
Center for Embedded Computer Systems
University of California, Irvine

__

Message Sequence Charts for Assertion-based Verification

Patricia S. Lee, Ian G. Harris

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{leep, iharris}@uci.edu

CECS Technical Report 13-13
October 30, 2013

Message Sequence Charts for Assertion-based
Verification

Patricia S. Lee and Ian G. Harris

Computer Science
University of California Irvine
Donald Bren Hall, Room 3088

Irvine, USA
Phone: +1 949 824 8842
Fax: +1 949 824 4056

{leep, harris}@ics.uci.edu

Abstract— This paper presents a technique to generate

SystemVerilog assertions directly from high-level specification

constructs of Message Sequence Charts (MSC) to bridge the

productivity gap for current complex designs. Commercial

solutions for automated assertion generation do not currently

exist. We argue that our technique does span across the

hardware/software continuum, allowing it to be applied to both

hardware and software components of embedded designs.

Keywords-assertion; message sequence chart; verification;

simulation; response-checking

I. INTRODUCTION

Design automation tools have matured to a level accepted
and used by academics and industry alike. However, the same
level of maturity does not hold for verification. As the
complexity and density increases for embedded systems, the
need for better, efficient, and automated ways to verify these
systems becomes apparent. Although many of the same
languages are used for both verification and design, the same
structure and logic often does not. This paper focuses on
verification which does not have tools that are as well-done and
well-defined. Verification methodologies such as Open
Verification Methodology (OVM) [11], EVM, and Universal
Verification methodology (UVM) [12] are all good efforts to
bring verification to the level of structure and logic of design;
however, it is difficult to find work on whether this was proven
to be implemented in a way which produced verifiable results.

In industry specifications, timing diagrams are commonly
included in hardware, protocol, and system requirement
specifications. A trend has been to also include higher-level
constructs such as Message Sequence Charts (MSCs) in these
types of specifications [2], [5], [8] and have been successfully
applied in the area of telecommunication systems and the
software domain for many years [10]. A way of verifying the
correctness of designs through low-level assertions derived
from high-level specification constructs such as MSC is one
way of bridging the "productivity gap" [1] between the
system’s design and its complexity.

Our strategy is to apply design automation techniques for
modeling to the system-design process for verification and
automate the creation of assertions from MSCs and those

created from timing diagrams in the specification. In
converting MSCs to assertions for functional property and
sequence verification, we detect specification-derived
translation errors. Although commercial solutions for synthesis
and verification at the system levels do not currently exist [1],
we argue that our technique does span across the
hardware/software continuum.

II. PREVIOUS AND RELATED WORKS

Assertion-based verification has been in practice for almost
two decades in software [17] and just over a decade in
hardware [15]. Several benefits exist for using assertions in the
verification process. A few important benefits are that it is
close to potential bug sources, automatically checks behavior,
forces the documentation of design intent and encourages a
better understanding of the design, and allows for focus on
system-level issues.

Some disadvantages to using assertions are that we cannot
know whether the property is 100% true, the property set may
not be sufficient and complete, and a property might miss
design behavior nuances (corner cases). For this reason, test
stimulus is critical, and simulation can only provide checks that
the test exercise and that coverage metrics reveal.

A. Automated Assertion-based Verification in Software

Previous research [17] provides an approach of automated
test data generation in which assertions are used to generate test
cases. A test is found that uncovers specific test cases on
which an assertion is violated. An empirical study on the
“Inadequate-Assertion” problem in the context of automated
test suites developed for open-source projects has been done on
the test suites of three active open-source projects with a
performance of mutation analysis and coverage analysis for
evaluation [19].

B. Automated Assertion-based Verification in Hardware

Goldmine [6] is a tool that automatically creates assertions
based on simulation traces using machine learning techniques.
The assertion is presented to the user (design/verification
engineer) to determine whether the assertion is a good
candidate to make into the design or whether the test should
include additional cases to put the design in that state via a new

This work was supported by the National ARCS (Achievement Rewards
for College Scientists) Foundation, Inc. under the named Hulings Scholar
Fellowship.

This work was supported by the National ARCS (Achievement Rewards
for College Scientists) Foundation, Inc. under the named Hulings Scholar
Fellowship.

This work was supported by the National ARCS (Achievement Rewards
for College Scientists) Foundation, Inc. under the named Hulings Scholar
Fellowship.

This work was supported by the National ARCS (Achievement Rewards
for College Scientists) Foundation, Inc. under the named Hulings Scholar
Fellowship.

scenario case. The main challenge is in the difficulty in
learning all the sequences over time. Goldmine [6] addresses
this challenge by focusing on one instance of time. We argue
that our technique fills this need for covering sequence over
time and is consequently complementary to the work of
Goldmine. Another work that works with automatic assertion
extraction at the input boundary of a given unit embedded in a
system proposes a data mining approach that analyzes
simulation traces to extract the assertions [20]. Our work is at
a different level of abstraction and is also automated.

Reference [18] presents a methodology that uses the failing
assertion, counterexample and mutation model to produce
alternative properties that are verified against the design and
serve to make possible corrections as they provide insight into
the design behavior and the failing assertion. The results show
that this process is effective in finding high quality alternative
assertions for empirical instances. However, the process is not
yet automated.

III. SYSTEM OVERVIEW

We present a system which generates System Verilog
Assertions (SVAs) [14] that determine a sequence of events,
recognize this sequence, and make an assertion based on the
state of the system. Each assertion checks the state of the
system via the registers to verify its correctness after detecting
a sequence. We apply design automation techniques for
modeling to the system-design process for verification to
automatically generate SVAs from MSCs that are part of the
specification description.

Fig. 1 shows a general overview of the system. The
Specification-based Testbench Generation (SBTG) tool [7]
provides a functional testbench. The testbench applies test
vectors to the device under test (DUT) during simulation. The
response checker uses assertions (SVAs), generated from the
specification using MSCs, to verify the correctness of the
output from the DUT.

Figure 1. MSC2SVA system overview.

IV. MESSAGE SEQUENCE CHARTS

MSCs are in a graphical language that is standardized by
the International Telecommunication Union (ITU). In recent
times, MSCs have also found their way into hardware
specifications due in part to the higher level of abstraction and
description required to describe these increasingly complex
systems [2], [8]. Because MSCs are viable and used in

specifications to illustrate high-level transactions and
communications at the package/transaction levels and because
MSCs are a standard [3], [4], [5] which is supported by
graphical and textual captures of this model, we believe it is an
ideal candidate for automation. Since we are looking at
hardware/software codesign and verification in embedded
systems research, we further bolster our argument for the use of
MSCs.

MSCs have long been used in the software domain and are
trending to be used in the hardware domain. We bridge this
high-level trend with lower-level assertions used in hardware
response checking monitors.

Here we provide an example of an MSC that was derived
from a timing diagram. Fig. 2 shows the Wrapper Serial
Control (WSC) of the IEEE 1500 specification [13] which
describes a test wrapper component consisting of a Wrapper
Bypass (WBY), Wrapper Instruction Register (WIR), and
Wrapper Boundary Register (WBR). The WSC are the main
inputs that control the system. The Wrapper Serial Input (WSI)
and Wrapper Serial Output (WSO) provide the serial interface
to the design.

Figure 2. WSP Timing Digram from the IEEE 1500 Specification..

Fig. 3 is an example of an MSC representing the instruction
BYPASS from the IEEE 1500 specification timing diagram
shown in Fig. 2. In this example, the instruction register (WIR)
contains “00” which represents the BYPASS instruction. From
the timing diagram, we see that as SelectWIR goes high, two
0’s are shifted in from WSI to the WIR as ShiftWR high and
CaptureWR, TransferDR, and UpdateWR are low.

For each component, we create instances of components in
the MSC (blocks at top of Fig. 3) and draw out lifelines with
termination blocks at the bottom of the MSC. The WRCK is
the lowest level of timing granularity and is represented as time
steps l = 0 to 17 in Fig. 3. It determines the assertion clock and

//===
// bypass
//===
module assertion_ip(input wire [7:0] a_ip, b_ip, sum_ip,
 input wire WSI_ip, WSO_ip, WRSTN_ip, ShiftWR_ip,

UpdateWR_ip, CaptureWR_ip, SelectWIR_ip, WRCK_ip,
 input wire [1:0] WBR_OP_IN_ip, WBR_OP_OUT_ip);
//===
// Sequence Layer
//===
sequence bypass_seq;
(SelectWIR_ip&ShiftWR_ip&~CaptureWR_ip&~UpdateWR_ip)##1(~

WSI_ip)##1(~WSI_ip);
endsequence

//===
// Property Specification Layer
//===
property bypass_prop;
@(posedge WRCK_ip)
disable iff(~WRSTN_ip)
 bypass_seq|=>WBR_OP_IN_ip==2'b0;
endproperty

//===
// Assertion Directive Layer
//===
bypass_assert: assert property(bypass_prop)
else
$display("@%0dms bypass assertion failed", $time);
endmodule

bypass
msc {
 arcgradient = 8;
#instances
 a [label="ExternalCtrlTB"] , b [label="WIR"] , c [label="WBR"] , d
[label="CoreLogic"], e [label="ExternalCtrlMon"];
#messages
#wrck 1
#wrck 2
#wrck 3
a=>b
[label="*(SelectWIR_ip&ShiftWR_ip&~CaptureWR_ip&~UpdateWR_ip
)"];
#wrck 4
 a=>b [label="##1"];
#wrck 5
 a=>b [label="*(~WSI_ip)"];
#wrck 6
 a=>b [label="##1"];
#wrck 7
 a=>b [label="*(~WSI_ip)"];
#wrck 11
 |||;
#wrck 10
 a<=b [label="$WBR_OP_IN_ip==2'b0"];
#end
}

is a positive edge from WRCK = 0 to 1 (denoted as
“@(posedge WRCK_ip)” in Fig. 5) and a negative edge from
WRCK = 1 to 0.

Figure 3. Excerpt of MSC of IEEE 1500 Bypass operation.

The MSC is converted into text using a tool called Mscgen
[16] which parses MSC descriptions and produces from the
textual representation of the MSC shown in Fig. 4 from the
graphical MSC shown in Fig. 3.

Figure 4. Textual representation of the MSC of the IEEE 1500 BYPASS
operation.

V. ASSERTIONS

Assertions act as constraints that determine and define legal
and expected behavior when blocks interact with each other.
We concentrate mainly on converting MSCs to concurrent
assertions that are represented as the MSCs are as sequentially.

The layers of a concurrent assertion build from a Boolean
expression to a sequence to a property to the top-most layer of
the abstraction for concurrent assertions which is the assertion
directive layer where a property is associated with a specific
block of code with a clear intention of its instantiation [21].
Figure 5. shows an assertion created using the MSC2SVA tool
we have developed. Comments have been added manually.

Figure 5. Excerpt of assertion generated from MSC of IEEE 1500 BYPASS
operation.

The sequence which puts the WIR into BYPASS mode
begins the sequence layer of the assertion (the antecedent of
our assertion property). This is represented by the signals
SelectWIR_ip and ShiftWR_ip going high while
CaptureWR_ip and UpdateWR_ip go low. After one clock
cycle, the WSI_ip is low, causing the value ‘0’ to be shifted
into the WIR. After another clock cycle, the WSI_ip is low
again, causing another ‘0’ value to be shifted into the WIR.
This brings the wrapper to BYPASS mode with the WIR
containing the value ‘00’ which represents the BYPASS
instruction in the design. The consequent of the assertion is the

check that the appropriate instruction was entered into the WIR
instruction register.

VI. MSC2SVA SYSTEM

The MSC2SVA program compiles input specifications in
the form of MSCs and outputs assertions in the form of System
Verilog. The SVA is completed with a header and footer
added automatically by the program. The binding file to
associate the assertion component block with the design block
is created manually. The binding file and assertion file is also
included manually in the testbench file. The program is
implemented with the SVA generation algorithm presented in
section VII as a Python scripted program.

After the SVA is run with the correct design, it is checked
with the incorrect design to see whether the assertion is
triggered. Several different errors could have triggered the
assertions; however, we elected to stop after the first error
triggered the assertion.

VII. SVA GENERATION ALGORITHM

We address the aspect of managing ordering of events via
the smallest measure of time in the logic design. Time
advances via this clock and are represented as row numbers in
the algorithm.

The input is a set of MSCs, and the output is derived from
the algorithm mentioned in this section under Subsection B.

A. Inputs

The input is a set M of MSCs m[i], where I = number of
elements in M and i = index of element in M, each with the
following:

1) Component instances: A set C of boxes representing

physical/system component instances c[j], where J = number

of elements in C and j = index of element in C. Component

instances represent structural components within the design.

They can send and receive signal messages which may trigger

additional events to occur.

2) Lifeline instances: A set I of dotted vertical lines

representing lifeline instances i[k] where K = number of

elements in I and k = index of element in I. (Note: j = k and J

= K as each lifeline instance corresponds to exactly one

component instance). Lifeline instances designate how long a

component is active in the MSC. The virtical dotted line starts

with a component instant and ends with a terminal character

representing the end of the component’s function life with

respect to the MSC.

3) Signal messages: A set S of horizontally-lined arrows

representing signal messages s[l] with text t[l], where L =

total time progression represented as a total number of rows of

an elements in all S (i.e. the last time tick for all instances

represented in m[i]) and l = index of the row of an element in

S (Note: All rows span across all S). Signal messages are

messages sent via wires or buses from one component to

another. They determine what signals trigger certain events in

time.

4) Terminal characters: A set E of boxes (at the end of

each lifeline instance i[k] in I) representing terminal characters

e[k]. Terminal characters denote the end of the life of the

component’s function with respect to the MSC. The last

terminal character on the far right and associated with the

component on the far right is the terminal character of the

entire MSC life.

5) Lifeline of messagess: A set L of vertical bars

representing the life of the message l[m], where M = number

of elements in L and m = index of element in L. Lifeline of the

messages represent how long the signals in the message

should be either set high or cleared low.

6) Symbols: A set of symbols within the message label

denote whether the message causes an event (i.e. is an

antecedent) or is affected by a previous message or event (i.e.

is a consequent).

a) *: is an antecedent.

b) $: is a consequent.

B. Outputs

The output is a set A of assertions written in System Verilog
and created from each m in M MSC list:

1. for each m[i] in M
2. for each l until L
3. for each i[k] in I
4. if e[L] in i[K], // last terminating block

(e[l]) in last lifeline instance (i[k])
5. then return
6. if not t[l] of i[k], // if there is no text t[l]
7. then increment k
8. if initial * in t[l] of i[k],
9. then start antecedent of assertion ‘if (’

and
10. then add to antecedent of assertion and
11. then increment k
12. if not initial * and * in t[l] of i[k],
13. then add “AND” operation ‘&&’ to

antecedent of assertion and
14. then add to antecedent of assertion and
15. then increment k
16. else if not * in t[l] of i[k], // i.e. end of the

antecedent
17. then end antecedent of assertion ‘)’
18. // do not increment k
19. if $ in t[l] of i[k], // this is current k (for

consequent/checker construction)
20. then consequent checker and
21. then increment k
22.
23. if i[K], // i.e. k = K
24. then increment l and
25. then initialize k
26. then

27. if * in t[l] of i[k],
28. then add time increment ‘#1’ to

antecedent of assertion and
29. then add to antecedent of assertion
30. // end for each i[k] in I loop
31. // end for each l until L loop
32. // end for each m[i] in M loop

This output algorithm was implemented in the Python script
for the MSC2SVA program. For each MSC, the algorithm
starts at the top left corner of the diagram and follows the
horizontal signal messages from left to right until the last signal
message is reached. Then, the next row of messages is
evaluated (moving down one row). Again, the horizontal
messages along the new row are evaluated from left to right
until the last signal message is reached in that row.

These steps are repeated until the last termination character
on the last block is evaluated (farthest right, bottom corner of
the MSC). As each signal message is evaluated, the symbols
“*” and “$” determine whether the signal is part of the
antecedent or consequent of the concurrent assertion sequence
and properties.

VIII. EXPERIMENTAL RESULTS

The results demonstrate that our MSC2SVA technique
generates SVAs that are effective in detecting errors. The
results demonstrate the possible automation of SVA creation
from MSCs and from timing diagrams that can be converted
into MSCs.

We implemented a simple version of the IEEE 1500
wrapper that does not include optional instructions or parallel
instructions. Our IEEE 1500 design has 779 lines of Verilog
code. The SVAs generated for the IEEE 1500 specification
contained 3 assertions each approximately 30 lines. Each SVA
was run first with the correct design and then with the design
containing an error which would trigger the assertion. The
types of errors included mainly bit flipping errors; however, the
errors specified in [7] and [22] could also be utilized.

MSC2SVA is implemented as a Python script which was
executed on a personal computer with Intel® Core™ i5-2450M
CPU @ 2.50 GHz with 4.00 GB of RAM with a 64-bit
Operating system running Windows 7 Home Premium.

The three instructions are as follows:

A. Instruction WS_BYPASS (BYPASS)

The mandatory WS_BYPASS instruction enables the
functional configuration of the wrapper. WS_BYPASS is
selected when no test operation of that core is required and
allows only the WBY to be selected. The WBY provides a
minimum-length serial path between the wrapper’s WSI and
the WSO. This allows more rapid movement of test data to and
from other core wrappers, provided the wrappers are connected
serially [13].

B. Instruction WS_INTEST (INTEST)

One core test instruction that allows the core to be tested
according to a test procedure specified by the core provider or

core user is required. IEEE Std 1500 does not describe how to
test individual cores; this is the responsibility of the core
provider. The core test invoked by the Wx_INTEST instruction
(the x in Wx is a place holder for an S, P, or H to indicate
whether the instruction is serial, parallel, or hybrid) is
completely specified with the CTL provided for the core [13].

C. Instruction WS_EXTEST (EXTEST)

The mandatory WS_EXTEST instruction allows testing of
off-core circuitry and core-to-core interconnections. It allows
circuitry external to the core wrapper, typically the
interconnects and user-defined logic (UDL), to be tested. The
wrapper boundary cells at WFOs are used to apply test stimuli,
while the cells at wrapper input terminals capture test results.
This instruction also allows testing of blocks of UDL between
cores that do not themselves incorporate wrappers [13].

The three instruction assertions performance and memory
measurements are shown in Table 1.

TABLE I. ASSERTION LIST

No.
Assertions

Assertion Name Performance Memory*

1 Instruction WS_BYPASS 0.073s 8MB

2 Instruction WS_INTEST 0.076s 8MB

3 Instruction WS_EXTEST 0.080s 8MB

*Memory includes overhead for Python infrastructure.

The assertions sequenced the selection of each instruction.
A property was created from the sequence, which acted as the
antecedent, and the resulting check of the instruction register,
which acted as the consequent of the assertion property.

An error was injected into the design in order to trigger the
assertion. For each of the instructions, an alternate value was
provided in the WIR. Multiple errors might have triggered the
assertions, but we tested only with one error to trigger each
assertion.

Additional assertions could be made from these wrapper
instructions that verified specific behavior with respect to the
core (device under test for this wrapper). Also, assertions
specific to the operations of the wrapper (namely, shift, update,
transfer, and capture) could be made and evaluated using this
method.

IX. CONCLUSION

In this paper, we automate the response checking process
by generating SVAs directly from MSCs representing the
design specification. Our MSC2SVA technique can be used
together with both an automated testbench generation
technique and coverage-based test generation to detect errors.
This research represents an effort to automate the traditionally
manual process of response checking from high-level
specification constructs. Our results have shown that errors can
be detected utilizing this method of assertion generation.

ACKNOWLEDGMENT

We would like to thank the National ARCS Foundation,
Inc. and the Hulings Family for support of this work.

REFERENCES

[1] D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner. Embedded System
Design: Modeling, Synthesis, and Verification, Springer, 2009.

[2] Information technology—Serial Attached SCSI -3 (SAS-3) Specification
by the Working Draft American National Standard Project T10/BSR
INCITS 519, http://www.t10.org/drafts.htm#SCSI3_SAS,
http://www.t10.org/cgi-bin/ac.pl?t=f&f=sas3r05b.pdf

[3] ITU-TS, Recommendation z.120, message sequence chart (msc),
Technical Report Z. 120, International Telecommunication Union,
Geneva.

[4] ITU-TS, Recommendaton z.120 annex b: algebraic semantics of
message sequence charts, and recommendation z.120 annex c: syntax
requirements of msc, Technical Report Z.120 B,C, International
Telecommunication Union, Geneva, 1995.

[5] E. Rudolph, P. Graubmann, J. Grabowski, Tutorial on message sequence
charts, Computer networks and ISDN systems 28 (12) (1996) 1629–
1641.

[6] S. Hertz, D. Sheridan, S. Vasudevan. “Mining hardware assertions with
guidance from static analysis.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2013.

[7] P. Lee, I. Harris, “Test generation for subtractive specification errors,”
IEEE VLSI Test Symposium, 2012.

[8] A. Ito, H. Saito, F. Nitta, Y. Kakuda, "Transformation technique
between specification in SDL and specification in message sequence
charts for designing protocol specifications" Communications, 1992.
ICC '92, Conference record, SUPERCOMM/ICC '92, Discovering a
New World of Communications., IEEE International Conference on 14-
18 Jun 1992, pp. 442 - 447, vol.1.

[9] P. Murthy, S. Rajan, K. Takayama, “High level hardware validation
using hierarchical message sequence charts,” IEEE International High
Level Design Validation and Test Workshop, Sonoma CA, Novemeber
2004.

[10] S. Mauw, M. Reniers, T. Willemse, "Message sequence charts in the
software engineering process," Handbook of Software Engineering and
Knowledge Engineering, S.K. Chang, editor. World Scientific, 2001.

[11] Cadence Designs Systems and Mentor Graphics Inc., "Open Verification
Methodology User Guide" Version 2.0, Sept. 2008 available from
http://www.ovmworld.org.

[12] Standard Universal Verification Methodology developed by the VIP
Technical Committee available from
http://www.accellera.org/downloads/standards/uvm

[13] IEEE Std 1500, IEEE Standard for Embedded Core Test—IEEE Std.
1500-2004. New York: IEEE, 2004.

[14] System Verilog 3.1 – Accellera’s Extensions to Verilog, Accellera, May
29, 2003.

[15] K. Chen, "Assertion-based verification for SoC designs." ASIC, 2003.
Proceedings. 5th International Conference on, pp. 12 – 15, vol.1.

[16] Mscgen from http://www.mcternan.me.uk/mscgen/

[17] B. Korel, A. Al-Yami, “Assertion-oriented automated test data
generation,” Software Engineering, 1996., Proceedings of the 18th
International Conference on, pp. 71-80, 1996.

[18] B. Keng, S. Safarpour, A. Veneris, "Automated debugging of
SystemVerilog assertions." Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011.

[19] J Zhi, V. Garousi, "On Adequacy of Assertions in Automated Test
Suites: An Empirical Investigation." Software Testing, Verification and
Validation Workshops (ICSTW), 2013 IEEE Sixth International
Conference on, pp. 382 - 391, 2013.

[20] P. Chang, L. Wang, "Automatic assertion extraction via sequential data
mining of simulation traces." Design Automation Conference (ASP-
DAC), 15th Asia and South Pacific, pp. 607-612, 2010.

[21] System Verilog Assertion Tutorial from Project-VeriPage.com:
http://www.project-veripage.com/sva_3.php

[22] S. Verma, P.S. Lee, I.G. Harris, “Error Detection Using Model Checking
vs. Simulation,” IEEE International High-Level Design, Validation and
Test Workshop, Nov. 2006.

