

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

Acceleration Framework for FPGA Implementation of OpenVX Graph
Pipelines

Sajjad Taheri, Jin Heo, Payman Behnam, Alexander Veidenbaum and Alexandru Nicolau

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

sajjadt@uci.edu

CECS Technical Report 18-01
Feb 25, 2018

Acceleration Framework for FPGA Implementation of OpenVX Graph Pipelines

Sajjad Taheri, Alexander Veidenbaum, Alexandru Nicolau
Department of Computer Science
University of California, Irvine

Irvine, CA
{sajjadt, alexv, anicolau}@uci.edu

Jin Heo
College of Information and

Computer Engineering
Ajou University
Suwon, Korea

jin993@ajou.ac.kr

Payman Behnam
School of computing
University of Utah
Salt Lake City, UT

payman.behnam@cs.utah.edu

Abstract—Computer vision processing is computationally

expensive and several acceleration solutions have been pro-

posed. Among them, FPGAs offer a promising direction.

Vision application are typically written in languages such as

C/C++ and they are often difficult to compile into an efficient

FPGA implementation. OpenVX is a set of basic, widely used

vision kernels. Vision pipelines can be defined as graphs of

such kernels, all in C++. Accelerator vendors may support

OpenVX kernel implementations, as in nVidia’s VisionWorks.

This work presents a framework for synthesizing an OpenVX

graph-level specification of a vision pipeline into an optimized

FPGA implementation using high level synthesis. Three vision

pipelines are developed using the framework. Preliminary

results show that their performance is higher than either a

multi-core CPU or an OpenCL-based FPGA implementation.

The proposed framework extracts sub-graphs and compile

them into FPGA pipelines, which is the main reason for the

performance and resource usage improvement compared to the

OpenCL implementation.

Keywords-FPGA; Computer Vision; OpenVX;

I. INTRODUCTION

Computer vision algorithms are widely used in fields like
computational photography, medical imaging, autonomous
driving, virtual and augmented reality and astronomy [1].
These applications process a large amount of visual data,
often in real-time, which has high computation, power, and
memory bandwidth requirements. Many vision algorithms
have been or can be specified as computational pipelines
with massive data parallelism [2]. Prior work has proposed
providing a framework for image processing pipelines to
deal with these problems and take advantage of intrinsic
parallelism: PolyMage [2] and Halide [3] on GPUs, [4] and
Rigel [5] on FPGAs. Many of these frameworks provide a
Domain Specific Language (DSL) that can be translated into
specific architecture by modifying compiler, scheduling and
binding phases during high level synthesis.

These frameworks may require manual optimization to ex-
ploit locality and parallelism, which requires a lot of exper-
tise [6]. In addition, popular libraries, such as OpenCV[1],
only provide efficient software implementations for a limited
set of specific architectures. Besides, the user is expected
to know at least one programming language to describe

the application in the high level. For example, Halide can
be used to generate image processing pipelines from a
custom DSL. It is however limited to single rate kernels and
cannot support more advanced kernels. In addition, it leaves
finding the proper schedule which needs a lot of time, effort
and expertise from the user. PolyMage uses a polyhedral
compiler to optimize computer vision DSL applications
using tiling, kernel fusion and memory allocation targeting
parallel processors, but the generated code is not optimized
for FPGAs.

OpenVX [7] is an open standard for cross platform
acceleration of computer vision applications. It was created
to address the challenge of implementing efficient, portable
and easy to use vision processing algorithms by separating
application specification and implantation. It offers a set of
basic, widely used vision kernels that accelerator vendors
are supposed to provide. One can implement an application
by simply connecting OpenVX kernels in a directed acyclic
graph as shown in Fig.2.

This paper presents a framework for turning a high-level
OpenVX specification into an efficient FPGA implemen-
tation. It contains novel optimizations and is divided into
Verification, Analysis, and Acceleration phases shown in
Fig.1. It is described in more detail next.

II. FPGA ACCELERATION FRAMEWORK

Table I lists all OpenVX 1.11 vision kernels categorized
by their pixel access patterns. In addition, OpenVX allows
the definition of user kernels. This classification allows one
to define a specific approach for each class.

Fig.1 depicts the proposed framework for FPGA im-
plementation of OpenVX-based graph pipelines. A user
provides an application graph using OpenVX kernels as
nodes. The framework has three main phases: Verification,
Analysis and Acceleration.

A. Verification
OpenVX requires checking whether an input graph is

valid. For instance, OpenVX forbids cycles in a graph and

1OpenVX 1.2 was released last year when this work was already in
progress.

Cateogry Pixel Access Pattern VX Kernels
Point-wise f(x,y) = g(x,y) thresholding, absdiff, accumulate, accsq, accw, add, pixel-wise-mul,

bitwise, channel-combine, channel-extract, color-convert, convert-bit-
depth, phase, magnitude, table lookup

Fixed-rate Stencil f(x, y) =
P

i=k

i=�k

P
j=k

j=�k
g(x+ i, y + j) box filter, sobel, non-max suprema, conv, erode, dilate, gaussian blur,

non-linear-filter, integral, median-filter

Multi-rate Stencil f(x, y) =
P

i=k

i=�k

P
j=k

j=�k
g(Nx+ i, Ny + j) down-sample, scale-image

Statistical F =
P

i=Width

i=0

P
j=Height

j=0
g(i, j) histogram, mean, standard-dev

Geometric f(x, y) = g(h(x, y), h0(x, y)) remap, warp-affine, warp-perspective
Non-primitive N/A equalize-histogram, fast-corners, harris-corners, gaussian-image-

pyramid, laplacian-image-pyramid, optical-flow-pyramids

Table I: OpenVX 1.1 Kernel Categorization and Definition

Input OpenVX
Graph

Verification

LoweringKernels Info

Primitive Graph

Pipeline
PartitioningSystem Info

User Constraints

AccelerationKernel templates

FPGA bitcode Host executable

Verification

Analysis

Acceleration

Figure 1: FPGA Acceleration framework for OpenVX

RGB Image

Color Convert

RGB Image

Color Convert Color Convert Color Convert

YUV Image

Channel Extract

Y U V

Equalize Histogram

Virt Image

Channel Combine

YUV Image

Channel Convert

RGB Image

Y U V

Histogram

Equalize

Virt Image

Channel Combine

YUV Image

Channel Convert

RGB Image

a) b)

Figure 2: AutomaticContrast Graph: a) user graph b) prim-
itive graph and its partitioning

enforces valid parameters used for kernels and images.

B. Analysis

A verified graph is lowered by replacing non-primitive
kernels (if any) with simpler kernels. The framework looks
for sub-graphs in the input graph to be off-loaded on an
FPGA. It might not be possible to have a complex kernel

in a pipeline, so graph partitioning is used. For example,
the ’EqulizeHistogram’ kernel in the figure is a complex
kernel. It consists of Histogram followed by Equalize over
full image. One cannot start Equalize until Histogram is
calculated for the whole image. The graph is therefore cut
into two sub-graphs, which form two pipelines that are
invoked on the FPGA sequentially. As Figure 2 shows,
’EqualizeHistogram’ kernel is lowered into two separate
Histogram and Equalize kernels.

Pipelines are formed for graphs consisting of point-wise
and both fixed-rate and multi-rate stencil kernels. Statistical
kernels can be part of pipelines, but they must not be
followed by any other kernel. The Pipeline Partitioning mod-
ule divides the Primitive Graph into sub-graphs. Generated
pipelines can operate on image tiles (sub images) and can
be replicated work on different tiles simultaneously. Mul-
tiple sub-graph cuts may share kernels and the framework
attempts to reuse them and reduce FPGA resource usage. For
instance, in the Auto-contrast example, DSPs that are used
in two color conversion kernels (i.e. rgb2yuv and yuv2rgb)
to perform floating point arithmetic are shared. The kernels
are implemented on FPGA with support of buffering hand
shake, which is helpful for Multi-rate Stencil kernels.

C. Acceleration

Parameterized C++ functions to model OpenVX kernel
architectures were developed which are verbose enough
to guide HLS tools to generate efficient FPGA hardware.
Figure 3 shows a template architecture that is flexible enough
to represent different types of OpenVX kernels. For example,
input data type, buffer sizes and types, degree of parallelism
in computation and memory access can be adjusted at the
source level. Based on the Pipeline Partitioning step, the
kernel templates are specialized with appropriate values.
These are then fed into Intel i++ HLS tool to generate QSys
IP components. QSys IP components are implemented in
Verilog and use Avalon bus interfaces to connect to on-
chip memories, DMAs and other kernels. TCL scripting is
used to form the final design by combining the generated
vision kernels and the rest of the system. The final design is

synthesized using Intel Quartus software. Acceleration step
will start by taking tge best possible pipline partitioning from
Analysis step. If the synthesis fails, it comes back to Pipline
Partitioning step to take another possible partitioning of the
graph.

The resulting accelerator architecture incorporates a stan-
dard PCI interface to the host, main memory interface,
on chip buffers, DMAs, a central controller unit, and a
synthesized OpenVX graph based on data streaming.

It is worth mentioning the i++ compiler, as a one of the
latest and strongest compilers, offers numerous options to
precisely describe the hardware in C++. For instance, it
allows one to take advantage of native FPGA DSP blocks
and embedded RAMs by using predefined pragmas. In
addition, usage of on-chip memory resources with required
attributes (e.g. number of banks and ports) can be enforced.
please note that that our approach can be adopted to support
other modern HLS tools.

In the proposed framework, time-space trade-offs are
possible by adjusting the parallelism level. We consider
several levels of parallelism

• Pixel-wise: FPGA resources are consumed to perform
concurrent operations on super pixels (i.e. groups of
adjacent pixels). This is implemented by having kernels
that have wider input and output ports which are
processed simultaneously. The level of parallelization
is decided at compile time during C++ code generation
and can no longer be adjusted at run time.

• Tile-wise: Many image processing operations allow
partitioning of an input image into smaller, independent
tiles that can be processed independently in parallel.
Note that, some kernels, such as those from stencil
category need the tile boundary pixels to precisely
compute results. This incurs extra computations to the
system. However, it is negligible in comparison to the
gain obtained from Tile-wise parallelism.

• Graph-wise: parallelism can be extended beyond a
kernel by considering a graph of kernels. Multiple
instances of kernels withing graph (or the whole graph)
can be executed in parallel. For example, multiple
instances of kernels may process independent images.
The Tile-wise and Graph-wise parallelism is applied
after generation of Verilog code for kernels. An image
is automatically tiled if tiling is supported by the kernel.
Tile size is provided by the user.

III. EXPERIMENTAL EVALUATION

This section describes the experimental setup used and
presents the results of applying the proposed framework.
Three different approaches to accelerate OpenVX graphs are
implemented and compared: using a multi-core CPU, using
an FPGA and Intel OpenCL flow and using an FPGA and
the proposed framework.

BufferUpstream Compute Engine

Result

Parameters Coefficients

Downstream

Figure 3: Template Kernel Architecture

The CPU is Intel Core i7-4770 processor with 8 logical
threads and the AVX2 instruction set. The FPGA is Intel
Arria10 with 1,150K logic units, 1,500 DSPs connected to
2GB DDR4 local memory and Gen.3 PCIe interface with
8 lanes. The applications formed by OpenVX vision graphs
are AutoContrast, CensusTransform, and SIFT Keypoints.

AutoContrast automatically adjusts the brightness of a
given color image by evenly distributing the brightness.
CensusTransform performs a census transform operation
on magnitude of image gradients and reports the histogram
of output image. SIFT Keypoints searches for interesting
points in multiple scales of the input image which are created
using a Gaussian image pyramid.

The FPGA implementation using Intel OpenCL SDK
does not automatically support pipeline kernels and run
one kernel at a time. They communicate through main
memory. However, kernel loops are unrolled to support
pixel-level parallelism up to 16 levels. Although, direct
kernel communication is available since last year in OpenCL
2.2, e.g. using "pipes", but it requires expertise and a lot of
changes to the algorithm and program source code. It was
not available when this project started. Intel also provides a
non-standard OpenCL extension called "channels" that could
be used to directly connect kernels, but it was not used in
this paper.

Table II shows the characteristic and the performance
of the three applications when they work at the same fre-
quency. The CPU implementation used multi-threading and
SIMD instructions. The FPGA implementations performed
the whole computation on the FPGA, with the CPU host
program just setting up the computation. Overall, the pro-
posed framework produced the hardware that achieves the
highest performance. The speedup of the CPU implementa-
tion ranges from approx. 3.5x to 32x. The speedup over the
OpenCL flow is lower, from approx. 2.3 to 8. Both FPGA
implementations used the same pixel-level parallelism.

Table III shows maximum FPGA frequency and resource
usage for both OpenCL (the left number) and the proposed
framework (the right number) implementations. Compared
to the OpenCL implementation, our framework uses a little
bit more on-chip memory, but it reduces the logic cells and
dsp blocks usage significantly for AutoContrast and Census-
Transform benchmarks. This is mostly due to optimizations
in the Analysis step. They allow the color conversion kernel
to be reused in AutoContrast, while for CensusTransform

Execution Time (ms)
Benchmark # OpenVX Kernels Input Image Size CPU (8 Cores + Vec) OpenCL-FPGA Proposed Framework

AutomaticContrast 5 6592x5120x3 205 143 62
CensusTransform 5 6592x5120x3 192 120 45
SIFTKeypoints 61 6592x5120x1 864 208 25

Table II: Application information and performance results

Benchmark FMax(MHz) Logic(%) BRAM(%) DSP(%)
AutomaticContrast (192, 330) (58, 41) (15, 18) (64, 32)
CensusTransform (135, 335) (31, 18) (12, 16) (40, 20)
SIFTKeypoints (190, 351) (52, 55) (19, 23) (22, 22)

Table III: Resource usage and maximum operational clock
frequency for OpenCL implementation and our framework

they allow removal of color conversion to U and V channels,
which were present in OpenCL implementation. Moreover,
it cam work with much higher frequency.

The main reason for lower performance of OpenCL
implementation is lack of kernel pipelining. In the off-chip
DRAM module on the FPGA board is OpenCL’s device
memory and all the communication between kernels goes
through it. It becomes a major bottleneck as each kernel
reads/writes the image to it. In our proposed framework,
pipelines with multiple concurrent kernels are formed that
communicate through fast on-chip FIFOs. In addition, in our
framework, there is direct communication between design
on the FPGA and a host program. Accordingly, transferred
data are not stored in the DRAM before/after computation,
while the OpenCL implementation stores data in DRAM
before/after computation. SIFTKeypoint has less communi-
cation between the host and the FPGA and the performance
increases significantly.

Larger tile size increases the on-chip memory usage for
stencil kernels as they are implemented using the sliding
window technique. It also increases the latency of each
kernel. On the other hand, the smaller the tile, the more re-
computation is needed to calculate output tile boundaries.
We used a fixed size of a tile, but it could be optimized.

The scalability of the proposed framework can be seen
in Fig. 4. It shows resource usage for different level of
parallelism. The static region of the design, which includes
the PCIe IP, DDR controller, and run-time management con-
sumes 8% of logic resources and 14% of BRAM resources
on the Arria10. The remaining resource utilization grows
linearly with parallelism. However, in some cases it becomes
quite high, e.g. over 50% of the DSPs are used. This is due
to usage of floating point arithmetic in some kernels such
as color conversion which is specified by OpenVX.

IV. FUTURE WORK

The framework does not currently support some of the
OpenVX 1.1 kernels, i.e. geometric, and some of the kernels
of OpenVX 1.2. This will be addressed in the future work.
In addition, some annotations were used as user constraints

20

40

60

D
SP

Auto
Contrast

Census
Transform

SIFT
Keypoints

20

40

60

Lo
gi

c

1 4 8 16

20

40

Pixel level parallelism

B
R

A
M

Figure 4: Arria10 resource usage vs level of pixel parallelism

to guide optimization and system generation (e.g. tile size)
that in the future will be automatically extracted through the
implementation of cost analysis. OpenCL implementation
will be optimized to use pipes. Finally, power consumption
of different implementations will be compared.

V. CONCLUSION

Computer vision processing is intrinsically parallel and
thus ideal for FPGA processing. However, it is difficult
to produce efficient FPGA designs for complex vision
pipelines described at the high level, automatically. This
paper presented a framework to efficiently map OpenVX
vision graphs to FPGA pipelines, which simplifies such
development. Higher performance and less resource usage
were achieved for three non-trivial OpenVX graphs com-
paring with other possible implementations.

REFERENCES

[1] G. Bradski, “The opencv library.” Dr. Dobb’s Journal: Software
Tools for the Professional Programmer, vol. 25, no. 11, pp.
120–123, 2000.

[2] R. T. Mullapudi et al., “Polymage: Automatic optimization
for image processing pipelines,” in ACM SIGPLAN Notices,
vol. 50, no. 4, 2015, pp. 429–443.

[3] R. Kelley et al., “Halide: a language and compiler for op-
timizing parallelism, locality, and recomputation in image
processing pipelines,” ACM SIGPLAN Notices, vol. 48, no. 6,
pp. 519–530, 2013.

[4] P. S. Rawat et al., “Resource conscious reuse-driven tiling for
gpus,” in IEEE International Conference on Parallel Architec-
ture and Compilation Techniques, 2016, pp. 99–111.

[5] J. Hegarty et al., “Rigel: Flexible multi-rate image processing
hardware,” ACM Transactions on Graphics, vol. 35, no. 4,
p. 85, 2016.

[6] F. Grull et al., “Accelerating image analysis for localization
microscopy with fpgas,” in International Conference on Field
Programmable Logic and Applications, 2011, pp. 1–5.

[7] E. Rainey et al., “Addressing system-level optimization with
openvx graphs,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2014,
pp. 644–649.

