behaviors are then
arranged hierarchically to explicitly model data and
control flow between blocks, describing the desired
functionality.

(b) A structural view is defined as a set of non-
terminating, communicating, and concurrent behav-
iors representing the tangible components of the ar-
chitecture. In SpecC, a structural description is a par-
allel decomposition of a behavior into subbehaviors
that each execute in endless loops and communicate
through ports and variables, events, or channels.

Starting with the system behavior description at the top
level, behavioral views are replaced with structural views
as design progresses down to lower levels.

In the SpecC methodology, all four models of the design
process starting with the specification model and down
to the implementation model are written and described in
the SpecC language. One common language removes the
need for tedious translation. Furthermore, all the mod-
els in SpecC are executable which allows for validation

through simulation, reusing one single testbench through-
out the whole design flow. In addition, the formal nature of
the models enables application of formal methods, e.g. for
verification or equivalence checking.

The purpose of this report is to define the four different
models of the SpecC methodology within the framework
of the SpecC language and to define how each model is
described in SpecC. Based on code templates and exam-
ples, we will give guidelines for modeling implementation
details available at each level of abstraction and in each
design view.

The rest of this report is organized as follows: the report
starts with a description of the specification model in Sec-
tion 2. Section 3 and Section 4 detail the architecture and
communication models, respectively. Finally, Section 5 in-
troduces the major aspects of the implementation model.
The report then concludes with a summary in Section 6.

2 Specification Model

The specification model is the input of architecture explo-
ration. It is written by the user to specify the desired sys-
tem functionality. The specification is a behavioral view
of the system, i.e. it describes the desired functionality in
an abstract manner. The specification model is a purely
functional model, free of any implementation details. For
example, objects at the specification level are abstract enti-
ties that do not correspond to real components.

In general, the specification is hierarchically composed
of behaviors. Behaviors are arranged sequentially, con-
currently, or in a mix of both, i.e. in a pipelined fashion.
Behaviors at the leaves of the hierarchy contain basic al-
gorithms that perform arithmetic and logical operations on
data. In addition to temporary data, leaf behaviors will en-
capsulate any permanent storage required by the algorithm.

The ordering of events in the system is based on causal
relationships only and there is no notion of time. The sys-
tem is partially ordered based on causality as determined
by the dependencies between behaviors. Simulation de-
tail is limited to events used for synchronization to ensure
causality.

2.1 Specification Model Example

Figure 4 shows an example of a simple yet typical speci-
fication model. The corresponding SpecC code is shown
in Listing 1. The design is a hierarchical, serial-parallel
composition of behaviors. In the example, behaviorB1 is
followed by the parallel composition of behaviorsB2 and
B3. The three leaf behaviorsB1, B2, andB3 contain algo-
rithms in the form of C code.

4

/ / l e a f behav ior 1
behavior B1 (out type1 v1)
f

void main (void) f
5 . . .

v1 = . . .
g

g ;

10 / / l e a f behav ior 2
behavior B2 (in type1 v1 ,

out type2 v2 ,
out event e1)

f
15 void main (void) f

. . .
v2 = f2 (v1 , . . .) ;
no t i f y (e1) ;
. . .

20 g
g ;

/ / l e a f behav ior 3
behavior B3 (in type1 v1 ,

25 in type2 v2 ,
in event e1)

f
void main (void) f

. . .
30 wait (e1) ;

f3 (v1 , v2 , . . .) ;
. . .

g
g ;

35
/ / B2 j j B3
behavior B2B3 (in type1 v1)
f

type2 v2 ;
40 event e1 ;

B2 b2 (v1 , v2 , e1) ;
B3 b3 (v1 , v2 , e1) ;

45 void main (void) f
par f b2 . main () ; b3 . main () ;g

g
g ;

50 / / Top�l e v e l
behavior Design ()
f

type1 v1 ;

55 B1 b1 (v1) ;
B2B3 b2b3 (v1) ;

void main (void) f
b1 . main () ;

60 b2b3 . main () ;
g

g ;

Listing 1: Specification model.

B1

v1

v2

e2

B1

B2 B3

Figure 4: Specification model.

Behaviors communicate through variables attached to
their ports. Synchronization of concurrent behaviors is
handled through events connected to behavior ports. In this
case, behaviorB1produces the variablev1of typetype1at
its output The variable is passed intoB2andB3by connect-
ing v1 to the corresponding inputs of those two behaviors.
The concurrent behaviorsB2andB3communicate through
the variablev2 (of type type2) and the evente1. Behavior
B2writes tov2and notifiesB3when the data is ready. Be-
haviorB3 in turn waits for event notification before reading
from variablev2.

2.2 Concurrency

In general, concurrent behaviors in the specification model
should reflect the available parallelism in the specification.
Therefore, they should be as independent as possible. Data
or control dependencies between behaviors at the specifica-
tion level should be explicitly captured through the behav-
ior hierarchy. Instead of concurrent behaviors that com-
municate or synchronize through variables or events, the
behaviors should be split into independent parts that can
run in parallel and dependent parts that have to be executed
sequentially.

Figure 5 and Listing 2 show the specification model ex-
ample after splitting the concurrent behaviorsB2 andB3
to explicitly model the data dependency through the serial-
parallel behavior hierarchy. Instead of synchronization via
the evente1, the dependency on variablev2 is represented
by executing the corresponding parts of the behaviors se-
quentially.

Note, however, that the modified example introduces an
artificial dependency between behaviorsB3 1 and B2 2.
Depending on the actual implementation, this dependency
might result in an unnecessary delay before the execution
of behaviorB2 2. Therefore, the tradeoff between im-
plicit versus explicit parallelism and dependencies will de-
termine whether to cut or combine concurrent threads.

5

/ / l e a f behav ior 2 , two par ts
behavior B2 1 (in type1 v1 ,

out type2 v2)
f

5 void main (void) f
. . .
v2 = f2 (v1 , . . .) ;

g
g ;

10 behavior B2 2 (in type2 v2)
f

void main (void) f
. . .

g
15 g ;

/ / l e a f behav ior 3 , two par ts
behavior B3 1 (in type1 v1)
f

20 void main (void) f
. . .

g
g ;
behavior B3 2 (in type1 v1 ,

25 in type2 v2)
f

void main (void) f
f3 (v1 , v2 , . . .) ;
. . .

30 g
g ;

/ / B2 j j B3 , two par ts
behavior B2B3 1 (in type1 v1 ,

35 out type2 v2)
f

B2 1 b2 (v1 , v2) ;
B3 1 b3 (v1) ;

40 void main (void) f
par f b2 . main () ; b3 . main () ;g

g
g ;
behavior B2B3 2 (in type1 v1 ,

45 in type2 v2)
f

B2 2 b2 (v2) ;
B3 2 b3 (v1 , v2) ;

50 void main (void) f
par f b2 . main () ; b3 . main () ;g

g
g ;

55 / / Top�l e v e l
behavior Design ()
f

type1 v1 ;
type2 v2 ;

60
B1 b1 (v1) ;
B2B3 1 b23 1 (v1 , v2) ;
B2B3 2 b23 2 (v1 , v2) ;

65 void main (void) f
b1 . main () ;
b23 1 . main () ;
b23 2 . main () ;

g
70 g ;

Listing 2: Specification model with explicit dependencies.

B1

v1

B1

B2_1 B3_1

v2

B2_2 B3_2

Figure 5: Specification model with explicit dependencies.

2.3 Communication

If the relationship of concurrent behaviors in the specifica-
tion model extends beyond synchronization through pure
events and necessitates some actual form of data commu-
nication, the specification needs to clearly separate such
communication from the normal computation by encapsu-
lating communication functionality in the form of chan-
nels.

In general, behaviors at the specification level commu-
nicate via message-passing channels. Behaviors exchange
data by sending and receiving messages over communica-
tion channels with appropriate semantics. In the case of
a sequential composition, message-passing degenerates to
simple variables. Data is exchanged by reading and writing
from/to the variable. In the case of a parallel composition
with simple synchronization only, the synchronization is
implemented via a single event. In the general case of data
communication between concurrent behaviors, however, a
message-passing channel is instantiated.

The specification model instantiates channels out of
a SpecC channel library. The library contains chan-
nels with abstract communication semantics like buffered
and unbuffered message-passing, FIFOs, shared-memory
semaphores/mutexes, and so on. By using the predefined
channels out of the library, commonly needed communica-
tion functionality is available for integration into the spec-
ification model.

The simulation model for a channel with blocking
message-passing semantics for messages of arbitrary type
is shown in Listing 3. Both, thesend()and recv() meth-
ods block the sender and receiver until the other end ac-
knowledges receipt or signals readiness to complete the
data communication. The double-handshake protocol in-
side the channel effectively implements the rendevouz-
style semantics of blocking message-passing.

Note that the simulation model of the channel does not

6

i n t e r f a c e ISend f
void send (void � data , in t s ize) ;

g ;
i n t e r f a c e IRecv f

5 void recv (void � data , in t s ize) ;
g ;

channel ChMP() implements ISend , IRecv
f

10 void � buf = 0 ; / / temporary b u f f e r
event eReady , eAck ; / / handshake even ts

/ / b lock ing send
void send (void � data , in t s ize) f

15 / / copy data to temp . b u f f e r
buf = mal loc (s i ze) ;
memcpy (buf , data , s i ze) ;
/ / n o t i f y re c e i v e r
not i fyone (eReady) ;

20 / / wai t fo r acknowledge
wait (eAck) ;

g
/ / b lock ing r e c e i v e
type2 recv (void � data , in t s ize) f

25 / / wai t fo r data
whi le (! buf) wait (eReady) ;
/ / read data from temp . b u f f e r
memcpy (data , buf , s i ze) ;
f r ee (buf) ;

30 / / acknowledge r e c e i p t
buf = 0 ;
no t i f y (eAck) ;

g
g ;

Listing 3: Message-passing channel.

imply any specific implementation of the message-passing
semantics. The code inside the channel is for simulation of
the correct semantics during execution only. It is the task
of communication synthesis to refine those abstract chan-
nels into an actual implementation of the desired semantics
using the available system bus protocols and PE interfaces.

An example of the specification model which uses an
abstract message-passing channel for communication be-
tween the concurrent behaviorsB2andB3 is shown in Fig-
ure 6 and Listing 4. The global variablev2and evente1are
replaced with a message-passing channelC2 that connects
the two concurrent behaviorsB2 andB3 via the channel’s
sender and receiver interfacesISendandIRecv.

Inside the concurrent leaf behaviorsB2andB3, the algo-
rithms operate on local copies of the variablev2. Whenever
the copies ofv2need to be updated, they are transfered be-
tween the behaviors by calling thesend()andrecv()meth-
ods of the channel.

2.4 Summary

The purpose of the specification model is to clearly and un-
ambiguously described the system functionality. The spec-
ification model is free of any implementation issues. It is

B2 B3
C2

B1

v1

B1

Figure 6: Specification model with message-passing com-
munication.

/ / l e a f behav ior 2
behavior B2 (in type1 v1 , ISend c2)f

void main (void) f
type2 v2 ;

5 . . .
v2 = f2 (v1 , . . .) ;
. . .
/ / send message
c2 . send (& v2 , s i z e o f (v2)) ;

10 . . .
g

g ;

/ / l e a f behav ior 3
15 behavior B3 (in type1 v1 , IRecv c2)

f
void main (void) f

type2 v2 ;
. . .

20 / / r e c e i v e message
c2 . recv (& v2 , s i z e o f (v2)) ;
f3 (v1 , v2 , . . .) ;
. . .

g
25 g ;

/ / B2 j j B3
behavior B2B3 (in type1 v1) f

ChMP c2 ; / / message�pass ing channel
30

B2 b2 (v1 , c2) ;
B3 b3 (v1 , c2) ;

void main (void) f
35 par f b2 . main () ; b3 . main () ;g

g
g ;

/ / Top�l e v e l
40 behavior Design () f

type1 v1 ;

B1 b1 (v1) ;
B2B3 b2b3 (v1) ;

45
void main (void) f

b1 . main () ;
b2b3 . main () ;

g
50 g ;

Listing 4: Specification model with message-passing com-
munication.

7

a purely behavioral model specifying the desired function-
ality of the system. Any hierarchical, serial-parallel com-
position of behaviors is allowed without implying anything
about the structure of the system architecture.

Through the specification model, the user defines the ba-
sis for synthesis and exploration. Therefore, the quality of
the specification model is critical. Synthesis results can
always only be as good as the input description. General
guidelines for the specification model are:

Hierarchy At each level of hierarchy, the system should
be composed of self-contained blocks with well-
defined interfaces enabling easy composition, rear-
rangement, and reuse. Closely related functionality
is grouped through hierarchy. Higher-level behaviors
encapsulate tightly coupled groups of subbehaviors
such that the ratio of external to internal communi-
cation is minimized. On the other hand, the number
of subbehaviors per parent should be kept small and
manageable. As a guideline, behaviors typically have
2-5 children on average.

At each level, the behavior hierarchy should be clean.
Different behavioral concepts shouldn’t be mixed in
the same level. A behavior is either a hierarchical
composition of subbehaviors or a leaf behavior with
sequential code. Similarly, a hierarchical behavior is
either a sequential, parallel, pipelined or FSM compo-
sition of subbehaviors but does not contain arbitrary C
code.

Granularity Behaviors at the leaves of the hierarchy de-
fine the granularity for exploration. Leaf behaviors
contain basic algorithms in the form of C code, read-
ing from their inputs, processing a data set, and pro-
ducing outputs. An algorithm is a sequence of com-
putational steps that transform the input into the out-
put [3]. Leaf code is split into behaviors along the
boundaries defined between reading and writing of
data structures. On the other hand, all the code needed
to process a complete, consistent data set should be
kept together in one leaf behavior.

Also, similar to higher levels of hierarchy, the ratio of
communication to computation should be minimized
yet the size of the leaf behaviors be kept small and
manageable with well-defined, sensible interfaces and
possible reuse in mind. As a rule of thumb, what
would be a traditional C function will become a leaf
behavior with typically half a page to maximally two
pages of code.

Communication Computation and communication in the
specification model are separated into behaviors and

channels, respectively, allowing for a separate im-
plementation of both concepts. Data dependencies
should be reflected explicitly in the behavioral hierar-
chy as transitions between behaviors, either through
a sequential composition or conditionally using the
fsm statement. In this case, channels degenerate to
simple variables connecting behaviors, and the need
for implicit synchronization through message-passing
is eliminated.

All dependencies are explicitly captured through the
connectivity between behaviors and no hidden side ef-
fects exist. Global variables should be avoided com-
pletely. Static variables accessed from a single leaf
behavior become member variables of that behavior.
Global variables used for communication have to be
turned into explicit dependencies in the form of con-
nectivity as behaviors are only allowed to exchange
data through their ports.

Encapsulation In general, information should be local-
ized as much as possible. This includes code (func-
tions, methods), storage (variables), and communica-
tion (port variables, channels). Each hierarchical unit
(behavior) encapsulates and abstracts as many local
details as possible, hiding them from the higher levels.
Hierarchical behaviors encapsulate dependencies and
communication of a group of subbehaviors, providing
only an interface to their combined functionality.

At the leaves, behaviors encapsulates all the code
and storage needed by the algorithm. As mentioned
above, global, static variables become member vari-
ables of the leaf behavior. Furthermore, global func-
tions that are called out of leaf behaviors should be
avoided. Instead, depending on size and number of
callers, consider converting functions into separate
leaf behaviors that get instantiated as subbehaviors
of the caller, or move global functions into the call-
ing behavior where they become local methods. An
exception are small helper functions with a few lines
of code that are used ubiquitously and can be consid-
ered basic operations (on the same level as additions
or multiplications).

Parallelism Any concurrency available between indepen-
dent behaviors should be exposed through their par-
allel or pipelined composition. That is, all behaviors
that do not have any control or data dependencies (or
data dependencies only across iterations) should be
arranged to execute in a concurrent fashion. Further-
more, the behavior hierarchy should be constructed in
such a way as to maximize the number of independent
behaviors and hence the available parallelism.

8

Dependent behaviors, on the other hand, should gen-
erally not be arranged in a concurrent fashion. In-
stead, their dependencies should be captured explic-
itly through transitions as explained above and in Sec-
tion 2.2. An exception are rare (control) dependen-
cies between otherwise highly independent top-level
tasks, for example. In those cases, communication
and synchronization are modeled using channels be-
tween the tasks.

Time The specification model is untimed and all behav-
iors execute in zero logical time. The only events in
the system are events for synchronization in order to
specify causality. Synchronization events establish a
partial order among concurrent threads of behaviors.

In summary, the specification model hierarchically groups
closely related functionality, defines the granularity of
the exploration units (behaviors), exposes the available
behavior-level parallelism, clearly separates computation
from communication, and identifies dependencies through
system states, events and transitions.

3 Architecture Model

The architecture model is the intermediate model after ar-
chitecture exploration. Architecture exploration maps the
computational parts of the system specification represented
by the SpecC behaviors onto processing elements (PEs) of
a system architecture. The architecture model represents
this mapping, thus exposing the communication between
the components to be implemented by the following com-
munication synthesis task.

The architecture model reflects the PE structure of the
synthesized system architecture. Therefore, it represents a
structural view of the design at the system level. At the
top level of the architecture model, the system is described
as a parallel composition of non-terminating, concurrent
behaviors representing the PEs of the architecture.

Communication in the architecture model, on the other
hand, remains at an abstract message-passing level. Com-
munication between behaviors mapped to different PEs
becomes system-global communication. Corresponding
message-passing channels are instantiated between PE be-
haviors at the top level, and behaviors inside the PEs are
connected to the channels through the PE’s ports.

PEs with fixed, pre-defined external communication se-
mantics are modeled as behaviors that directly provide
communication channel functionality at their interfaces.
A behavior’s channel interface abstracts the PE’s internal
communication implementation and provides a canonical
access for communication with the PE at the message-

passing level. Examples are IPs or memories that are not
capable of implementing arbitrary communication.

The PE behaviors of the architecture model represent a
behavioral view of the PEs. The functionality of each PE is
described by grouping the behaviors of the original spec-
ification under the PE behaviors according to the selected
system partitioning. The original hierarchy is preserved
and communication and synchronization behaviors are in-
serted to preserve the original semantics.

In addition to computation, a PE in general provides
system-level storage capabilities. The union of variables
inside the behaviors executing in a PE represents the lo-
cal memory of the PE. A special case of PEs are dedicated
system memories which are not capable of executing func-
tionality and only provide variable storage.

All parallelism in the architecture model is captured
through the structure of concurrent PEs. Internally, PEs
allow a single thread of control only. Behaviorals mapped
onto a PE are scheduled to serialize their execution. Static
or dynamic scheduling results in a total order among the
behaviors inside each PE. Dynamic scheduling emulates
parallelism through multitasking yet its time-shared nature
allows for only one active behavior at any given time. True
parallelism is only available at the PE level with all PEs
being constantly active.

The architecture model introduces the notion of time for
the computation mapped onto the PEs. Based on estimated
execution times on the target PE, behaviors are annotated
with timing information. Apart from the total order created
by scheduling behaviors inside PEs, execution delays re-
fine the partial order among PEs. Depending on the granu-
larity of the timing information, actions are further ordered
in time beyond the pure causality of the specification.

3.1 Architecture Model Example

Figure 7 and Listing 5 show the architecture model for the
example design from Section 2.1 (Figure 4 and Listing 1)
after mapping the specification onto a system architecture
with two components,PE1andPE2. Behaviorsb1 andb2
are mapped ontoPE1, while b3 is mapped ontoPE2.

Inside the two PE behaviors, the parts of the original
behavior hierarchy that are mapped to the corresponding
component are instantiated. In addition, pairs of behaviors,
B13Snd/ B13RcvandB34Snd/ B34Rcv(Listing 5(a)), are
inserted into the hierarchy to transfer control and data from
PE1to PE2 in oder to preserve the execution semantics of
the original specification. The behavior pairs communicate
over two system-global message-passing channels,CB13
andCB34, that are inserted between the PEs.

In this example, communication between behaviors
mapped to different PEs is transformed into an implemen-

9

/ / Send data from B1 to B3
behavior B13Snd (in type1 v1 , ISend cb13)f

void main (void) f cb13 . send (&v1 , s i z e o f (v1)) ; g
g ;

5 behavior B13Rcv (out type1 v1 , IRecv cb13)f
void main (void) f cb13 . recv (&v1 , s i z e o f (v1)) ; g

g ;

/ / Send data from B3 to B4
10 behavior B34Snd (ISend cb34)f

void main (void) f cb34 . send (0 , 0) ;g
g ;
behavior B34Rcv (IRecv cb34)f

void main (void) f cb34 . recv (0 , 0) ;g
15 g ;

(a) Communication and synchronization behaviors.

/ / P rocess ing element 1
behavior PE1 (ISend cb13 , ISend c2 , IRecv cb34)
f

type1 v1 ;
5

B1 b1 (v1) ;
B13Snd b13snd (v1 , cb13) ;
B2 b2 (v1 , c2) ;
B34Rcv b34rcv (cb34) ;

10
void main (void) f

b1 . main () ; / / o r i g i n a l behavior B1
b13snd . main () ; / / send B1 ou tpu t to B3
b2 . main () ; / / o r i g i n a l behavior B2

15 b34rcv . main () ; / / r e c e i v e B3 ou tpu t
g

g ;

/ / P rocess ing element 2
20 behavior PE2 (IRecv cb13 , IRecv c2 , IRecv cb34)

f
type1 v1 ;

B13Rcv b13rcv (cb13 , v1) ;
25 B3 b3 (v1 , c2) ;

B34Snd b34snd (cb34) ;

void main (void) f
b13rcv . main () ; / / r e c e i v e B3 inpu t from B1

30 b3 . main () ; / / o r i g i n a l behavior B3
b34snd . main () ; / / send B3 ou tpu t

g
g ;

35 / / Top�l e v e l
behavior Design () f

ChMP c2 ; / / message�pass ing channels
ChMP cb13 , cb34 ;

40 PE1 pe1 (cb13 , c2 , cb34) ;
PE2 pe2 (cb13 , c2 , cb34) ;

void main (void) f
par f pe1 . main () ; pe2 . main () ;g

45 g
g ;

(b) Top level hierarchy.

Listing 5: Architecture model.

B3

B13rcv

B34snd

B2

B1B1

B13snd

B34rcv

PE1

C2

v1

CB13

CB34

PE2

v1

Figure 7: Architecture model.

tation with message-passing between PEs. Local copies of
the variablev1 used for communication between sequen-
tial behaviorsB1 andB3 are created in the local memo-
ries of each PE. Inside the PEs, the behaviors operate on
the local copies of the variable. In addition, code is in-
serted to update and synchronize local variable copies over
message-passing channels at points where control is trans-
fered between PEs. In the example, the new value ofv1 is
communicated through the synchronization and communi-
cation behavior pairB13Snd/ B13Rcvand the message-
passing channelCB13 together with transferring control
from behaviorB1onPE1to behaviorB3onPE2.

In case of concurrent behaviors mapped to different
PEs (e.g. behaviorsB2 andB3 mapped toPE1andPE2),
communication between the behaviors is transformed into
a message-passing implementation as described in Sec-
tion 2.3 (Figure 6 and Listing 4). The message-passing
channelC2 used for communication between the behav-
iors becomes a system-global channel connectingPE1and
PE2, andsend()andrecv()calls in the behaviors are routed
through behavior and PE ports to the global channel.

In the example, behaviors inside the PEs are statically
scheduled (see Section 3.5). As shown in Figure 7 and List-
ing 5, scheduling is done in a straightforward way based on
the constraints posed by the behavior dependencies with
the goal to exploit the available parallelism. OnPE1, ex-
ecution starts with behaviorB1. After B1 is finished, be-
haviorB13Sndtransfers the output ofB1 to PE2such that
behaviorB3 on PE2 can then run in parallel with behav-
ior B2 on PE1. Finally, behaviorB2 on PE1 is followed
by behaviorB34Rcvwhich waits for the results ofB3 from
PE2. On componentPE2, execution starts with behavior
B13Rcv, waiting forB1’s results. Once the data is received
fromPE1, behaviorB3 is started. AfterB3 is finished, con-
trol is transfered back toPE1through behaviorB34Snd.

10

3.2 Storage

Member variables of the behaviors in the specification
model represent storage that has to be mapped to memo-
ries in the implementation of the architecture model. This
includes member variables as part of leaf behaviors as well
as variables connecting subbehavior ports that are used for
communication.

In the implementation, the memory space of the system
is formed by the union of the system PE memories. In
general, processing elements each have local memories as
part of their microarchitecture. If the local memory of a PE
can be accessed from other PEs it becomes global system
memory. A special case are memory components whose
sole purpose is to provide global storage. They are not
able to execute any computational behavior and, therefore,
do not provide any processing functionality.

Member variables in the specification are mapped to lo-
cal or global memories in the architecture. Of special in-
terest are variables used for communication between be-
haviors mapped to different PEs (see Section 3.3). If a
member variable connects two subbehaviors mapped to
different PEs it becomes a shared variable on the system
level. In a message-passing implementation, such variables
are mapped to local memories and messages are passed
among the components to communicate updated values.
In a shared memory implementation, on the other hand,
shared variables are mapped to a global memory compo-
nents which is accessed directly by the PEs.

3.2.1 Local Memory

In the PE behaviors of the architecture model, the union of
all its subbehavior’s member variables (i.e. of all the behav-
iors instantiated under the PE behavior in the architecture
model hierarchy) represents the amount of local memory
occupied in the PE. For example, in the architecture model
of Section 3.1 (Figure 7), bothPE1andPE2provide stor-
age for a variablev1 in their local memories, as specified
by the declarations in line 4 and line 22 of Listing 5, re-
spectively.

Unless mapped to global memory (Section 3.2.2), a be-
havior’s member variables will normally be stored in the
local memory of the PE the behavior is mapped to. How-
ever, member variables that connect subbehaviors mapped
to different PEs need to be shared between PEs. In
a message-passing implementation, copies of the shared
variable are created in the local memories of all PEs ac-
cessing the variable. Behaviors inside the PEs then operate
on the local copies. In order to implement the shared se-
mantics of the variable and to keep local copies in sync,
updated variable values are communicated over message-
passing channels between the components at synchroniza-

tion points, as discussed in detail in Section 3.3.
The example of Section 3.1 implements such a message-

passing implementation. As defined by the original speci-
fication model (Section 2.1), variablev1 is shared between
behaviorsB1, B2, andB3. Since behaviorB3 is mapped to
a different PE than behaviorsB1andB2, variablev1has to
be shared between the PEs of the system architecture. As
shown in Figure 7 and Listing 5, local copies of the variable
are instantiated in the componentsPE1andPE2. Inside the
components, the corresponding ports of behaviorsB1, B2,
andB3are connected to the local copies ofv1. Finally, the
additional communication and synchronization behaviors
B13Sndand B13Rcv(see Listing 5(a)) send and receive
updated values ofv1 from PE1 to PE2 after behaviorB1
has finished and before behaviorB3starts to execute.

3.2.2 Global Memory

As discussed in the previous section, the scope of variables
stored in the local PE memories usually limits access to
behaviors inside the PE. However, if a PE allows other PEs
to access variables stored in its local memory, this storage
becomes global memory in both scope and lifetime.

Usually, only dedicated shared memory components
will support external access of variables stored inside the
component. Such memory components provide storage
only and can not execute arbitrary functionality, i.e. no be-
havior can be mapped onto a memory component. On the
other hand, it is generally possible for any PE to provide
global access to its local memory. In this case, a PE pro-
vides global system storage in addition to implementing
computation.

In general, any member variable of any behavior run-
ning on a certain processing element can be mapped to
global memory, for example if the PE’s local memory is
exhausted. The variable is then removed from the behav-
ior and all accesses to the variable inside the behavior are
replaced with global memory accesses.

However, especially the variables used for communi-
cation between behaviors mapped to different PEs are
candidates for a mapping to global, shared memory. In
a message-passing implementation (as described in Sec-
tion 3.2.1), local copies of such variable have to be created
in each connected PE, increasing the total storage cost of
the system. In a shared memory implementation, on the
other hand, shared variables are mapped to global memory
where they can be directly accessed from each PE. Again,
accesses to the variable in the leaf behaviors are replaced
with accesses to the shared variable in the global memory.
Synchronization that is added to preserve the execution se-
mantics of the specification (see Section 3.3) also ensures
that global variable accesses are properly ordered accord-
ing to their sequence in the original specification.

11

/ / Send data from B1 to B3
behavior B13Snd (ISend cb13)f

void main (void) f cb13 . send (0 , 0) ;g
g ;

5 behavior B13Rcv (IRecv cb13)f
void main (void) f cb13 . recv (0 , 0) ;g

g ;

/ / Send data from B3 to B4
10 behavior B34Snd (ISend cb34)f

void main (void) f cb34 . send (0 , 0) ;g
g ;
behavior B34Rcv (IRecv cb34)f

void main (void) f cb34 . recv (0 , 0) ;g
15 g ;

(a) Synchronization behaviors.

/ / P rocess ing element 1
behavior PE1 (IMem m1,

ISend cb13 ,
ISend c2 ,

5 IRecv cb34) f
B1 b1 (m1) ;
B13Snd b13snd (cb13) ;
B2 b2 (m1, c2) ;
B34Rcv b34rcv (cb34) ;

10
void main (void) f

b1 . main () ; / / o r i g i n a l behavior B1
b13snd . main () ; / / B1�>B3 t r a n s i t i o n
b2 . main () ; / / o r i g i n a l behavior B2

15 b34rcv . main () ; / / wait fo r B3 to f i n i s h
g

g ;

/ / P rocess ing element 2
20 behavior PE2 (IMem m1,

IRecv cb13 ,
IRecv c2 ,
IRecv cb34) f

B13Rcv b13rcv (cb13) ;
25 B3 b3 (m1, c2) ;

B34Snd b34snd (cb34) ;

void main (void) f
b13rcv . main () ; / / wait fo r B1 to f i n i s h

30 b3 . main () ; / / o r i g i n a l behavior B3
b34snd . main () ; / / send B3 comp le t ion

g
g ;

35 / / Top�l e v e l
behavior Design () f

ChMP c2 ; / / message�pass ing channels
ChMP cb13 , cb34 ;

40 M1 m1 () ; / / Shared memory

PE1 pe1 (m1, cb13 , c2 , cb34) ;
PE2 pe2 (m1, cb13 , c2 , cb34) ;

45 void main (void) f
par f pe1 . main () ; m1. main () ; pe2 . main () ;g

g
g ;

(b) Top level hierarchy.

Listing 6: Shared memory architecture model.

B3

B13rcv

B34snd

B2

B1B1

B13snd

B34rcv

PE1

C2

CB13

CB34

PE2

v1

M1

Figure 8: Shared memory architecture model.

/ / Shared memory i n t e r f a c e
i n t e r f a c e IMem f

type1 r v1 (void) ;
void w v1 (type1 d) ;

5 g ;

/ / Shared memory component
behavior M1() implements IMem
f

10 type1 v1 ;

/ / Memory read / wr i te i n t e r f a c e
type1 r v1 (void) f return v1 ; g
void w v1 (type1 d) f v1 = d ; g

15
void main (void) f /� noth ing � / g ;

g ;

Listing 7: Global memory component.

A shared memory implementation of the architecture
model from Section 3.1 is shown in Figure 8 and List-
ing 6. Instead of a message-passing implementation, the
variablev1, which is shared between behaviorsB1, B2, and
B3, is mapped to a dedicated shared memory component
M1. There are no local copies ofv1 in componentsPE1or
PE2, and all three behaviors access the variablev1 inside
the global memoryM1 instead.

Like other system components, the dedicated memory
component is represented by a behavior which is instanti-
ated at the top level of the architecture model, running in
parallel with all other PEs. The code for the global memory
component behaviorM1 is shown in Listing 7. Since it is
a dedicated memory component that does not execute any
computational functionality, the behavior’smain()method
remains empty. In general, if global memory is provided
by a processing element, the PE behavior will execute the
behaviors mapped to the component in addition to imple-
menting an interface to its memory.

12

/ / l e a f behav ior 1
behavior B1 (IMem mem)
f

void main (void) f
5 . . .

mem. w v1 (. . .) ; / / Memory wr i te v1
g

g ;

10 / / l e a f behav ior 2
behavior B2 (IMem mem, ISend c2)
f

void main (void) f
type2 v2 ;

15 . . .
v2 = f2 (mem. r v1 () , . . .) ; / / read v1
. . .
c2 . send (& v2 , s i z e o f (v2)) ;
. . .

20 g
g ;

/ / l e a f behav ior 3
behavior B3 (IMem mem, IRecv c2)

25 f
void main (void) f

type2 v2 ;
. . .
c2 . recv (& v2 , s i z e o f (v2)) ;

30 f3 (mem. r v1 () , v2 , . . .) ; / / read v1
. . .

g
g ;

Listing 8: Shared memory accesses in leaf behaviors.

The shared variablev1 is instantiated as a member vari-
able of the memory behavior (line 10). The memory behav-
ior provides access to the global variables through a chan-
nel interfaceIMem. Other PEs can connect to the mem-
ory’s interface which supplies type-safe methods to read
(r v1()) and write (w v1()) shared variables stored inside.

Inside the processing elements, accesses to the shared
variablev1 are replaced with corresponding read or write
accesses to the global memory component through behav-
ior ports, PE ports, and the memory interface. Listing 8
shows the updated accesses to variablev1 in the leaf be-
haviors. Variable reads are replaced with calls of the mem-
ory’s r v1()method and variable assignments with calls to
thew v1()method.

Since updated values ofv1 are exchanged between PEs
via the shared memory, behaviorsB13SndandB13Rcv(see
Listing 6(a)) only perform pure synchronization by ex-
changing empty messages. No data communication is per-
formed over the message-passing channels. All data trans-
fers are handled through the global memory. On the other
hand, the synchronization behaviors ensure that the shared
variablev1 is accessed byB3 only afterB1 is finished, in
consistency with the original specification.

3.3 Synchronization

In the architecture model, synchronization has to be in-
serted to preserve the execution semantics of the original
specification. The behaviors of the specification model are
mapped onto a set of concurrent components according
to the structural nature of the architecture model. There-
fore, synchronization has to ensure that behaviors execute
in the proper order according to the transitions in the orig-
inal specification.

All communication and synchronization between sys-
tem components in the architecture model is handled via
message-passing channels connecting the components. As
shown in the architecture model example in Section 3.1
(Figure 7 and Listing 5), for each behavior transition that
crosses component boundaries (transitions fromB1 to B3
and back), a pair of synchronization behaviors (behavior
pairs B13Snd/ B13Rcvand B34Snd/ B34Rcv, see List-
ing 5(a)) that communicate over a message-passing chan-
nel (channelsCB13andCB34) is inserted.

By passing messages over the channels, the synchro-
nization behavior pairs ensure that the semantics of the
corresponding original behavior transition are preserved
among the PEs. In this case, for example, behaviorB13Rcv
blocks execution ofB3onPE2until it receives the message
from behaviorB13SndthatB1 on PE1has finished. Sim-
ilarly, behaviorB34Sndon PE2 notifiesB34Rcvon PE1
thatB3has completed execution.

Along with passing control from one behavior to an-
other, a behavior transition usually represents a transfer of
data through the shared variables connecting the ports of
the behaviors. If the transition crosses PE boundaries, this
data has to be transfered together with passing control. In
a shared memory implementation (see Section 3.2.2), data
is transfered via a global system memory component and
simple synchronization via synchronization behavior pairs
and message-passing channels is sufficient for implemen-
tation of inter-component transitions.

On the other hand, in a message-passing implementa-
tion (see Section 3.2.1), local copies of the shared vari-
ables are created inside the components, and local val-
ues have to be synchronized across behavior transitions.
In this case, communication of data values is combined
with control synchronization using the behavior pairs and
message-passing channels. For each transition that crosses
components, the synchronization message contains all the
updated data values shared between the behaviors. Local
copies of variables connecting the source behavior’s out-
put ports to the target behavior’s input ports are transfered
in the message for each inter-component behavior tran-
sition. The communication and synchronization behav-
ior pairs are responsible for assembling and disassembling
messages from/into local variables.

13

B2

B12rcv

B24snd

B1B1

B12snd

B34rcv

PE1

C2

v1

CB12

CB24

PE3

v1

PE2

B3

B13rcv

B34snd

v1
B13snd

B24rcv

CB13

CB34

Figure 9: Architecture model with multiple inter-
component behavior transitions.

For example, in the architecture model presented earlier
in Section 3.1, local copies of the variablev1 shared be-
tween behaviorsB1andB3are synchronized when execut-
ing the transition fromB1onPE1to B2onPE2. As shown
in Listing 5(a), the synchronization behaviorsB13Sndand
B13Rcvfor that transition read the local value ofv1 in PE1,
pass it in a message over channelCB13, and update the
local value ofv1 in PE2. Together with the synchroniza-
tion described earlier, this ensures thatB3doesn’t start ex-
ecuting untilB1 has finished and all the output data ofB1
needed byB3 is available.

In general, there can be multiple inter-component behav-
ior transitions originating from a single behavior on a PE.
For each such transition, a message-passing channel and a
synchronization behavior pair is inserted. For example, if
behaviorB2had been mapped to a third componentPE3in
our example, an additional channelCB12and an additional
behavior pairB12Snd/ B12Rcvwould have been inserted
afterB1and beforeB2onPE1andPE3, respectively (Fig-
ure 9). Likewise, an additional channelCB24and an ad-
ditional behavior pairB24Snd/ B24Rcvwould have been
inserted to signal completion ofB2.

Note that it is part of the implementation issues related
to the architecture model to decide in which order the send
and receive behaviors are scheduled inside the PEs, e.g.
whetherB13Sndwill execute before or afterB12Sndon
PE1 (for more discussion of scheduling issues see Sec-
tion 3.5).

Finally, after scheduling has determined the order of
synchronization behaviors, an optional code optimization

step can be applied to merge consecutive synchroniza-
tion behaviors inside the same component into a single
synchronization behavior that successively sends and re-
ceives the necessary messages. For example, in the model
from Figure 9, the behaviorsB13SndandB12Sndcould be
merged into a single behaviorB1Snd. Alternatively, be-
haviorsB12Snd, B13Snd, B24Rcv, and B34Rcvon PE1
could be merged into one large synchronization behavior
(e.g.B14Sync).

3.4 IP Components

Intellectual property (IP) processing elements are charac-
terized by the fact that their computational functionality
(behavior), their communication functionality (interface),
or both are predefined and fixed. In general, IP supplier
and IP intergrator are different entities, either in-house or
among a global IP trading marketplace. The IP supplier
provides models of the IP component which are integrated
into the architecture and following models for validation
and synthesis. An IP creator can choose to supply different
models of an IP varying in their amount of detail at differ-
ent levels, trading off accuracy and simulation speed, for
example.

In the architecture model, a behavioral model of the IP
is required. At this level, the IP model describes the IP
functionality annotated with performance and other qual-
ity metrics similar to other PE models (see also Section 3.6
about timing annotation). However, in their interfaces to
other PEs, IPs, by definition, are not capable of implement-
ing arbitrary inter-PE communication, and it is not possible
to simply connect any message-passing channels to the IP
in the architecture model, for example.

Therefore, IP models directly provide a channel inter-
face at the message-passing level. An IP’s channel inter-
face describes the communication with the rest of the sys-
tem supported by the IP. It abstracts the underlying IP be-
havior and IP interface to the external world. Furthermore,
IP channel interfaces at this high level are canonical for all
IPs of the same class, enabling plug-and-play of IPs with-
out modifications to the rest of the system. For example,
different DCT IPs from different suppliers can be easily ex-
changed since they all provide the same channel interface.

Listing 9 shows an example of an IP model. For this ex-
ample, we assume that the functionality ofB2 is available
in the form of this IP. As part of exploration, we then have
the option to implementB2 using the IP instead of map-
ping it onto a general-purpose PE, depending on quality
metrics like performance, cost, and power.

The purely behavioral model in Listing 9(a) is at the
highest level of abstraction for integration into the archi-
tecture model and as such the minimal requirement an IP

14

/ / IP i n t e r f a c e
i n t e r f a c e I IP
f

/ / S t a r t IP , send parameters
5 void s t a r t (type1 v1) ;

/ / Get va lue of v2 from IP
type2 v2 (void) ;
/ / Wait fo r IP to f i n i s h , get r e s u l t
void done (void) ;

10 g ;

/ / IP model
behavior IP () implements I IP ;
/ / Dec la ra t ion on ly

15 / / Imp lementa t ion is e x t e r n a l

/ / Anno ta t ions
note IP . WMOPS = 13476 ; / / Qua l i t y met r i cs

(a) Behavioral IP.

/ / Bus�f u n c t i o n a l IP model
behavior IPBF (inout b i t [63 : 0] data ,

in event s t a r t ,
out b i t [2] ready ,

5 out event done) ;
/ / Dec la ra t ion on ly
/ / Imp lementa t ion is e x t e r n a l

/ / Behav io ra l IP model
10 behavior IP () implements I IP

f
/ / IP bus
b i t [63 : 0] dat ;
event s t , dn ;

15 b i t [2] rdy ;

/ / Bus�f u n c t i o n a l IP i n s t a n c e
IPBF ip (dat , s t , rdy , dn) ;

20 / / Imp lementa t ion of IP communicat ion
void s t a r t (type1 v1)f

/ / Put params on bus , n o t i f y IP
dat = v1 ;
no t i f y (s t) ;

25 g

type2 v2 (void) f
/ / wait fo r data , read from bus
while (! rdy [1]) wait (dn) ;

30 return dat ;
g

void done (void) f
/ / wai t u n t i l IP becomes ready again

35 while (! rdy [0]) wait (dn) ;
g

/ / Run i n t e r n a l bus�f u n c t i o n a l model
void main (void) f ip . main () ; g

40 g ;

(b) Bus-functional IP with wrapper.

Listing 9: IP component model.

supplier must provide. The interfaceIIP defines the pos-
sible communication with the IP. Corresponding to itsB2
functionality (compare to Listing 4), the interface provides
three message-passing methods:start() sends the parame-
ter v1 to the IP and starts execution of one iteration;v2()
receives the value ofv2 from the IP during its execution;
finally, done()waits for the message from the IP that it has
finished. Again, note that this is the general interface for all
possible IP components that provide functionality equiva-
lent toB2.

The actual IP modelIP then implements theIIP inter-
face, modeling the IP functionality (and performance) in
response to incoming data and generating outgoing mes-
sages from/to other PEs. Usually, the IP supplier will want
to protect the details of the IP implementation. Therefore,
only the declaration ofIP is provided. The actual code is
supplied in the form of a precompiled library that will get
linked into the architecture model for simulation. In ad-
dition, the IP is annotated with various information about
quality metrics, verification properties, and so on. Note
that the IP supplier always has the option to provide full
source code. Especially at the behavioral level, source code
can serve as additional documentation about IP functional-
ity without disclosing any implementation details.

In Listing 9(b), a slightly more detailed IP model is
shown. In this case, the IP model includes a bus-functional
IP descriptionIPBF that will be needed for the communi-
cation model later anyway. As will be explained in Sec-
tion 4.4, the bus-functional IP model describes communi-
cation with the IP as events on the actual IP bus in a timing-
accurate manner. In our example, the IP bus includes bi-
directional data wires (data[63:0]), status lines (ready[2]
anddone), and control lines (start).

The behavioral IP modelIP then wraps a channel in-
terface around the bus-functional model. Internally, the
behavioral model instantiatesIPBF and executes its func-
tionality in themain() method. The wrapper then imple-
ments the message-passing communication of the channel
interface by translating them into actions on the IP bus ac-
cording to the IP protocol. For example, thev2() method
waits for the correspondingreadyline to be asserted before
reading the value from thedatabus.

Figure 10 and Listing 10 show the architecture model in
which B2 is mapped onto an instanceIP1 of the IP pro-
cessing element. Instead ofPE3, the IP component is in-
stantiated in the top level of the design (Listing 10(b)).
Compared to the model from Section 3.3 (Figure 9), all
communication withB2 on PE3 is replaced with direct
connections to the IP’s channel interface. Inside the com-
munication and synchronization behaviorsB12Sndand
B24Rcv(Listing 10(a))), message-passing methods of the
IP’s channel interface are called for all communication

15

/ / Send data to IP
behavior B12Snd (in type1 v1 , I IP ip1) f

void main (void) f ip1 . s t a r t (v1) ; g
g ;

5
/ / Receive r e s u l t s from IP
behavior B24Rcv (I IP ip1) f

void main (void) f ip1 . done () ; g
g ;

(a) Synchronization with IP.

/ / P rocess ing element 1
behavior PE1 (ISend cb13 , I IP ip1 , IRecv cb34)
f

type1 v1 ;
5

B1 b1 (v1) ;
B13Snd b13snd (v1 , cb13) ;
B12Snd b12snd (v1 , ip1) ;
B24Rcv b24rcv (ip1) ;

10 B34Rcv b34rcv (cb34) ;

void main (void) f
b1 . main () ; / / o r i g i n a l behavior B1
b13snd . main () ; / / B1�>B3 t r a n s i t i o n

15 b12snd . main () ; / / B1�>B2 t r a n s i t i o n
b24rcv . main () ; / / wait fo r B2 to f i n i s h
b34rcv . main () ; / / wait fo r B3 to f i n i s h

g
g ;

20
/ / P rocess ing element 2
behavior PE2 (IRecv cb13 , I IP ip1 , IRecv cb34)
f

type1 v1 ;
25

B13Rcv b13rcv (cb13 , v1) ;
B3 b3 (v1 , ip1) ;
B34Snd b34snd (cb34) ;

30 void main (void) f
b13rcv . main () ; / / wait fo r B1 to f i n i s h
b3 . main () ; / / o r i g i n a l behavior B3
b34snd . main () ; / / send B3 comp le t ion

g
35 g ;

/ / Top�l e v e l
behavior Design ()
f

40 ChMP cb13 , cb34 ; / / message�pass ing channels

IP ip1 () ; / / IP component

PE1 pe1 (cb13 , ip1 , cb34) ;
45 PE2 pe2 (cb13 , ip1 , cb34) ;

void main (void) f
par f pe1 . main () ; ip1 . main () ; pe2 . main () ;g

g
50 g ;

(b) Top level hierarchy.

Listing 10: Architecture model with IP.

B3

B13rcv

B34snd

B1B1

B13snd

B34rcv

PE1

v1

CB13

CB34

PE2

v1
B12snd

B24rcv

IP1

B2

Figure 10: Architecture model with IP.

/ / l e a f behav ior 3
behavior B3 (in type1 v1 , I IP ip1)
f

void main (void) f
5 type2 v2 ;

. . .
v2 = ip . v2 () ; / / r e c e i v e v2 from IP
f3 (v1 , v2 , . . .) ;
. . .

10 g
g ;

Listing 11: IP accesses in leaf behaviorB3.

with the IP. Similarly, inside leaf behaviorB3, all channel
calls for communication withB2 are replaced with calls
to the IP’s corresponding interface methods, as shown in
Listing 11.

3.5 Scheduling

By definition, the components of the system architecture
are single-threaded in terms of the computation they are
executing. According to the inherently sequential nature
of components, behaviors mapped onto a PE have to be
scheduled in order to serialize their execution. The order
of execution of both, the original computation behaviors
and the additional communication/synchronization behav-
iors determines the schedule of computation and commu-
nication on each PE.

In the simplest case, static scheduling is performed. The
execution order of the behavioral blocks inside the PEs is
fixed by introducing artificial dependencies according to
the selected schedule. Therefore, the behavior hierarchy
inside the components becomes a purely sequential com-

16

position. Behaviors are executed in the pre-defined or-
der defined by the sequential transitions inside the PEs of
the architecture model. For example, as described in Sec-
tion 3.1, the subbehaviors in each PE of the architecture
model from Figure 7 (Listing 5) are executed sequentially
in the order determined by the static schedule. Hence, the
PE1 andPE2 behaviors are a purely sequential composi-
tion executing their subbehaviors in the given order.

In a dynamic scheduling approach, on the other hand,
the order of execution is determined dynamically during
runtime. Behaviors are arranged into potentially concur-
rent tasks. Inside each task, behaviors are executed sequen-
tially. Tasks can be dynamically forked and joined through
par statements in the code. A scheduler maintains a pool
of task behaviors and dynamically selects a task to exe-
cute according to its scheduling algorithm. The scheduler
in the architecture model is a behavioral abstraction of the
scheduling policy of the underlying operating system.

3.6 Time

After behaviors have been partitioned onto PEs, the con-
cept of time is introduced for the computation represented
by the behaviors. Behaviors grouped under a PE are re-
fined to include execution times on the target. As a result,
behavior executions among the concurrent PEs are ordered
additionally beyond the pure causality established by the
inter-PE synchronization.

Behavior execution delays can be based on estimated
execution times derived from a model of the target com-
ponent, for example. Alternatively, execution delays can
describe a timing budget allocated for different behaviors.
These budgets will later serve as timing constraints for the
behavior implementation on the target PEs.

Execution times can be specified on different levels of
granularity, ranging from the statement level to the behav-
ior level. Execution delays at the behavior level are used
to model average or worst-case execution times of the cor-
responding behavior. On the other hand, execution times
at the basic-block level can accurately model even data-
dependent delays. The leaf behaviors are annotated with
waitfor() statements to model execution time. In addi-
tion to providing feedback about logical time during sim-
ulation, the annotations serve as constraints for synthesis
and verification tools.

Listing 12 shows a code template for a leaf behavior
with estimated timing. In this case, execution delays are
modeled at the basic block level. At this granularity, data-
dependent delays are accurately modeled while keeping the
simulation overhead incurred by thewaitfor() state-
ments at a minimum.

behavior Bx (. . .)
f

void main (void)
f

5 i f (. . .) f
. . .
wai t fo r (T1) ; / / execu t io n t ime 1

g
e lse f

10 . . .
wai t fo r (T2) ; / / execu t io n t ime 2

g
. . .
wai t fo r (T3) ; / / execu t io n t ime 3

15 Cy. send (. . .) ;
. . .
wai t fo r (T4) ; / / execu t io n t ime 4

g
g ;

Listing 12: Behavior timing.

3.7 Summary

The architecture model describes the implementation of
the computation on the PEs of the system architecture. It
is a structural view of the system’s PE architecture. It con-
tains behavioral views of the PEs that represent the map-
ping of computation onto each PE. Communication, on the
other hand, remains at an abstract level. The architecture
model exposes the communication between PEs which will
be implemented in the next step.

In summary, properties of the architecture model are:

(a) At the top level of the behavior hierarchy, the PE
structure is modeled as a parallel composition of non-
terminating PE behaviors.

(b) PE behaviors communicate via system-global
message-passing channels connecting their ports.

(c) PE behaviors with predefined, fixed communication
functionality (IPs. memories) directly provide chan-
nel interfaces for communication.

(d) Original specification behaviors are grouped under
the PE behaviors to specify the functionality to be im-
plemented by each PE.

(e) Member variables of behaviors instantiated inside a
PE represent the amount of storage allocated in the
local PE memory.

(f) Behaviors inside different PEs communicate by send-
ing and receiving messages over ports and global
channels.

(g) True parallelism is limited to the concurrency among
PEs. Internally, PEs are single-threaded. Execution
of behaviors inside a PE is serialized in time through
static or dynamic scheduling.

17

(h) Computation in the leaf behaviors is annotated with
estimated or projected execution times on its target
PE.

All in all, the architecture model accurately reflects the im-
plementation of the computational aspects of the system
for analysis and validation.

4 Communication Model

The communication model is the final output of the
system-level design process after architecture exploration
implements computation on the PEs and communication
synthesis implements communication over the busses of
the system architecture. The communication model rep-
resents the mapping of computation and communication
onto PEs and busses, respectively.

The communication model is a structural view of the
complete system including computation and communica-
tion. It shows the PE and bus structure of the final system
architecture. The system is described as a netlist of concur-
rent, non-terminating PEs connected via system bus wires.

Unaltered from the architecture model described in Sec-
tion 3, the communication model gives a behavioral view
of the computation and storage to be implemented by each
PE. The functionality of each PE is described by the be-
haviors grouped under the PE and executing inside. Fur-
thermore, the union of all its behavior’s member variables
represents the storage allocated inside the PE’s local mem-
ory.

In contrast, the behavioral view of the communication in
the architecture model is replaced with a structural descrip-
tion in the communication model. The abstract channels
connecting the PEs in the architecture model are replaced
with an implementation of their communication function-
ality over wires and protocols of system busses connecting
the PEs.

Inside the PEs, behavioral models of bus drivers and bus
interfaces describe the PE’s communication functionality,
i.e. the implementation of the message-passing communi-
cation over the bus protocols. Those bus adapters specify
how the PE implements the semantics of the abstract chan-
nels by driving and sampling the wires of the system bus.
Behavioral blocks inside the PEs, in turn, connect to the
equivalent message-passing channel interfaces provided by
the bus adapters.

In general, not all PEs can be programmed or synthe-
sized to implement arbitrary communication functionality.
For example, PEs with fixed, pre-defined bus interfaces and
protocols like memories or IP components are not capable
of connecting to any bus protocol. In those cases, the com-
munication model will include additional transducers that

B3

B13rcv

B34snd

B2

B1B1

B13snd

B34rcv

v1

v1

PE1Bus PE2Bus

A[15:0]

D[23:0]

MCS

nRD

nWR

PE1 PE2

ready

Figure 11: Communication model.

translate between incompatible protocols. Transducers are
special PEs that act as bus bridges or bus interfaces, con-
necting two busses or interfacing a PE to a bus.

As explained in Section 3, the architecture model in-
troduced a total order for the computation inside the PEs.
On top of that, the communication model imposes a to-
tal order on the communication performed over the busses.
Communication on each bus is scheduled. In case of dy-
namically occurring conflicts between multiple bus mas-
ters, arbitration resolves conflicts at run-time in either a
distributed fashion or through a centralized arbiter PE.

Finally, the communication model adds timing informa-
tion for the system communication. Target bus delays are
estimated and communication behavior in the drivers and
on the busses is annotated with timing information. In-
creasing timing accuracy to cover both computation and
communication further refines the partial order of events in
the system architecture. The bus-functional PE models in
the communication model accurately describe the behav-
ior and timing of the PEs at their bus interfaces. Therefore,
the system model describes their interaction in a timing-
accurate manner.

4.1 Communication Model Example

The communication model of the example design from
Section 3.1 (Figure 7 and Listing 5) is shown in Figure 11
and Listing 13. As in the architecture model, the system
consist of two processing elements,PE1 andPE2. How-
ever, instead of abstract channels, the two PEs are con-
nected via a single, shared system bus. During communi-

18

/ / P rocess ing element 1
behavior PE1 (out b i t [15 : 0] A,

inout b i t [23 : 0] D,
OSignal MCS,

5 OSignal nRD,
OSignal nWR,
I S i g n a l ready)

f
/ / Bus d r i v e r

10 PE1Bus bus (A, D, MCS, nRD, nWR, ready) ;

type1 v1 ;

B1 b1 (v1) ;
15 B13Snd b13snd (v1 , bus) ;

B2 b2 (v1 , bus) ;
B34Rcv b34rcv (bus) ;

void main (void) f
20 b1 . main () ;

b13snd . main () ;
b2 . main () ;
b34rcv . main () ;

g
25 g ;

/ / P rocess ing element 2
behavior PE2 (in b i t [15 : 0] A,

inout b i t [23 : 0] D,
30 I S i g n a l MCS,

I S i g n a l nRD,
I S i g n a l nWR,
OSignal ready)

f
35 / / Bus i n t e r f a c e

PE2Bus bus (A, D, MCS, nRD, nWR, ready) ;

type1 v1 ;

40 B13Rcv b13rcv (bus , v1) ;
B3 b3 (v1 , bus) ;
B34Snd b34snd (bus) ;

void main (void) f
45 b13rcv . main () ;

b3 . main () ;
b34snd . main () ;

g
g ;

50
/ / Top�l e v e l
behavior Design ()
f

/ / System bus wires
55 b i t [15 : 0] A; / / address

b i t [23 : 0] D; / / data
CSignal MCS, nRD , nWR, ready ; / / c o n t r o l

PE1 pe1 (A, D, MCS, nRD , nWR, ready) ;
60 PE2 pe2 (A, D, MCS, nRD , nWR, ready) ;

void main (void) f
par f pe1 . main () ; pe2 . main () ;g

g
65 g ;

(a) Top level hierarchy.

Listing 13: Communication model.

/ / Send data from B1 to B3 over bus
behavior B13Snd (in type1 v1 , IBus bus)f

void main (void) f
bus . send (CB13 , & v1 , s i z e o f (v1)) ;

5 g
g ;
behavior B13Rcv (out type1 v1 , IBus bus)f

void main (void) f
bus . recv (CB13 , & v1 , s i z e o f (v1)) ;

10 g
g ;

/ / Send data from B3 to B4 over bus
behavior B34Snd (IBus bus)f

15 void main (void) f bus . send (CB34 , 0 , 0) ;g
g ;
behavior B34Rcv (IBus bus)f

void main (void) f bus . recv (CB34 , 0 , 0) ;g
g ;

(b) Communication and synchronization behaviors.

/ / l e a f behav ior 2
behavior B2 (in type1 v1 , IBus bus)
f

void main (void) f
5 type2 v2 ;

. . .
v2 = f2 (v1 , . . .) ;
. . .
/ / send message

10 bus . send (C2, & v2 , s i z e o f (v2)) ;
. . .

g
g ;

15 / / l e a f behav ior 3
behavior B3 (in type1 v1 , IBus bus)
f

void main (void) f
type2 v2 ;

20 . . .
/ / r e c e i v e message
bus . recv (C2, & v2 , s i z e o f (v2)) ;
f3 (v1 , v2 , . . .) ;
. . .

25 g
g ;

(c) Bus communication in leaf behaviors.

Listing 13 (continued): Communication model.

19

cation synthesis, all message-passing communication be-
tween the PEs has been mapped onto that bus.

In this example, it is assumed thatPE1is a digital signal
processor (DSP) from Motorola’s DSP56600 family [4] of
DSPs. Therefore, the DSP’s external bus protocol was cho-
sen as the system bus protocol. The DSP56600 bus consists
of an 16-bit wide address busA, a 24-bit wide data busD,
and a set of control lines for master chip select (MCS) and
read/write control (nRD/nWR). Details of the protocol and
its implementation on the PEs will be explained in Sec-
tion 4.2.

The DSP56600 bus protocol is a typical master-slave
protocol with the DSP (PE1) being the master on the bus.
In the example,PE2 is assumed to be a custom hardware
component that will be synthesized to implement the pro-
tocol as a bus slave listening to requests. On the other hand,
PE2can signalPE1 through areadyline for synchroniza-
tion purposes.

4.1.1 Bus Wires

In the communication model, the control wires of system
busses are represented by instances of a SpecC channel
CSignal(shown in Listing 14). The signal channel com-
bines a value and an event into the signal semantics needed
for efficient modeling of physical communication. Similar
to VHDL signal semantics, an event is generated whenever
a value is assigned to the wire. Hence, sampling a wire can
be efficiently modeled in the event-driven simulation envi-
ronment by blocking behaviors/tasks on the wire event.

The signal channelCSignalprovides two interfacesISig-
nal andOSignalfor read (val() method) or write (assign()
method) access to the corresponding wire. In addition, the
reader interface (ISignal) provides a methodwaitval() to
efficiently model sampling of the wire until a certain value
is reached.

Internally, the signal channel encapsulates the necessary
code for simulation of all functionality provided by the
wire model. Note that the signal channel code is for sim-
ulation purposes only. During synthesis, accesses to the
channel’s methods will be implemented as corresponding
accesses to the real, physical wire.

At the top level of the communication model (List-
ing 13(a)), signal channels representing the control wires
of the system bus are instantiated (line 58). In addition,
address and data busses are represented by simple bit vec-
tors of the required width (line 56 and line 57). The PEs
then connect to the wires through their ports (lines 2-7 and
lines 28-34). Depending on the access direction, PEs con-
nect to the reader and/or writer side of the bit vectors and
signal channels.

/ / Reader i n t e r f a c e
i n t e r f a c e I S i g n a l f

b i t [1] va l (void) ; / / get cu r ren t va lue
void wai tva l (b i t [1] v) ; / / wait for va lue

5 g ;

/ / Wr i ter i n t e r f a c e
i n t e r f a c e OSignal f

void ass ign (b i t [1] v) ; / / d r i ve s i g n a l
10 g ;

/ / Channel imp lemen ta t ion
channel CSignal () implements I S i g n a l , OSignal f

b i t [1] va lue ;
15 event e ;

void ass ign (b i t [1] v) f
va lue = v ;
no t i f y (e) ;

20 g
b i t [1] va l () f

return va lue ;
g
void wai tva l (b i t [1] v) f

25 while (va lue ! = v)
wait (e) ;

g
g ;

Listing 14: Signal channel for modeling of wires.

4.1.2 Bus Adapters

Inside the PEs of the communication model, bus adapters
PE1Busand PE2Busare instantiated (see Listing 13(a),
line 10 and line 37, respectively). The bus adapters spec-
ify how the communication methods and semantics of the
abstract channels from the architecture model are imple-
mented over the bus wires on the corresponding PE.

Bus adapters are channels with ports that connect to
the bus wires through the PE’s ports. At their chan-
nel interfaces, on the other side, the bus adapters pro-
vide abstract communication methods equivalent to the
message-passing methods of the architecture model chan-
nels. Instead of the message-passing channels, the be-
haviors executing inside the PEs then connect to the bus
adapter’s equivalent interfaces, and the adapters implement
the message-passing by driving and sampling the bus wires
according to the bus protocol.

As shown in Listing 13(b) and Listing 13(c) for the PE’s
synchronization and leaf behaviors, respectively, calls to
the channel’ssend()andrecv()methods are replaced with
calls to the corresponding methods of the bus adapter inter-
faceIBus (Listing 15). The bus adapters provide methods
for every type of communication handled over that bus, i.e.
for sending and receiving messages of arbitrary size in this
case. In addition, in order to differentiate between differ-
ent logical connections mapped onto the same bus, a vir-
tual addressing scheme is introduced at the adapter level.
Different transfers over the same adapter are distinguished

20

/ / V i r t u a l bus addresses
enum f CB13 , C2 , CB34g addr ;

/ / Message�pass ing over bus
5 i n t e r f a c e IBus f

void send (addr a , void � data , in t s ize) ;
void recv (addr a , void � data , in t s ize) ;

g ;

Listing 15: PE bus adapter interface.

PE1Bus

IBus

PE1Protocol

IProtocol

M
C

S

nR
D

A
[1

5:
0]

D
[2

3:
0]

re
ad

y

nW
R

(a) PE1 bus driver.

PE2Bus

IBus

PE2Protocol

IProtocol

M
C

S

nR
D

A
[1

5:
0]

D
[2

3:
0]

re
ad

y

nW
R

(b) PE2 bus interface.

Figure 12: PE bus adapters.

by their virtual address which, in general, is an identifier
for the original connection the transfer belongs to. The bus
adapter will then translate virtual addresses into unique,
real addresses on the bus.

As depicted in Figure 12, the bus adapter channels are
hierarchically composed out of two layers: a high-level ap-
plication layer and a low-level protocol layer. The protocol
layersPE1ProtocolandPE2Protocolperform actual bus
transactions by driving and sampling bus wires. At their
interfaces to the application layer, they provide methods
for all bus primitives supported by the protocol. The ap-
plication layer, on the other hand, sits on top of the proto-
col layer and provides the adapter’s outer interface to the
external world. Using the protocol layer primitives, it per-
forms the necessary synchronization, data slicing, address-
ing, and arbitration to implement the communication over
the bus protocol.

4.2 Protocol Layer

The protocol layer implements the bus protocol for simu-
lation and synthesis. During communication synthesis, a
description of the selected bus protocol is taken out of the
protocol library in the form of a protocol channel. The pro-
tocol channel encapsulates the bus wires and implements
the protocol by driving and sampling the wires according
to the timing diagram of the protocol. At its interface, the
channel abstracts the protocol by providing methods for
all primitive transactions like read, write, burst read, burst
write, etc. supported by the bus. Protocol channels are
then split and moved into the PEs where they become the
protocol layer of the PE’s bus adapters. In the process, pro-
tocol descriptions are adapted to the PE’s capabilities (for

CLKOUT

Address

T0 T1 T0 Tw Tw T1

WS

Data In

RD

Data Out

WR

T1

MCS

(Write)

(Read)

Bus

Note: For detailed timing specification see the device’s Technical Data sheet.

(Data Sampled at)

(Data Driven at)

Figure 13: DSP56600 protocol timing diagram.

example by inserting timing estimates), and the application
layer is generated on top of the protocol primitives.

The timing diagram for the DSP56600 bus protocol cho-
sen for our example is shown in Figure 13 [4]. A bus trans-
fer starts with the DSP driving the address bus and assert-
ing theMCSline. Depending on the direction of the trans-
fer, the DSP then asserts either thenRD or nWRcontrol
line. In case of a bus read, the slave will put the selected
data on the data bus where the DSP will read it from be-
fore deasserting thenRD line again. In case of a bus write,
on the other hand, the DSP will drive the data bus and the
slave will sample the data when the DSP deasserts thenWR
line again. Finally, the transfer completes with the DSP re-
leasing the address bus and deasserting the chip select line.

Figure 13 shows the protocol layers of the bus adapters
in the PE1 (DSP) andPE2 (slave) components for the
DSP56600 protocol. The external interfaceIProtocol of
the protocol layer (see Listing 16(c)) provides methods for
the two simple bus read and write transfers supported by
the DSP56600 protocol. The protocol layersPE1Protocol
andPE2Protocolthen implement the master and slave side
of the read() and write() primitives by driving and sam-
pling the bus wires according to the sequence of events
in the timing diagram. Bus wires are accessed by reading
from and writing to corresponding ports of of the proto-
col channel which, in turn, will connect to the reader and
writer interfaces of the bit vectors and signal channels rep-
resenting the bus wires at the top level.

In the DSP56600 manual [4], the timing diagram from
Figure 13 is annotated with additional timing constraints
between events on the wires. In the protocol layer code
(Listing 16), timing constraints are modeled by enclosing
the code sampling and driving the wires in ado-timing

21

channel PE1Protoco l (out b i t [15 : 0] A,
inout b i t [23 : 0] D,
OSignal MCS,
OSignal nRD,

5 OSignal nWR)
implements I P r o t o c o l

f
/ / Bus master read
b i t [23 : 0] read (b i t [15 : 0] addr)

10 f
b i t [23 : 0] data ;

do f
t1 : A = addr ; / / ass ign address

15 wai t fo r (3) ;
t2 : MCS. ass ign (1) ; / / a s s e r t ch ip s e l e c t

wai t fo r (12) ;
t3 : nRD. ass ign (0) ; / / a s s e r t read l i n e

wai t fo r (5) ;
20 t4 : data = D; / / sample data bus

wai t fo r (18) ;
t5 : nRD. ass ign (1) ; / / d e a s s e r t read

wai t fo r (7) ;
t6 : MCS. ass ign (0) ; / / d e a s s e r t ch ip s e l e c t

25 g
t iming f / / c o n s t r a i n t s

range (t1 ; t6 ; 45 ; 100) ;
range (t2 ; t3 ; 4 ;) ;
range (t3 ; t5 ; 33 ;) ;

30 range (t3 ; t4 ; 30 ;) ;
g

return data ;
g

35
/ / Bus master wr i te
void wr i te (b i t [15 : 0] addr , b i t [23 : 0] data)
f

do f
40 t1 : A = addr ; / / ass ign address l i n e s

wai t fo r (5) ;
t2 : MCS. ass ign (1) ; / / a s s e r t ch ip s e l e c t

wai t fo r (10) ;
t3 : nWR. ass ign (0) ; / / a s s e r t wr i te c o n t r o l

45 wai t fo r (3) ;
t4 : D = data ; / / d r i ve data ou tpu ts

wai t fo r (20) ;
t5 : nWR. ass ign (1) ; / / d e a s s e r t wr i te

wai t fo r (10) ;
50 t6 : MCS. ass ign (0) ; / / d e a s s e r t ch ip s e l e c t

g
t iming f / / c o n s t r a i n t s

range (t1 ; t6 ; 45 ; 100) ;
range (t2 ; t3 ; 8 ;) ;

55 range (t3 ; t5 ; 20 ;) ;
g

g
g ;

(a) PE1 bus master protocol.

Listing 16: Bus adapter protocol layer.

channel PE2Protoco l (in b i t [15 : 0] A,
inout b i t [23 : 0] D,
I S i g n a l MCS,
I S i g n a l nRD,

5 I S i g n a l nWR)
implements I P r o t o c o l

f
/ / Bus s lave wr i te (answer to bus read)
void wr i te (b i t [15 : 0] addr , b i t [23 : 0] data)

10 f
do f

/ / wait fo r ch ip s e l e c t
t1 : MCS. wa i t va l (1) ;

/ / address decoding
15 t2 : i f (A ! = addr) goto t1 ;

wai t fo r (15) ;
/ / check c o n t r o l l i n e

t3 : i f (nRD. val () ! = 0) goto t1 ;
/ / d r i ve data bus

20 t4 : D = data ;
/ / wait fo r end of cyc le

t5 : MCS. wa i t va l (0) ;
g
t iming f / / c o n s t r a i n t s

25 range (t1 ; t5 ; ; 100) ;
range (t2 ; t3 ; 4 ; 50) ;
range (t3 ; t4 ; ; 30) ;

g
g

30
/ / Bus s lave read (answer to bus wr i te)
b i t [23 : 0] read (b i t [15 : 0] addr)
f

b i t [23 : 0] data ;
35

do f
/ / wait fo r ch ip s e l e c t

t1 : MCS. wa i t va l (1) ;
/ / address decoding

40 t2 : i f (A ! = addr) goto t1 ;
wai t fo r (20) ;
/ / check c o n t r o l l i n e

t3 : i f (nWR. val () ! = 0) goto t1 ;
/ / sample data bus

45 t4 : data = D;
/ / wait fo r end of cyc le

t5 : MCS. wa i t va l (0) ;
g
t iming f / / c o n s t r a i n t s

50 range (t1 ; t5 ; ; 100) ;
range (t2 ; t3 ; 8 ; 50) ;
range (t3 ; t4 ; 20 ;) ;

g

55 return data ;
g

g ;

(b) PE2 bus slave protocol.

/ / DSP56600 pro toco l p r i m i t i v e s
i n t e r f a c e I P r o t o c o l f

b i t [23 : 0] read (b i t [15 : 0] addr) ;
void wr i te (b i t [15 : 0] addr , b i t [23 : 0] data) ;

5 g ;

(c) Protocol layer interface.

Listing 16 (continued): Bus adapter protocol layer.

22

construct. Constraints are specified as ranges between la-
bels marking events on the wires. For example, there is
a minimum delay of 4 time units between asserting the
MCS and thenRD signals in case of a read transfer on
the DSP (PE1) side (Listing 16(a), line 28). The corre-
sponding slave (PE2) write method, therefore, has to have
a delay of at least 4 time units between receivingMCSand
sampling ofnRDto ensure that the value ofnRDis correct
(Listing 16(b), line 26). For more information about the
DSP56600 protocol timing please refer to [4].

In addition to timing constraints, the protocol layer
code is annotated with estimated delays by inserting
waitfor() statements into the code sequence. Those de-
lays are instances of the protocol timing constraints based
on an estimation of actual average delays when implement-
ing the protocol on the given PE. Note that thewaitfor()
statements only serve as a feedback about communication
timing for simulation, similar to thewaitfor() statements
inserted into the behavior code in the architecture model
(see Section 3.6). Interface synthesis as part of the back-
end process, however, will start from the ranges specified
for the timing constraints of the protocol. Based on the
constraints and the PE’s clock period, a state machine im-
plementing the protocol will be synthesized which will de-
termine the actual, exact protocol delays.

4.3 Application Layer

The application layer wraps around the protocol layer and
implements the abstract, high-level communication seman-
tics from the architecture model as a sequence of low-
level, primitive bus transactions supported by the protocol.
At its interface, the application layer provides message-
passing methods equivalent to the architecture model’s
global channels. Therefore, the behaviors inside the PE can
be directly connected to the application layer instead. In
order to implement message-passing, the application layer
has to perform tasks like synchronization of PEs, arbitra-
tion in case of multiple bus masters, addressing of data on
the bus, and slicing of abstract data types into bus words.
Internally, the application layer instantiates the protocol
layer and calls the protocol methods in order to perform
the actual bus transfers.

Listing 17 shows the top levels of the two bus adapters,
PE1Busand PE2Bus, which form the application layers
inside the two PEs. The application layers implement the
send()andrecv()methods of theIBusinterface (line 7) in-
troduced earlier (Listing 15). Internally, they each instan-
tiate the corresponding PE’s local protocol layer (line 10)
described in the previous section (Section 4.2). The pro-
tocol layers are connected to the bus wires through corre-
sponding ports of the bus adapters, and they are responsible

ready

(Read/Write)Bus
DSP56600

(Read/Write) (Read/Write)

Figure 14: Application layer synchronization protocol.

for actually driving and sampling the bus wires according
to the protocol timing diagram. In the code of its methods,
the application layer then calls the protocol layer methods
to implement the sequence of transactions over the bus.

In the following sections, we will outline each of the
tasks performed by the application layer in its implemen-
tation of message-passing over the protocol. In this report,
we will focus on the modeling aspects for the application
layer only. A more detailed description of the communi-
cation synthesis process for the application layer can be
found in [5].

4.3.1 Synchronization

To implement the blocking semantics of the message-
passing communication, the application layer has to per-
form the proper synchronization of PEs. Depending on the
bus, synchronization can be inherent in the protocol. In
all other cases, the application layer has to synchronize the
communication partners on top of the protocol, possibly
over additional wires between the PEs that are driven and
sampled by the application layer according to a high-level
synchronization protocol.

In our example, rendevouz synchronization is handled
through the bus protocol in one direction and through the
readysignal in the other direction (Figure 14). The slave
PE2 signals its ready status by asserting theready line
(line 24 and line 50 in Listing 17(b)). In its calls of the
protocol methods, thePE2Protocollayer will then listen
on the bus for the sequence of transfers as initiated by the
DSP, i.e. it will wait repeatedly for the start of each bus
transfer. The DSP (PE1), on the other hand, first polls the
ready line (line 26 and line 47 in Listing 17(a)), thereby
blocking the DSP until the slave is ready. Once the ready
signal is received, the DSP initiates the sequence of trans-
fers through calls to itsPE1Protocollayer. Through the
bus protocol, the DSP will, in turn, wake up the slave which
is blocking on the corresponding bus wire events. All to-
gether, synchronization in this example is implemented by
sending events from the DSP to the slave via the bus proto-
col whereas events from the slave to the DSP are sent over
thereadyline.

23

channel PE1Bus (out b i t [15 : 0] A,
inout b i t [23 : 0] D,
OSignal MCS,
OSignal nRD,

5 OSignal nWR,
I S i g n a l ready)

implements IBus
f

/ / I n s t a n t i a t e p ro toco l l aye r
10 PE1Protoco l p r o t o c o l (A, D, MCS, nRD , nWR) ;

/ / Send message
void send (addr a , void � data , in t s ize) f

b i t [16] Addr ;
15 short � p ;

/ / Address ing : conver t to bus address
switch (a) f

case CB13:
20 Addr = 0x8005 ; break ;

case C2:
Addr = 0x8020 ; break ;

g

25 / / S y n c h r o n i z a t i o n : wait fo r ready s i g n a l
ready . wa i t va l (1) ;

/ / S l i c e d data t r a n s f e r
for (p = data ; s i ze> 0 ; s i ze �= 2) f

30 / / c a l l p ro toco l l aye r
p r o t o c o l . w r i te (Addr , � p + +) ;

g
g

35 / / Receive message
void recv (addr a , void � data , in t s ize) f

b i t [16] Addr ;
short � p ;

40 / / Address ing : conver t to bus address
switch (a) f

case CB34:
Addr = 0x800c ; break ;

g
45

/ / S y n c h r o n i z a t i o n : wait fo r ready s i g n a l
ready . wa i t va l (1) ;

/ / S l i c e d data t r a n s f e r
50 for (p = data ; s i ze> 0 ; s i ze �= 2) f

/ / c a l l p ro toco l l aye r
� p ++ = p r o t o c o l . read (Addr) ;

g
g

55 g ;

(a) PE1 bus driver.

Listing 17: Bus adapter application layer.

channel PE2Bus (in b i t [15 : 0] A,
inout b i t [23 : 0] D,
I S i g n a l MCS,
I S i g n a l nRD,

5 I S i g n a l nWR,
OSignal ready)

implements IBus
f

/ / I n s t a n t i a t e p ro toco l l aye r
10 PE2Protoco l p r o t o c o l (A, D, MCS, nRD, nWR) ;

/ / Send message
void send (addr a , void � data , in t s ize) f

b i t [16] Addr ;
15 short � p ;

/ / Address ing : conver t to bus address
switch (a) f

case CB34:
20 Addr = 0x800c ; break ;

g

/ / S y n c h r o n i z a t i o n : a s s e r t ready s i g n a l
ready . ass ign (1) ;

25
/ / S l i c e d data t r a n s f e r
for (p = data ; s i ze> 0 ; s i ze �= 2) f

/ / c a l l p ro toco l l aye r
p r o t o c o l . w r i te (Addr , � p + +) ;

30 g

/ / S y n c h r o n i z a t i o n : d e a s s e r t ready s i g n a l
ready . ass ign (0) ;

g
35

/ / Receive message
void recv (addr a , void � data , in t s ize) f

b i t [16] Addr ;
short � p ;

40
/ / Address ing : conver t to bus address
switch (a) f

case CB13:
Addr = 0x8005 ; break ;

45 case C2:
Addr = 0x8020 ; break ;

g

/ / S y n c h r o n i z a t i o n : a s s e r t ready s i g n a l
50 ready . ass ign (1) ;

/ / s l i c e d data t r a n s f e r
for (p = data ; s i ze> 0 ; s i ze �= 2) f

/ / c a l l p ro toco l l aye r
55 � p ++ = p r o t o c o l . read (Addr) ;

g

/ / S y n c h r o n i z a t i o n : d e a s s e r t ready s i g n a l
ready . ass ign (0) ;

60 g
g ;

(b) PE2 bus interface.

Listing 17 (continued): Bus adapter application layer.

24

4.3.2 Addressing

Virtual addresses on the application side have to be turned
into a bus addressing scheme. In general, bus addresses are
a combination of source PE, destination PE, and ID of the
message to be transfered. Depending on the application,
however, the bus addressing scheme can be simplified. For
example, if there is a predefined order of messages between
two PEs, the message ID can be removed from the address.

If the bus protocol’s address bus is wide enough, vir-
tual addresses can be directly converted into bus addresses.
Otherwise, address information has to be transfered over
the data bus as a header of the message frame, preced-
ing the actual message content. Meta-data in the message
header can also contain other information like the size of
the message in case of variable-length messages. After
synchronization, header data is transfered just like normal
data (see the next section, Section 4.3.3) by calling the pro-
tocol’s bus transaction primitives.

In the case of our example (Listing 17), the virtual, sym-
bolic addresses on the application layer interface are di-
rectly converted into 16-bit bus addresses. Although un-
necessary in this case since there is a predetermined or-
der of transfers, one address in the range available on
the DSP’s external bus is assigned to each virtual address
CB13, C2, andCB34. Note that since all three messages
are uni-directional, each of the virtual addresses needs to
be resolved in only one of the two methods on each side.

4.3.3 Data slicing

As part of the application layer, the abstract data types in
the messages on the application side have to be sliced into
bus words supported by the protocol. In general, slicing is
the process of splitting large, complex data structures into
a series of bus transfers on the sending side and reassem-
bling the messages from the data received over the bus on
the receiving side. Depending on the capabilities of the
protocol, data slicing can make use of burst or other block
transfer modes, for example.

In addition, slicing has to ensure correct interpretation
of the sequence of low-level transfers on both sides in case
of different data layout conventions on the PEs. For ex-
ample, in case of a big-endian PE communicating with a
little-endian PE, slicing performs the necessary byte swap-
ping on one of the PEs. In general, different implemen-
tations of data serialization on the bus are possible, e.g.
based on memory layout, based on a layout imposed by an
IP component, or a canonical serialization as part of the
bus protocol definition [5].

In the example shown in Listing 17, a simple loop slices
the message into 16-bit words that are transfered over the
24-bit data bus. The application layersend()and recv()

B3

B13rcv

B34snd

B1B1

B13snd

B34rcv

PE1

v1

PE2

v1
B12snd

B24rcv

IP1

B2

PE1Bus PE2Bus

T1

A[15:0]

D[23:0]

MCS

nRD

nWR

ready

Figure 15: Communication model with IP.

methods loop over all the words in the message and trans-
fer the message one word at a time by calling the corre-
spondingread()or write() methods of the protocol layer.

4.4 Transducers

As part of the communication model, additional process-
ing elements that translate between incompatible bus pro-
tocols might have to be inserted into the system architec-
ture. Such transducers will act as bridges connecting two
busses or as bus interfaces for PEs with fixed, predefined
protocols. Especially in the case of IP components, trans-
ducers serve as universal glue logic, allowing to interface
IP components to arbitrary busses. Their functionality can
range from a simple conversion of signal levels up to com-
plete protocol translators that include buffers for transfer
rate adaption and decoupling.

In Section 3.4, we introduced an architecture model that
included an IP component (Figure 10 and Listing 10). Fig-
ure 15 and Listing 18 show the corresponding communica-
tion model for the same architecture with communication
via a single system bus based on the DSP56600 protocol.
The communication model instantiates the bus-functional
modelIPBF of the IP component (line 60, Listing 18(a))
introduced in Section 3.4 (Listing 9(b)). Like the other PE
models of the communication model described in the pre-
vious sections, the bus-functional IP model describes the
behavior of the IP at its bus interface in a timing-accurate
manner, i.e. theIPBF model generates events in response
to incoming stimuli on the wires connected to its ports with
correct timing.

Since the IP with its fixed protocol can not be directly

25

/ / P rocess ing element 1
behavior PE1 (out b i t [15 : 0] A, b i t [23 : 0] D,

OSignal MCS, OSignal nRD,
OSignal nWR, I S i g n a l ready)f

5 PE1Bus bus (A, D, MCS, nRD, nWR, ready) ;

type1 v1 ;
B1 b1 (v1) ;
B13Snd b13snd (v1 , bus) ;

10 B12Snd b12snd (v1 , bus) ;
B24Rcv b24rcv (bus) ;
B34Rcv b34rcv (bus) ;

void main (void) f
15 b1 . main () ;

b13snd . main () ;
b12snd . main () ;
b24rcv . main () ;
b34rcv . main () ;

20 g
g ;

/ / P rocess ing element 2
behavior PE2 (in b i t [15 : 0] A, b i t [23 : 0] D,

25 I S i g n a l MCS, I S i g n a l nRD,
I S i g n a l nWR, OSignal ready)f

PE2Bus bus (A, D, MCS, nRD, nWR, ready) ;

type1 v1 ;
30 B13Rcv b13rcv (bus , v1) ;

B3 b3 (v1 , bus) ;
B34Snd b34snd (bus) ;

void main (void) f
35 b13rcv . main () ;

b3 . main () ;
b34snd . main () ;

g
g ;

40
/ / Top�l e v e l
behavior Design ()
f

b i t [15 : 0] A; / / System bus
45 b i t [23 : 0] D;

CSignal MCS, nRD , nWR, ready ;

b i t [63 : 0] dat ; / / IP bus
event s t , dn ;

50 b i t [2] rdy ;

PE1 pe1 (A, D, MCS, nRD , nWR, ready) ;
PE2 pe2 (A, D, MCS, nRD , nWR, ready) ;

55 / / Transducer i n s t a n c e
T1 t1 (A, D, MCS, MCS, nRD, nRD, nWR, nWR,

ready , ready , dat , s t , rdy , dn) ;

/ / Bus�f u n c t i o n a l IP i n s t a n c e
60 IPBF ip1 (dat , s t , rdy , dn) ;

void main (void) f
par f

pe1 . main () ; pe2 . main () ;
65 t1 . main () ; ip1 . main () ;

g
g

g ;

(a) Top level hierarchy.

Listing 18: Communication model with IP.

/ / Send data to IP
behavior B12Snd (in type1 v1 , Ibus bus)f

void main (void) f
bus . send (CB12 , & v1 , s i z e o f (v1)) ; g

5 g ;

/ / Receive r e s u l t s from IP
behavior B24Rcv (IBus bus)f

void main (void) f
10 bus . recv (CB24 , 0 , 0) ;g

g ;

(b) Synchronization with IP.

Listing 18 (continued): Communication model with IP.

connected to the system bus, a transducer componentT1
is inserted into the communication model. The transducer
connects to the IP bus and to the system bus, translating
between the two protocols. Like the other PEs, the trans-
ducer behavior is instantiated (line 56, Listing 18(a)) and
added to the set of concurrent, non-terminating PE behav-
iors (line 65) at the top level.

The transducer component model is shown in Listing 19.
The transducer behavior (Listing 19(b)) connects to the
system bus on the one hand and to the IP bus on the other
hand through corresponding sets of ports. Since the trans-
ducer has to act as both master (for communication with
PE2) and slave (for communication with the DSPPE1) on
the system bus, it connects to both reader and writer inter-
faces of the control lines.

For implementation of the IP protocol, the transducer
instantiates an IP bus adapter (line 12). TheT1IP adapter
(shown in Listing 19(a)) copies the channel interface meth-
ods of the IP wrapper from the architecture model (Sec-
tion 3.4, Listing 9). As in the architecture model, the wrap-
per methods describe the implementation of the IP proto-
col over the adapter’s IP bus ports while providing a set
of methods at the message-passing level on the adapter’s
interface.

Similarly, the transducer contains adapters for master
and slave communication over the system bus. In this
simple case, the adapters are instances of thePE1Bus
andPE2Busadapters described in Section 4.1.2 and Sec-
tion 4.3. Since the transducer’s system bus functional-
ity is largely equivalent to the bus communication inPE1
andPE2, we are including copies of their bus adapters in
this example. The necessary minor modifications of the
adapters to support the additionalCB12 and CB24 mes-
sages of the transducer are, however, not shown here and
are left as an exercise to the reader.

In its main()method, the transducer then calls the meth-
ods provided by the adapters for communication on the IP
and on the system bus side. In our example, the order of
communication is predetermined and the transducer per-

26

channel T1IP (inout b i t [63 : 0] data ,
out event s t a r t ,
in b i t [2] ready ,
in event done)

5 implements I IP
f

void s t a r t (type1 v1)f
dat = v1 ;
no t i f y (s t) ;

10 g
type2 v2 (void) f

while (! rdy [1]) wait (dn) ;
return dat ;

g
15 void done (void) f

while (! rdy [0]) wait (dn) ;
g

g ;

(a) IP bus adapter.

behavior T1 (b i t [15 : 0] A, b i t [23 : 0] D, / / Bus
I S i g n a l iMCS , OSignal oMCS,
I S i g n a l inRD , OSignal onRD,
I S i g n a l inWR , OSignal onWR,

5 I S i g n a l i r dy , OSignal ordy ,
b i t [63 : 0] data , / / IP
out event s t a r t ,
in b i t [2] ready ,
in event done)

10 f
/ / IP adapter
T1IP ip1 (data , s t a r t , ready , done) ;

/ / Adapters to act as bus master or s lave
15 PE1Bus master (A, D, oMCS, onRD , onWR, i rdy) ;

PE2Bus s lave (A, D, iMCS , inRD , inWR , ordy) ;

void main (void) f
type1 v1 ;

20 type2 v2 ;

/ / Receive IP parameters from B1 (PE1)
s lave . recv (CB12 , & v1 , s i z e o f (v1)) ;

25 / / S t a r t IP execu t io n
ip1 . s t a r t (v1) ;

/ / Receive v2 from IP . . .
v2 = ip1 . v2 () ;

30
/ / . . . and send to B3
master . send (C2, & v2 ,s i z e o f (v2)) ;

/ / Wait fo r IP to f i n i s h
35 ip1 . done () ;

/ / Send r e s u l t back to PE1
s lave . send (CB24 , 0 , 0) ;

g
40 g ;

(b) Transducer behavior.

Listing 19: Transducer component model.

forms a sequence of data transfers according to this pre-
defined schedule. In the most general case, the transducer
will listen on both sides simultaneously in order to handle
transfers dynamically as they come in.

In this example, complete messages are received on one
side, buffered in the transducer’s local memory, and sent
out on the other side. In order to reduce latency and mem-
ory requirements in the transducer, data transfers could be
overlapped, i.e. the transducer could start sending out a
words of a message on on side while still receiving remain-
ing parts of the message on the other side. Such transducer
optimizations can be part of communication synthesis or
the backend process. In the latter case, the implemen-
tation model (see Section 5) will include optimized code
for the transducer PE. In the former case, the communica-
tion model will include a transducer model in which the
code of the adapter methods—shown separately here—is
inlined into the transducer’smain()method, flattened, and
reordered across method boundaries.

4.5 Arbitration

In case of multiple masters on a system bus, the commu-
nication model has to include bus arbitration. If the order
of transactions on each bus is statically fixed and predeter-
mined, and if it can therefore be guaranteed that no con-
flicts will occur (as in the case of the example from Sec-
tion 4.4), a static arbitration is inherent in the model. Oth-
erwise, PEs have to dynamically resolve bus contention at
runtime through an arbitration protocol as part of their pro-
tocol or application layers. Arbitration can be distributed
or centralized. In a distributed scheme, PEs resolve con-
flicts among themselves through a distributed arbitration
protocol. In a centralized scheme, a central arbiter PE
is inserted into the communication model, and the arbiter
grants bus requests based on a builtin arbitration algorithm.

For example, if we modify our design such that bothPE1
andPE2 can act as either master or slave on the system
bus, arbitration becomes necessary. Figure 16 and List-
ing 20 show the modified example including a centralized
arbiter component. In this implementation, for each mes-
sage to be transfered over the bus, the sending PE acts as
the bus master while the receiving PE serves as bus slave.
Therefore, the protocol and application layers of the bus
adapter common to both PEs (shown in Listing 21) con-
tain thewrite() andsend()methods from the master side
(i.e. from PE1Protocol, Listing 16(a), andPE1Bus, List-
ing 17(a)) and theread() and recv() methods from the
slave side (PE2Protocol, Listing 16(b), andPE2Bus, List-
ing 17(b)). Note that the code for the protocol layer meth-
ods is the same as in Section 4.2. However, for simplicity
thedo-timing constraints have been omitted here.

27

/ / P rocess ing element 1
behavior PE1 (b i t [15 : 0] A, b i t [23 : 0] D,

I S i g n a l iMCS , OSignal oMCS,
I S i g n a l inWR , OSignal onWR,

5 I S i g n a l rdy2 , OSignal rdy1 ,
OSignal req1 , I S i g n a l ack1)

f
PEBus bus (A, D, iMCS , oMCS, inWR , onWR,

rdy2 , rdy1 , req1 , ack1) ;
10

type1 v1 ;
B1 b1 (v1) ;
B13Snd b13snd (v1 , bus) ;
B2 b2 (v1 , bus) ;

15 B34Rcv b34rcv (bus) ;

void main (void) f
b1 . main () ;
b13snd . main () ;

20 b2 . main () ;
b34rcv . main () ;

g
g ;

25 / / P rocess ing element 2
behavior PE2 (b i t [15 : 0] A, b i t [23 : 0] D,

I S i g n a l iMCS , OSignal oMCS,
I S i g n a l inWR , OSignal onWR,
I S i g n a l rdy1 , OSignal rdy2 ,

30 OSignal req2 , I S i g n a l ack2)
f

PEBus bus (A, D, iMCS , oMCS, inWR , onWR,
rdy1 , rdy2 , req2 , ack2) ;

35 type1 v1 ;
B13Rcv b13rcv (bus , v1) ;
B3 b3 (v1 , bus) ;
B34Snd b34snd (bus) ;

40 void main (void) f
b13rcv . main () ;
b3 . main () ;
b34snd . main () ;

g
45 g ;

/ / Top�l e v e l
behavior Design ()
f

50 b i t [15 : 0] A;
b i t [23 : 0] D;
CSignal MCS, nWR, rdy1 , rdy2 ;
CSignal req1 , ack1 , req2 , ack2 ;

55 / / A r b i t e r
A r b i t e r a r b i t e r 1 (req1 , ack1 , req2 , ack2) ;

PE1 pe1 (A, D, MCS, MCS, nWR, nWR,
rdy2 , rdy1 , req1 , ack1) ;

60 PE2 pe2 (A, D, MCS, MCS, nWR, nWR,
rdy1 , rdy2 , req2 , ack2) ;

void main (void) f
par f

65 a r b i t e r 1 . main () ; pe1 . main () ; pe2 . main () ;
g

g
g ;

Listing 20: Communication model with arbiter.

channel PEProtoco l (b i t [15 : 0] A, b i t [23 : 0] D,
I S i g n a l iMCS , OSignal oMCS,
I S i g n a l inWR , OSignal onWR)

implements I P r o t o c o l
5 f

/ / Bus s lave read
b i t [23 : 0] read (b i t [15 : 0] addr) f

b i t [23 : 0] data ;
t1 : iMCS. wa i t va l (1) ;

10 t2 : i f (A ! = addr) goto t1 ; wai t fo r (20) ;
t3 : i f (inWR. val () ! = 0) goto t1 ;
t4 : data = D;
t5 : iMCS. wa i t va l (0) ;
return data ;

15 g
/ / Bus master wr i te
void wr i te (b i t [15 : 0] addr , b i t [23 : 0] data) f

t1 : A = addr ; wai t fo r (5) ;
t2 : oMCS. ass ign (1) ; wai t fo r (10) ;

20 t3 : onWR. ass ign (0) ; wai t fo r (3) ;
t4 : D = data ; wai t fo r (20) ;
t5 : onWR. ass ign (1) ; wai t fo r (10) ;
t6 : oMCS. ass ign (0) ;

g
25 g ;

(a) Protocol layer.

channel PEBus (b i t [15 : 0] A, b i t [23 : 0] D,
I S i g n a l iMCS , OSignal oMCS,
I S i g n a l inWR , OSignal onWR,
I S i g n a l i r dy , OSignal ordy ,

5 OSignal req , I S i g n a l ack)
implements IBus

f
PEProtoco l p (A, D, iMCS , oMCS, inWR , onWR) ;

10 / / Bus master message send
void send (addr a , void � data , in t s ize) f

short � p ;

i rdy . wa i t va l (1) ; / / S y n c h r o n i z a t i o n
15

req . ass ign (1) ; / / Reques t bus
ack . wa i t va l (1) ; / / Wait fo r acknowledge

for (p = data ; s i ze> 0 ; s i ze �= 2) f
20 switch (a) f

case CB13 : p . wr i te (0x8005 ,� p + +) ; break ;
case C2 : p . wr i te (0x8020 ,� p + +) ; break ;

g
g

25
req . ass ign (0) ; / / Release bus

g

/ / Bus s lave message r e c e i v e
30 void recv (addr a , void � data , in t s ize) f

short � p ;

ordy . ass ign (1) ; / / S y n c h r o n i z a t i o n
for (p = data ; s i ze> 0 ; s i ze �= 2) f

35 � p ++ = p . read (0x800c) ;
g
ordy . ass ign (0) ; / / S y n c h r o n i z a t i o n

g
g ;

(b) Application layer.

Listing 21: Bus adapter with arbitration.

28

B3

B13rcv

B34snd

B2

B1B1

B13snd

B34rcv

v1

v1

PE1Bus PE2Bus

A[15:0]

D[23:0]

MCS

nWR

rdy[2]

PE1 PE2
Arbiter1

req[2]

ack[2]

Figure 16: Communication model with arbiter.

The two PEs communicate with the arbiter component
Arbiter1 via two request linesreqX and two acknowledge
linesackX. As part of its application layer (Listing 21(b)),
a PE’s first action is to request bus access as a master in
thesend()method by raising itsreq line (line 16). It then
waits until it is granted access by the arbiter through the
correspondingack line (line 17) before performing the ac-
tual data transfers. Finally, the sending PE releases the bus
again at the end of the transfer (line 26).

For synchronization, the PEs communicate via two
ready lines. EachrdyX line signals whether the corre-
sponding PE is ready to receive data. Similar to synchro-
nization in the original communication model example (see
Section 4.3.1), the receiving PE drives its outgoingrdy line
in its application layerrecv()method while the sending PE
blocks on the ready signal coming in from the other, re-
ceiving PE.

The communication model instantiates an arbiter com-
ponentArbiter1 and includes it in the set of PEs. The ar-
biter (Listing 22) receives requests from and grants bus ac-
cess to the PEs. In an endless loop, the arbiter checks for
incoming requests and grants them on a first-come, first-
serve basis by sending outack signals. It then waits for
the release of the bus as signaled by the PE before con-
tinuing to process requests. In case of requests that come
in simultaneously,PE1has priority overPE2 in this sim-
ple example. Due to the sequential nature of the arbiter,
a total order is created among the events on the arbiter’s
ports, guaranteeing that only one PE is granted access at
any given time.

behavior A r b i t e r (I S i g n a l req1 , I S i g n a l req2 ,
OSignal ack1 , OSignal ack2)

f
void main (void)

5 f
ack1 . ass ign (0) ; ack2 . ass ign (0) ;

while (t rue) f
/ / P r i o r i t y 1 : reques t from PE1?

10 i f (req1 . va l ()) f
ack1 . ass ign (1) ; / / Acknowledge
req1 . wa i t va l (0) ; / / Wait fo r r e l e a s e
ack1 . ass ign (0) ; / / Release bus

g
15 / / P r i o r i t y 2 : reques t from PE2?

e lse i f (req2 . va l ()) f
ack2 . ass ign (1) ; / / Acknowledge
req2 . wa i t va l (0) ; / / Wait fo r r e l e a s e
ack2 . ass ign (0) ; / / Release bus

20 g
/ / Wait fo r reques t
e lse f

wait (req1 , req2) ;
g

25 g
g

g ;

Listing 22: Arbiter component model.

4.6 Timing

As part of the architecture model, scheduling of behav-
iors created a total order inside each PE (see Section 3.5).
Hence, there is also a total order of events generated at the
ports of each PE. In case of a single bus master (i.e. a single
driver), this guarantees a total order among the transactions
on that bus. In all other cases, arbitration, either statically
or dynamically as explained in Section 4.5, will create a
total order of bus transactions. Therefore, transactions on
each bus in the communication model are totally ordered.

Furthermore, the communication model introduces the
concept of time for the communication among the PEs in
the system. As shown in Section 4.2, the protocol layers
of the bus adapters are annotated withwaitfor() statements
for estimated protocol delays on the target PE. Similarly,
the application layer methods can be annotated with timing
information based on estimated or budgeted execution de-
lays for the application layer code. As a result, the order of
events on the system busses is further refined beyond the
order imposed by the sequential PEs (including arbiters)
driving the busses.

All together, the communication model provides a
timing-accurate description of the interaction between PEs
at the system level. From the system’s perspective, the bus-
functional PE models accurately describe each PE’s behav-
ior as seen at its bus interface. Therefore, the communica-
tion model allows to validate the order and functionality of
the system at the level of PEs communicating via wires.

29

4.7 Summary

The communication model is the output of the system-level
design process and the hand-off to the backend process. It
reflects the structure of the system architecture consisting
of computation running on PEs and communication over
busses. The PEs in the communication model specify the
computation and communication behavior to be synthe-
sized into PE microarchitectures in the backend process.
The communication model is a timed model in terms of
computation and communication. Leaf behaviors and bus
adapters are annotated with estimated or projected execu-
tion times on the target PE. The backend process will then
further refine time into a cycle-accurate model.

In summary, compared to the properties of the architec-
ture model presented in Section 3.7, the properties of the
communication model are:

(a) At the top level of the behavior hierarchy, the PE
structure is modeled as a parallel composition of non-
terminating PE behaviors.

(b) PE behaviors communicate via shared, bit-true vari-
ables representing system bus wires.

(c) Bus adapters inside the PEs implement message-
passing semantics by driving and sampling the wires
of the bus according to the bus protocol.

(d) Behaviors inside different PEs communicate by send-
ing and receiving messages via the PE’s bus adapters.

(e) Computation in the leaf behaviors and communica-
tion functionality in the bus adapters are annotated
with estimated or projected execution times on their
target PE.

In terms of behaviors executing inside each of the PEs,
the communication model inherits the respective properties
(computation functionality, storage, parallelism, schedul-
ing) from the architecture model. Also note that with re-
spect to the properties of the communication model, spe-
cial PEs like IPs, memories, transducers, or arbiters are no
different from the other, general-purpose PEs. As part of
the backend process, the implementation of the functional-
ity inside each PE will feed into different flows depending
on the type of the PE.

5 Implementation Model

The implementation model is the result of scheduling the
functionality mapped onto the PEs (both, computation and
communication functionality) into register transfers per
clock cycle. Therefore, the implementation model is a
cycle-accurate model at the register-transfer level.

A[15:0]

D[23:0]

MCS

nRD

nWR

DSP HW

ready

OBJ

Instruction
Set

Simulator
(ISS)

PE1_CLK

in
tC

PE2_CLK

Figure 17: Implementation model.

behavior Design ()
f

/ / System bus wires
b i t [15 : 0] A; / / address

5 b i t [23 : 0] D; / / data
CSignal MCS, nRD , nWR, ready ; / / c o n t r o l

/ / PE1 = Processor (DSP)
DSP pe1 (A, D, MCS, nRD , nWR, ready) ;

10
/ / PE2 = Custom HW

HW pe2 (A, D, MCS, nRD , nWR, ready) ;

void main (void) f
15 par f

pe1 . main () ; pe2 . main () ;
g

g
g ;

Listing 23: Implementation model.

For each PE, the implementation model defines the
datapath, the control logic and the clock frequency at
which the component runs. In general, the implementation
model requires allocation of a datapath, binding of opera-
tions, variables, and transfers onto functional units, regis-
ters/memories and busses, and the scheduling of register-
transfers into clock cycles.

For custom hardware PEs, high-level synthesis creates
the implementation model of the hardware PE from the
code of the behaviors and adapters inside the PE behav-
ior of the communication model. For programmable pro-
cessors, the code of the behaviors in the communication
model is converted into C code and compiled into assem-
bly code to create the implementation model.

Figure 17 and Listing 23 show the top level of the im-

30

plementation model for the example design. In this exam-
ple,PE1 is implemented as a digital signal processorDSP
and PE2 is implemented as a custom hardware PEHW.
As specified by the communication model, the two compo-
nents communicate via a bus with 24-bit wide data, 16-bit
wide address and four control lines.

The implementation model supports two views of the
PEs in the design: a behavioral RTL view and a structural
RTL view [6]. In both cases, the steps of allocation, bind-
ing and scheduling are required to derive the implemen-
tation model. The difference is that the behavioral RTL
view does not explicitly represent the datapath architec-
ture and the binding information. However, it corresponds
closely to the original C code in the communication model.
The structural RTL view, on the other hand, explicitly de-
scribes the structure of data path plus control unit. There-
fore, structural RTL is closer to the implementation and
forms the immediate input to logic synthesis.

5.1 Behavioral RTL

Behavioral RTL specifies the operations performed in each
clock cycle without explicitly modeling the units in the
PE’s datapath. Instead, operations in each cycle are de-
scribed at the C level. Therefore, behavioral RTL is close
to the original, sequential C code. Essentially, behavioral
RTL is obtained by scheduling the operations in the C code
into clock cycles.

Depending on the type of PE, different styles are needed
for the implementation models of the PEs at the behavioral
RTL level. For programmable processors, the operations
performed in each clock cycle are defined by the assembly
code compiled for that PE. On the other hand, for custom
hardware PEs the operations in each clock cycle can be
explicitly modeled.

5.1.1 Custom Hardware

Listing 24 shows the behavioral RTL code for the custom
hardware PE in the implementation model of the example.
At the top level, the PE behaviorHW (Listing 24(b)) re-
mains largely unchanged from the communication model
(compare toPE2 in Listing 13(a)). TheHW behavior in-
stantiates the bus adapter and the group of subbehaviors
mapped onto the custom hardware PE, connects them via
variables and interfaces, and executes the subbehaviors in
the sequence determined during scheduling.

However, leaf behaviors and bus adapters in theHW
behavior replaced with refined FSMD models of their
state machine implementation. For example, the behav-
ioral RTL code for a leaf behaviorB3 is outlined in List-
ing 24(a). The code describes the behavior as a finite state
machine with datapath (FSMD) model. The FSMD model

behavior FSMD3(in type1 v1 , IBus i f)
f

void main (void) f
type2 v2 ;

5
/ / S ta te v a r i a b l e
enum f S0 , S1 , S2 , . . . , Sng s t a t e ;
s t a t e = S0 ;

10 / / S ta te machine
while (s t a t e ! = Sn)f

switch (s t a t e)
f

. . .
15

case Si :
v1 += v2 ; / / datapath func .
i f (v1) / / next s t a t e func .

s t a t e = Si +1 ;
20 e lse

s t a t e = Sj ;
break ;

. . .
/ / S u p e r s t a t e :

25 case Sj : / / c a l l bus r e c e i v e FSMD
bus . recv (C2, & v2 , s i z e o f (v2)) ;
s t a t e = Sj +1 ;
break ;

/ / S u p e r s t a t e :
30 case Sj +1 : / / c a l l f3 () FSMD

f3 (v1 , v2 , . . .) ;
s t a t e = Sj +2 ;
break ;

. . .
35 g

/ / Clock per iod delay
wai t fo r (HW CLOCK PERIOD) ;

g
40 g

g ;

(a) FSMD leaf behavior.

behavior HW(in b i t [15 : 0] A,
inout b i t [31 : 0] D,
I S i g n a l MCS,
I S i g n a l nRD,

5 I S i g n a l nWR,
OSignal ready)

f
/ / Bus i n t e r f a c e log ic FSMD
HWBus bus (A, D, MCS, nRD, nWR, ready) ;

10
type1 v1 ;

/ / FSMD models of l e a f behav io r s
FSMD13Rcv b13rcv (bus , v1) ;

15 FSMD3 b3 (v1 , bus) ;
FSMD34Snd b34snd (bus) ;

void main (void) f
b13rcv . main () ;

20 b3 . main () ;
b34snd . main () ;

g
g ;

(b) PE behavior.

Listing 24: Custom hardware behavioral RTL model.

31

S0

S1

S2

S3

S4

S5

�

MCS != 1

Data = D

A != Addr

nWR != 0

�

MCS != 0

S0

S3

�

size > 0

�

S2

ready = 1
addr = …
p = data

*p = Data
p++
size -= 2

S1

ready = 0

Figure 18: Custom hardware bus interface FSMD.

is the result of schedulingB3’s operations into clock cycles
and converting the code into states and transitions.

The state machine is modeled by astatevariable and
a switch-case statement inside a loop. The state ma-
chine starts at stateS0 and runs until the end stateSn is
reached. Each case represents a state and specifies the op-
erations and transitions executed in that state. Each state
in turn corresponds to one clock cycle. The timing and de-
lay of the PE clock is modeled by inserting awaitfor()
statement which describes the state delay based on the PE’s
clock period.

The statements in each state are taken from the origi-
nal C code of the leaf behavior and represent the datapath
operations (register transfers) performed in the correspond-
ing clock cycle. The original control flow in the C code is
transformed into state transitions in the FSMD model. In
each state, the next state is determined, possibly condition-
ally as in the case of stateSi , by assigning a new value to
the state variablestate. Variables inside behaviors model
the local storage of the component. Depending on the type
of storage a variable will be bound to, variable accesses
represent reads or writes of the corresponding register file,
memory, ROM, etc.

In general, FSMDs can be hierarchical. Superstates are
modeled by including function or method calls in a state
as shown in statesSj (bus adapter method call) andSj+1

(regular function call). While being in a superstate, the
FSMD of the callee is executed. Upon entering a hierar-
chical state, control is transfered to the first state of the
sub-FSMD. Control returns to the parent superstate when
the end state of the sub-FSMD is reached. For example, the
stateSj is a superstate which calls the bus adapter’srecv()
FSMD to transfer a message over the bus.

Similar to the computation in the leaf behaviors, the bus
adapter functionality is scheduled into clock cycles and de-

channel HWprotocol (in b i t [15 : 0] A,
inout b i t [23 : 0] D,
I S i g n a l MCS,
I S i g n a l nRD,

5 I S i g n a l nWR)
implements I P r o t o c o l

f
/ / Bus s lave read (answer to bus wr i te)
b i t [23 : 0] read (b i t [15 : 0] addr)

10 f
b i t [23 : 0] data ;

/ / S ta te v a r i a b l e
enumf S0 , S1 , S2 , S3 , S4 , S5 , S6g s t a t e ;

15 s t a t e = S0 ;

/ / S ta te machine
while (s t a t e ! = S6)
f

20 switch (s t a t e)
f

case S0 : / / sample MCS
i f (MCS. val () = = 1) s t a t e = S1 ;
break ;

25
case S1 : / / sample address

s t a t e = S2 ;
i f (A ! = addr) s t a t e = S0 ;
break ;

30
case S2 : / / wait s t a t e

s t a t e = S3 ;
break ;

35 case S3 : / / sample nWR
s t a t e = S4 ;
i f (nWR. val () ! = 0) s t a t e = S0 ;
break ;

40 case S4 : / / sample data
data = d ;
s t a t e = S5 ;
break ;

45 case S5 : / / sample MCS
i f (MCS. val () = = 0) s t a t e = S6 ;
break ;

g

50 / / S ta te delay = c lock per iod
wai t fo r (HW CLOCK PERIOD) ;

g

return data ;
55 g

/ / Bus s lave wr i te (answer to bus read)
void wr i te (b i t [15 : 0] addr , b i t [23 : 0] data)
f

60 / / Omit ted . . .
. . .

g
g ;

(a) Protocol layer.

Listing 25: Custom hardware bus interface FSMD.

32

channel HWBus(in b i t [15 : 0] A,
inout b i t [31 : 0] D,
I S i g n a l MCS,
I S i g n a l nRD,

5 I S i g n a l nWR,
OSignal ready)

implements IBus
f

/ / P ro toco l l aye r FSMD
10 HWProtocol p r o t o c o l (A, D, MCS, nRD, nWR) ;

/ / Receive message FSMD
void recv (addr a , void � data , in t s ize)
f

15 b i t [16] Addr ;
short � p ;

/ / S ta te v a r i a b l e
enum f S0 , S1 , S2 , S3 , S4g s t a t e ;

20 s t a t e = S0 ;

/ / S ta te machine
while (s t a t e ! = S4)
f

25 switch (s t a t e)
f

/ / d e f a u l t next s t a t e
s t a t e ++;

30 case S0 :
ready . ass ign (1) ; / / a s s e r t ready
switch (a) f / / load addr reg .

case CB13:
Addr = 0x8005 ; break ;

35 case C2:
Addr = 0x8020 ; break ;

g
p = data ; / / i n i t loop
break ;

40
case S1 : / / r e c e i v e data i tem

Data = p r o t o c o l . recv (Addr) ;
break ;

45 case S2 :
� p ++ = Data ; / / w r i te in to mem.
i f ((s i ze �= 2) > 0) s t a t e = S1 ;
break ; / / loop c o n d i t i o n

50 case S3 :
ready . ass ign (0) ; / / d e a s s e r t ready
break ;

g

55 / / S ta te delay
wai t fo r (HW CLOCK PERIOD) ;

g
g

60 / / Send message FSMD
void send (addr a , void � data , in t s ize)
f

/ / Omit ted
. . .

65 g
g ;

(b) Application layer.

Listing 25 (continued): Custom hardware bus interface
FSMD.

scribed as an FSMD model. Listing 25 shows the behavior
RTL code of the FSMD models for application and proto-
col layer of theHW bus interface. The model for the appli-
cation layer (Listing 25(b) is similar to the FSMD model of
the leaf behaviors model shown above. Each method of the
application layer is implemented as a FSMD by scheduling
operations into states and transitions. The protocol layer,
on the other hand, is a simple FSM driving and sampling
the output and input wires of the bus, respectively. The pro-
tocol FSM sits directly at the ports of the PEs and imple-
ments the bus protocol in terms of the PE’s internal clock.

5.1.2 Programmable Processors

In contrast to custom hardware, the behavioral RTL model
of programmable processors is based on the execution of
assembly output generated by compiling the communica-
tion model PE behavior code. Therefore, the behavioral
RTL model for programmable components implements an
instruction set simulation (ISS) of the assembly code.

Assembly code is generated from the communication
model by transforming the behavior hierarchy into a cor-
responding C function call hierarchy and compiling the
resulting C program for the target processor. The C pro-
gram is then linked against a custom or standard operating
system kernel which implements dynamic scheduling, syn-
chronization, communication, and so on.

Bus drivers including interrupt handlers, etc. are gener-
ated from the application and protocol layers of the bus
adapters. In general, a programmable processor can be
connected to the system bus through its builtin bus inter-
face or via a set of general-purpose ports. In the former
case, the protocol layer is usually implemented in hard-
ware as part of the processor’s microarchitecture. In those
cases, the instruction-set architecture of the processor will
provide special instructions for bus transfers and usually
each protocol layer method directly translates into a single
assembly instruction. In the latter case, the protocol layer
is implemented in assembly code as a sequence of I/O in-
structions.

In both cases, application layers are translated into as-
sembly routines that call the protocol layer routines. The
mapping of bus wires to processor ports will also determine
the implementation of synchronization in the application
layer. Depending on whether a synchronization input is
connected to an interrupt line or a general purpose input
port, an interrupt-driven or polling-based scheme is imple-
mented. In the former case, interrupt handlers that commu-
nicate with the application layer routines are generated. All
together, interrupt handlers and application/protocol layer
routines become the bus drivers of the operating system
kernel that is linked to the compiled C program in order to
get the final executable.

33

/ / ISS C/ C++ i n t e r f a c e
inc lude ” i s s . h”

/ / I n s t r u c t i o n Set S imu la to r (ISS) for DSP
5 behavior DSP(out b i t [15 : 0] A,

inout b i t [23 : 0] D,
OSignal MCS,
OSignal nRD,
OSignal nWR,

10 I S i g n a l intC)
f

/ / DSP bus i n t e r f a c e model
PE1Protoco l i f (A, D, MCS, nRD , nWR) ;

15 void main (void)
f

/ / i n i t i a l i z e ISS , load program
i s s . s t a r t u p () ;
i s s . load (” a . out ”) ;

20
/ / run s i m u l a t i o n
for (; ;)
f

/ / d r i ve ISS inpu t
25 i s s . intC = intC . va l () ;

/ / run DSP cyc le
i s s . exec () ;

30 / / MOVEM i n s t r u c t i o n ?
i f (i s s . IR == MOVEMRD) f

/ / S imu la te e x t e r n a l bus read cyc le
i s s . DR = i f . read (i s s . AR) ;

g
35 e lse i f (i s s . IR == MOVEMWR) f

/ / S imu la te e x t e r n a l bus wr i te cyc le
i f . w r i te (i s s . AR, i s s . DR) ;

g
e lse f

40 / / S imu la te DSP clock per iod
wai t fo r (DSPCLOCK PERIOD) ;

g
g

g
45 g ;

Listing 26: DSP instruction set simulator (ISS) model.

Different levels of instruction set simulation of the exe-
cutable are possible. In a compiled instruction set simula-
tion, each assembly instruction is translated into a set of C
statements that perform updates of a simulated processor
state cycle by cycle [7]. This C code is then wrapped into
a behavior and plugged into the implementation model as
PE behavior for the processor.

On the other hand, for interpreted instruction set simu-
lation, the behavioral RTL model of the programmable PE
consists of a program that reads and interprets the instruc-
tion stream. Any instruction-set simulator (ISS) that sup-
ports a C-based API can be hooked into the SpecC model.
As shown in Listing 26, the external ISS is wrapped into a
SpecC behavior that calls the ISS routines via the ISS API
(line 2). The core of the processor behavior is a loop which
simulates one clock cycle per iteration. Theexec()function

fetches and decodes instructions, performs the correspond-
ing operations in each clock cycle, and updates the simu-
lated processor state accordingly.

In both cases of compiled or interpreted simulation, the
simulation model of the processor drives and samples the
ports of the PE behavior based on the instruction stream ex-
ecuted. For each I/O instruction, the PE ports are updated
from the processor state and vice versa. For example, in
the model from Listing 26, the simulatedintC input of the
processor is updated in each cycle by sampling the corre-
sponding input port of the PE behavior (line 25).

Any special bus interface hardware of the processor is
simulated through corresponding bus adapters. For exam-
ple, the model in Listing 26 instantiates thePE1Protocol
bus adapter to simulate the DSP’s bus master interface.
For everyMOVEMinstruction encountered in the instruc-
tion stream, the corresponding method in the bus adapter
is called. The bus adapter simulates the driving and sam-
pling of bus wires in the implementation model as specified
by the timing diagrams of the processor hardware for that
I/O instruction. Note that this is equivalent to the protocol
layer in the bus adapters from the communication model
(see Section 4.2).

5.2 Structural RTL

A structural RTL view of the PEs in the implementation
model accurately reflects the microarchitecture internal to
the system PEs. As a result of the high-level synthesis
process, structural RTL explicitly models the allocation of
RTL components, the scheduling of register transfers into
clock cycles, and the binding of operations, variables and
assignments to functional units, register/memories and PE
busses. The result is an RTL netlist of sequential and com-
binatorial logic inside each PE. Structural RTL is the input
to traditional logic synthesis which in turn will derive a
gate-level netlist from the netlist of units inside each PE.

A structural RTL representation is usually used for cus-
tom hardware PEs which have to be synthesized further.
Since structural RTL represents the hardware microarchi-
tecture of PEs, at this level there is no difference between
models for custom hardware or programmable processors.
In both cases, structural RTL is a netlist of functional
units, busses, memories and registers. However, in case of
predesigned components (IPs, programmable off-the-shelf
processors, memories) the level of detail for further syn-
thesis of the hardware is not needed. A more abstract be-
havioral RTL model is sufficient for effective simulation.

Figure 19 and Listing 27 show the structural RTL view
of the custom hardware PE in the example design. The sys-
tem interface of the component remains unchanged from
the communication model or the behavioral RTL view.

34

State
register

Next-
state
logic

Output
logic

Register
file

Memory

Bus

Bus1

ALU

DatapathController

ROMCtrl DP

MPY

Bus2

Interface

Figure 19: Structural RTL model for custom hardware.

behavior HW(in b i t [15 : 0] A,
inout b i t [23 : 0] D,
I S i g n a l MCS,
I S i g n a l nRD,

5 I S i g n a l nWR,
OSignal ready)

f
/ / Clock s i g n a l
event c lk ;

10
/ / S t a t u s l i n e s
b i t [15 : 0] s t a t u s ;
event s t a t u s ;

15 / / Cont ro l l i n e s
b i t [117 : 0] c t r l ;
event c t r l ;

/ / Clock genera to r
20 ClkGen cg (c lk) ;

/ / Cont ro l
Contro l c t r l (c lk ,

s t a t u s , s t a t u s ,
25 c t r l , c t r l) ;

/ / Datapath
Datapath dp (c lk ,

A, D, MCS, nRD, nWR, ready ,
30 c t r l , c t r l ,

s t a t u s , s t a t u s) ;

/ / P a r a l l e l (s t r u c t u r a l) compos i t i on
void main (void)

35 f
par f

cg . main () ;
c t r l . main () ;
dp . main () ;

40 g
g

g ;

Listing 27: Structural RTL model for custom hardware.

behavior ClockGen (out event c lk)
f

void main (void)
f

5 while (1)
f

wai t fo r (HW CLOCK PERIOD) ;
no t i f y (c lk) ;

g
10 g

g ;

Listing 28: Clock generator.

However, the component itself is now implemented as a
purely structural netlist of subcomponents. Subcompo-
nents are represented by subbehaviors. All subbehaviors
operate in parallel and are connected via busses and/or
wires. Each bus or set of wires is associated with an event
that signals a change of the values on the wires.

At the top level of the custom hardware, the PE is com-
prised of a clock generatorClkGen, a controllerControl,
and a datapathDatapath. Controller and datapath are con-
nected by a set of control and status lines. Both are driven
by the PE’s clock signalclk.

In general, subcomponents themselves can be further de-
composed hierarchically. At each level, however, the same
purely structural netlist of behaviors running concurrently
and being connected through wires is repeated in the struc-
tural RTL view. Therefore, if the hierarchy is flattened all
the leaf behaviors will operate in parallel and communicate
via wires and corresponding events.

Leaf behaviors of the structural RTL hierarchy model
registers and combinatorial logic between registers. Leaf
behaviors are reactive, i.e. they are continuously reacting
to events on their inputs and create events at their outputs
in turn. Structural RTL models hardware as a reactive sys-
tem with a set of non-terminating processes operating con-
currently [8].

5.2.1 Clock

Register transfers cycles are controlled by the common
clock event. The clock generator shown in Listing 28 gen-
erates the clock by issuing clock events according to the
PE’s local clock frequency. In an endless loop, a clock
event is generated every clock period.

5.2.2 Controller

As shown in Listing 29, the main control unit is hierarchi-
cally decomposed into state register, next-state logic and
output logic. As previously described for the top level of
the PE, subcomponents operate concurrently and are con-
nected through wires and corresponding events.

35

behavior Contro l (in event c lk ,
in b i t [15 : 0] s t a t u s ,
in event s t a t u s ,
out b i t [117 : 0] c t r l ,

5 out event c t r l)
f

b i t [21 : 0] s t a t e , n e x t s t a t e ;
event s t a t e ;

10 / / S ta te r e g i s t e r
StateReg sr (c lk , n e x t s t a t e ,

s t a t e , s t a t e) ;

/ / Output log ic
15 OutputLog ic ol (s t a t e , s t a t e ,

c t r l , c t r l) ;

/ / Next s t a t e log ic
Nex tS ta teL og ic ns l (s t a t e , s t a t e ,

20 s t a t u s , s t a t u s ,
n e x t s t a t e) ;

void main (void) f
par f

25 sr . main () ; o l . main () ; ns l . main () ;
g

g
g ;

Listing 29: Custom hardware controller.

The behavior modeling the state register is shown in
Listing 30. The state register continuously reacts to clock
events. In an endless loop, the state register is updated
with the new value at the input whenever a clock event is
received. The corresponding new value is assigned to the
current state output and an output event signaling a value
change is generated.

The output logic combinatorial block that generates the
control signals from the current state value is shown in
Listing 31. The output logic is a reactive, non-terminating
behavior that is sensitive to changes on the current state
value, i.e. the state register output. Whenever the state
value changes an evaluation cycle of the output logic is
triggered, control values are reevaluated and correspond-
ing control update events generated.

Finally, the next state logic of the controller, shown in
Listing 32, is organized similar to the output logic. It gen-
erates the next state value from the current state register
output and the status output of the datapath. Hence, the
non-terminating next-state logic is sensitive to changes of
either the state value or the status inputs, and an evaluation
cycle is triggered whenever a state or status update event is
received.

5.2.3 Datapath

The main datapath of the example design is shown in List-
ing 33. At the top level, the datapath is hierarchically com-

behavior StateReg (in event c lk ,
in b i t [21 : 0] next ,
out b i t [21 : 0] cur ,
out event cur) f

5 b i t [21 : 0] s t a t e ;

void main (void) f
while (1) f

wait (c lk) ;
10 s t a t e = next ;

cur = s t a t e ;
no t i f y (cur) ;

g
g

15 g ;

Listing 30: State register.

behavior OutputLog ic (in b i t [21 : 0] s t a t e ,
in event s t a t e ,
out b i t [117 : 0] c t r l ,
out event c t r l) f

5 void main (void) f
while (1) f

wait (s t a t e) ; / / s e n s i t i v i t y
switch (s t a t e) f

. . .
10 case Si :

c t r l = ” 000 . . . 10b ” ;
break ;

. . .
case Sj : / / send recv () s t a r t s i g n a l

15 c t r l = ” 100 . . . 00b ” ;
break ;

. . .
g
no t i f y (c t r l) ;

20 g
g

g ;

Listing 31: Output logic.

behavior Nex tS ta teL og ic (in b i t [21 : 0] s t a t e ,
in event s t a t e ,
in b i t [15 : 0] s t a t u s ,
in event s t a t u s ,

5 out b i t [21 : 0] next) f
void main (void) f

while (1) f
wait (s t a t e , s t a t u s) ; / / s e n s i t i v i t y
switch (s t a t e) f

10 . . .
case Si :

next = Si +1 ;
i f (! s t a t u s [7]) next = Sj ;
break ;

15 . . .
case Sj : / / wait fo r recv () done

i f (s t a t u s [15]) next = Sj +1 ;
break ;

. . .
20 g

g
g

g ;

Listing 32: Next state logic.

36

posed as a structural netlist of the different datapath com-
ponents connected through internal busses. The example
shown here is a typical datapath with RAM, ROM, register
file, functional units, and three busses. The datapath’s sub-
components are then in turn modeled following standard
structural RTL design guidelines as outlined in the previ-
ous sections of this report. In general, sub-components are
register/storage units driven by the clock event, combina-
torial logic blocks sensitive to input changes or a hierarchi-
cally composition thereof.

The datapath contains a bus interface moduleIF. The
bus interface module is itself an FSMD (see Section 5.2.4)
that implements message-passing communication over the
PE bus. It connects to the PE’s bus ports and communi-
cates with the main controller through parts of the control
and status vectors. In addition, the bus interface FSMD can
exchange data with the memory via the data bus. For this
purpose, the bus interface can directly control the mem-
ory via theifctrl lines connected to the memory’s control
inputs.

5.2.4 Bus Interface

The bus interface unit implements the protocol and appli-
cation layers of the bus communication. It drives the bus
wires and executes the correct protocol timing to transfer
data words over the bus.

Listing 34 shows the top level of the bus interface. The
bus interface is a separate FSMD that communicates with
the main state machine through a set of control wires and a
common internal data bus. Similar to the top level FSMD
for the custom hardware PE, the bus interface module is de-
composed into a controller and a datapath communicating
via control and status lines. Incomingstart control signals
trigger execution of the bus interface state machine and de-
termine what kind of bus transfer to perform (i.e. message
send or message receive). Upon finishing the transfer, the
bus interface sends adonestatus signal to the main con-
troller. Data items are exchanged between the bus inter-
face and the main datapath through the data bus and a set
of memctrllines that allow the bus interface FSMD to act
as a DMA controller for the PE’s memory.

The bus interface controller is shown in Listing 35. In
this example, the state register, output logic and next-state
logic are merged into one combined model. In each clock
cycle, as dictated by the sensitivity to the clock event, the
non-terminating behavior assigns new values to its outputs
and updates the internal state value depending on the cur-
rent state and the inputs.

The bus interface state machine implements the proto-
cols for sending and receiving messages over the bus wires
in one single state machine. The cross-product of the send
and receive state machines is optimized to minimize the

behavior Datapath (in event c lk ,
in b i t [15 : 0] A,
inout b i t [23 : 0] D,
I S i g n a l MCS,

5 I S i g n a l nRD,
I S i g n a l nWR,
OSignal ready ,
in b i t [117 : 0] c t r l ,
in event c t r l ,

10 out b i t [15 : 0] s t a t u s ,
out event s t a t u s)

f
b i t [1 : 0] i f c t r l ;
event i f c t r l ;

15
b i t [31 : 0] bus , bus1 , bus2 ;
event bus , bus1 , bus2 ;

IF i f (c lk ,
20 A, D, MCS, nRD , nWR, ready ,

c t r l [117 : 116] , c t r l ,
bus , bus ,
i f c t r l , i f c t r l ,
s t a t u s [15] , s t a t u s) ;

25
ROM rom (c lk , c t r l [115 : 94] ,

bus , bus) ;

Mem mem(clk , c t r l [93 : 61] @ i f c t r l [1 : 0] ,
30 bus , bus) ;

RF r f (c lk , c t r l [60 : 30] ,
bus , bus ,
bus1 , bus1 ,

35 bus2 , bus2) ;

ALU alu (c t r l [29 : 15] , c t r l ,
bus , bus ,
bus1 , bus1 ,

40 bus2 , bus2 ,
s t a t u s [14 : 8] , s t a t u s) ;

MPY mpy (c t r l [14 : 0] , c t r l ,
bus , bus ,

45 bus1 , bus1 ,
bus2 , bus2 ,
s t a t u s [7 : 0] , s t a t u s) ;

void main (void) f
50 par f

i f . main () ;
rom . main () ;
mem. main () ;
r f . main () ;

55 alu . main () ;
mpy . main () ;

g
g

g ;
60

Listing 33: Custom hardware datapath.

37

behavior IF (in event c lk ,
in b i t [15 : 0] A,
inout b i t [23 : 0] D,
I S i g n a l MCS,

5 I S i g n a l nRD,
I S i g n a l nWR,
OSignal ready ,
in b i t [1 : 0] s t a r t ,
in event s t a r t ,

10 inout b i t [31 : 0] bus ,
inout event bus ,
out b i t [1 : 0] memctrl ,
out event memctr l ,
out b i t done ,

15 out event done)
f

/ / Cont ro l l i n e s
b i t [3 : 0] c t r l ;
event c t r l ;

20
/ / S t a t u s l i n e s
b i t s t a t u s ;
event s t a t u s ;

25 / / C o n t r o l l e r
I F C t r l c t r l (c lk ,

MCS, nRD, nWR, ready ,
inp [1 : 0] , s t a r t ,
s t a t u s , s t a t u s ,

30 c t r l , c t r l ,
memctrl , memctr l ,
done , done) ;

/ / Datapath (addr . & data reg .)
35 IFDP dp (c lk ,

A, D,
c t r l , c t r l ,
bus , bus ,
s t a t u s , s t a t u s) ;

40
/ / P a r a l l e l compos i t i on
void main (void)
f

par f
45 c t r l . main () ;

dp . main () ;
g

g
g ;

50

Listing 34: Bus interface hardware unit.

behavior I F C t r l (in event c lk ,
I S i g n a l MCS, I S i g n a l nRD,
I S i g n a l nWR, OSignal ready ,
in b i t [1 : 0] s t a r t ,

5 in event s t a r t ,
in b i t s t a t u s ,
in event s t a t u s ,
out b i t [3 : 0] c t r l ,
out event c t r l ,

10 out b i t [1 : 0] memctrl ,
out event memctr l ,
out b i t done ,
out event done)

f
15 b i t [3 : 0] s t a t e = 0 ;

void main (void) f
while (1) f

wait (c lk) ; / / s e n s i t i v i t y
20

done = 0 ; / / d e f a u l t s
s t a t e ++;
c t r l = ” 0000b ” ;
memctrl = ” 00b ” ;

25
switch (s t a t e) f

case 0 : / / wait fo r s t a r t
i f (s t a r t [0]) s t a t e = 1 ;
break ;

30 case 1 :
ready . ass ign (1) ; / / a s s e r t ready
break ;

case 2 : / / wait fo r MCS
i f (MCS. val () ! = 1) s t a t e = 2 ;

35 break ;
case 3 :

c t r l [0] = 1 ; / / sample A
break ;

case 4 : / / address match ?
40 i f (! s t a t u s [0]) s t a t e = 2 ;

i f (s t a r t [1]) s t a t e = 9 ;
break ;

case 5 : / / check nWR
i f (nWR. val () ! = 0) s t a t e = 2 ;

45 break ;
case 6 :

c t r l [1] = 1 ; / / sample D
break ;

case 7 : / / wait fo r MCS
50 i f (MCS. val () = = 1) s t a t e = 7 ;

break ;
case 8 :

memctrl [0] = 1 ; / / data �> mem
c t r l [3 : 2] = ” 11b ” ; / / dec , check count

55 s t a t e = 15 ;
i f (s t a t u s [1]) s t a t e = 2 ;
break ;

. . .
case 15 :

60 ready . ass ign (0) ; / / d e a s s e r t ready
done = 1 ; / / t r a n s f e r done
s t a t e = 0 ; / / back to s t a r t
break ;

g
65 no t i f y (done , c t r l , memctr l) ;

g
g

g ;

Listing 35: Bus interface controller.

38

state space. The common state machine is triggered by an
externalstart signal. After synchronization and address
decoding, the transitions branch into the send or receive
protocol depending on the corresponding control inputs.
Both branches are joined at the end of the bus cycle and
an externaldone signal is asserted.

The accompanying datapath (not shown) contains regis-
ters that connect to the external address and data busses.
Driven by the controller output, the address and data reg-
isters are used to drive and sample the external busses.
In addition, the data register connects to the PE’s internal
data bus in order to exchange data with the local memory.
Finally, the bus interface datapath includes counters and
comparators for loop control and address decoding.

5.3 Summary

At the top level, the implementation model is equivalent to
the communication model (see Section 4.7). The system
is a set of concurrent, non-terminating PEs communicat-
ing via busses and wires. Internally, on the other hand,
PEs represented by the PE behaviors, are further refined
and turned into a model of the PE’s microarchitectures.
The minimal requirement for the PEs in the communica-
tion model is that they provide a cycle-accurate description
of events on their ports through a behavioral microarchitec-
ture model. Alternatively, more detailed PE models can be
used in the communication model, e.g completely struc-
tural RTL descriptions.

PE behaviors are interchangeable between communi-
cation and implementation model. This allows mixed-
level simulations in which a cycle-accurate PE behavior is
plugged into an otherwise bus-functional simulation of the
design and vice versa. Therefore, different parts of the sys-
tem can be simulation at different levels of detail, allowing
to quickly validate isolated PE’s, for example.

In summary, the implementation model is a cycle-
accurate model of the system implementation of both, the
communication between the PEs and the microarchitecture
inside the PEs. In contrast to the bus-functional commu-
nication model, the computation inside the PEs is refined
down to the register-transfer level. As a result of high-level
synthesis of custom hardware and compilation of software
for programmable components, the implementation model
is the basis for further refinement down to the gate level
through logic synthesis or instantiation of hard IP cores.

6 Summary and Conclusions

In this report, we presented and defined the four models
of system design which are part of a system-level design
methodology from specification down to implementation.

The models vertically cover different levels of abstraction,
gradually increasing the level of implementation detail as
the design flow progresses from top to bottom.

The division of the design flow into four models sup-
ports rapid design space exploration by focusing on criti-
cal decisions at early stages and providing quick feedback.
Unnecessary details are abstracted away at higher levels
while important aspects are immediately visible. For ex-
ample, for validation through simulation high-level models
achieve fast simulation speeds while still providing feed-
back about the crucial aspects at each stage of the de-
sign process. Furthermore, model refinement requires only
minimal modifications, allowing to leave large parts of the
design untouched when exploring different implementa-
tions or moving between levels.

Having well-defined, formal models at each step of the
design process is the basis for automated synthesis and
refinement between the models. With the help of tools,
lower-level models can be automatically generated from
the model at the next higher level of abstraction based on
a corresponding set of refinement rules and transforma-
tions. In addition, formal verification can be applied to
check properties of the models or to verify equivalence of
models at different levels. Therefore, the definition of the
models enables fast system-level design exploration paired
with a synthesis-based design flow.

References

[1] D. D. Gajski, R. Kuhn. “Guest editors introduction -
New VLSI tools.” IEEE Computer, pp. 11-14, 1983.

[2] D. D. Gajski et al.SpecC: Specification Language
and Design Methodology. Kluwer Academic Publish-
ers, 2000.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest.Intro-
duction to Algorithms. McGraw-Hill, 1992.

[4] Motorola, Inc., Semiconductor Products Sector, DSP
Division. DSP56600 16-bit Digital Signal Processor
Family Manual, DSP56600FM/AD, 1996.

[5] A. Gerstlauer, D. D. Gajski.Communication Soft-
ware Code Generation. Technical Report ICS-TR-
00-46, University of California, Irvine, August 2000.

[6] H. Lehr, D. D. Gajski.Modeling Custom Hardware in
VHDL. Technical Report ICS-TR-99-29, University
of California, Irvine, July 1999.

[7] J. Zhu, D. D. Gajski. “A Retargatable, Ultra-fast In-
struction Set Simulator.” InProceedings Design, Au-
tomation and Test in Europe, 1999.

39

[8] G. Berry, G. Gonthier, “The Esterel Synchronous
Programming Language: Design, Semantics, Im-
plementation.”Science of Computer Programming,
vol. 19, no. 2, 1992.

40

