
Center for Embedded Computer Systems 
University of California, Irvine 

____________________________________________________ 
 

 

 
 
 
 
 
 

Message Sequence Charts for Assertion-based Verification 

 

Patricia S. Lee, Ian G. Harris 
 
 

Center for Embedded Computer Systems 
University of California, Irvine 
Irvine, CA 92697-2620, USA 

 
 

{leep, iharris}@uci.edu 
 
 

CECS Technical Report 13-13 
October 30, 2013 

 
 

  



Message Sequence Charts for Assertion-based 
Verification 

Patricia S. Lee and Ian G. Harris 

Computer Science 
University of California Irvine 
Donald Bren Hall, Room 3088 

Irvine, USA 
Phone: +1 949 824 8842 
Fax: +1 949 824 4056 

{leep, harris}@ics.uci.edu 
 
 

Abstract— This paper presents a technique to generate 

SystemVerilog assertions directly from high-level specification 

constructs of Message Sequence Charts (MSC) to bridge the 

productivity gap for current complex designs. Commercial 

solutions for automated assertion generation do not currently 

exist. We argue that our technique does span across the 

hardware/software continuum, allowing it to be applied to both 

hardware and software components of embedded designs. 
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I.  INTRODUCTION 

Design automation tools have matured to a level accepted 
and used by academics and industry alike.  However, the same 
level of maturity does not hold for verification.  As the 
complexity and density increases for embedded systems, the 
need for better, efficient, and automated ways to verify these 
systems becomes apparent.  Although many of the same 
languages are used for both verification and design, the same 
structure and logic often does not.  This paper focuses on 
verification which does not have tools that are as well-done and 
well-defined.  Verification methodologies such as Open 
Verification Methodology (OVM) [11], EVM, and Universal 
Verification methodology (UVM) [12] are all good efforts to 
bring verification to the level of structure and logic of design; 
however, it is difficult to find work on whether this was proven 
to be implemented in a way which produced verifiable results.   

In industry specifications, timing diagrams are commonly 
included in hardware, protocol, and system requirement 
specifications.  A trend has been to also include higher-level 
constructs such as Message Sequence Charts (MSCs) in these 
types of specifications [2], [5], [8] and have been successfully 
applied in the area of telecommunication systems and the 
software domain for many years [10].  A way of verifying the 
correctness of designs through low-level assertions derived 
from high-level specification constructs such as MSC is one 
way of bridging the "productivity gap" [1] between the 
system’s design and its complexity.   

Our strategy is to apply design automation techniques for 
modeling to the system-design process for verification and 
automate the creation of assertions from MSCs and those 

created from timing diagrams in the specification. In 
converting MSCs to assertions for functional property and 
sequence verification, we detect specification-derived 
translation errors.  Although commercial solutions for synthesis 
and verification at the system levels do not currently exist [1], 
we argue that our technique does span across the 
hardware/software continuum. 

II. PREVIOUS AND RELATED WORKS 

Assertion-based verification has been in practice for almost 
two decades in software [17] and just over a decade in 
hardware [15].  Several benefits exist for using assertions in the 
verification process.  A few important benefits are that it is 
close to potential bug sources, automatically checks behavior, 
forces the documentation of design intent and encourages a 
better understanding of the design, and allows for focus on 
system-level issues.   

Some disadvantages to using assertions are that we cannot 
know whether the property is 100% true, the property set may 
not be sufficient and complete, and a property might miss 
design behavior nuances (corner cases).  For this reason, test 
stimulus is critical, and simulation can only provide checks that 
the test exercise and that coverage metrics reveal. 

A. Automated Assertion-based Verification in Software 

Previous research [17] provides an approach of automated 
test data generation in which assertions are used to generate test 
cases.  A test is found that uncovers specific test cases on 
which an assertion is violated.  An empirical study on the 
“Inadequate-Assertion” problem in the context of automated 
test suites developed for open-source projects has been done on 
the test suites of three active open-source projects with a 
performance of mutation analysis and coverage analysis for 
evaluation [19].   

B. Automated Assertion-based Verification in Hardware 

Goldmine [6] is a tool that automatically creates assertions 
based on simulation traces using machine learning techniques.  
The assertion is presented to the user (design/verification 
engineer) to determine whether the assertion is a good 
candidate to make into the design or whether the test should 
include additional cases to put the design in that state via a new 
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scenario case.  The main challenge is in the difficulty in 
learning all the sequences over time.  Goldmine [6] addresses 
this challenge by focusing on one instance of time.  We argue 
that our technique fills this need for covering sequence over 
time and is consequently complementary to the work of 
Goldmine.  Another work that works with automatic assertion 
extraction at the input boundary of a given unit embedded in a 
system proposes a data mining approach that analyzes 
simulation traces to extract the assertions [20].  Our work is at 
a different level of abstraction and is also automated.   

Reference [18] presents a methodology that uses the failing 
assertion, counterexample and mutation model to produce 
alternative properties that are verified against the design and 
serve to make possible corrections as they provide insight into 
the design behavior and the failing assertion. The results show 
that this process is effective in finding high quality alternative 
assertions for empirical instances.  However, the process is not 
yet automated. 

III. SYSTEM OVERVIEW 

We present a system which generates System Verilog 
Assertions (SVAs) [14] that determine a sequence of events, 
recognize this sequence, and make an assertion based on the 
state of the system.  Each assertion checks the state of the 
system via the registers to verify its correctness after detecting 
a sequence.  We apply design automation techniques for 
modeling to the system-design process for verification to 
automatically generate SVAs from MSCs that are part of the 
specification description. 

Fig. 1 shows a general overview of the system.  The 
Specification-based Testbench Generation (SBTG) tool [7] 
provides a functional testbench.  The testbench applies test 
vectors to the device under test (DUT) during simulation.  The 
response checker uses assertions (SVAs), generated from the 
specification using MSCs, to verify the correctness of the 
output from the DUT.     

Figure 1.  MSC2SVA system overview.  

IV. MESSAGE SEQUENCE CHARTS 

MSCs are in a graphical language that is standardized by 
the International Telecommunication Union (ITU).  In recent 
times, MSCs have also found their way into hardware 
specifications due in part to the higher level of abstraction and 
description required to describe these increasingly complex 
systems [2], [8].  Because MSCs are viable and used in 

specifications to illustrate high-level transactions and 
communications at the package/transaction levels and because 
MSCs are a standard [3], [4], [5] which is supported by 
graphical and textual captures of this model, we believe it is an 
ideal candidate for automation.  Since we are looking at 
hardware/software codesign and verification in embedded 
systems research, we further bolster our argument for the use of 
MSCs.   

MSCs have long been used in the software domain and are 
trending to be used in the hardware domain.  We bridge this 
high-level trend with lower-level assertions used in hardware 
response checking monitors.  

Here we provide an example of an MSC that was derived 
from a timing diagram.  Fig. 2 shows the Wrapper Serial 
Control (WSC) of the IEEE 1500 specification [13] which 
describes a test wrapper component consisting of a Wrapper 
Bypass (WBY), Wrapper Instruction Register (WIR), and 
Wrapper Boundary Register (WBR).  The WSC are the main 
inputs that control the system.  The Wrapper Serial Input (WSI) 
and Wrapper Serial Output (WSO) provide the serial interface 
to the design.   

 

 

 

Figure 2.  WSP Timing Digram from the IEEE 1500 Specification.. 

Fig. 3 is an example of an MSC representing the instruction 
BYPASS from the IEEE 1500 specification timing diagram 
shown in Fig. 2.  In this example, the instruction register (WIR) 
contains “00” which represents the BYPASS instruction.  From 
the timing diagram, we see that as SelectWIR goes high, two 
0’s are shifted in from WSI to the WIR as ShiftWR high and 
CaptureWR, TransferDR, and UpdateWR are low. 

For each component, we create instances of components in 
the MSC (blocks at top of Fig. 3) and draw out lifelines with 
termination blocks at the bottom of the MSC.  The WRCK is 
the lowest level of timing granularity and is represented as time 
steps l = 0 to 17 in Fig. 3.  It determines the assertion clock and 



//================================================= 
// bypass 
//================================================= 
module assertion_ip(input wire [7:0] a_ip, b_ip, sum_ip,  
 input wire WSI_ip, WSO_ip, WRSTN_ip, ShiftWR_ip, 

UpdateWR_ip, CaptureWR_ip, SelectWIR_ip, WRCK_ip,  
 input wire [1:0] WBR_OP_IN_ip, WBR_OP_OUT_ip); 
//================================================= 
// Sequence Layer 
//================================================= 
sequence  bypass_seq; 
(SelectWIR_ip&ShiftWR_ip&~CaptureWR_ip&~UpdateWR_ip)##1(~

WSI_ip)##1(~WSI_ip); 
endsequence 
 
//================================================= 
// Property Specification Layer 
//================================================= 
property  bypass_prop; 
@(posedge WRCK_ip)  
disable iff(~WRSTN_ip)  
 bypass_seq|=>WBR_OP_IN_ip==2'b0; 
endproperty 
 
//================================================= 
// Assertion Directive Layer 
//================================================= 
bypass_assert: assert property( bypass_prop) 
else 
$display("@%0dms bypass assertion failed", $time); 
endmodule 

# bypass 
msc { 
 arcgradient = 8; 
#instances 
 a [label="ExternalCtrlTB"] , b [label="WIR"] , c [label="WBR"] , d 
[label="CoreLogic"], e [label="ExternalCtrlMon"]; 
#messages 
#wrck 1 
#wrck 2 
#wrck 3 
a=>b 
[label="*(SelectWIR_ip&ShiftWR_ip&~CaptureWR_ip&~UpdateWR_ip
)"]; 
#wrck 4 
 a=>b [label="##1"]; 
#wrck 5 
 a=>b [label="*(~WSI_ip)"]; 
#wrck 6 
 a=>b [label="##1"]; 
#wrck 7 
 a=>b [label="*(~WSI_ip)"]; 
#wrck 11 
 |||; 
#wrck 10 
 a<=b [label="$WBR_OP_IN_ip==2'b0"]; 
#end 
} 

is a positive edge from WRCK = 0 to 1 (denoted as 
“@(posedge WRCK_ip)” in Fig. 5) and a negative edge from 
WRCK = 1 to 0.  

 

 

Figure 3.  Excerpt of MSC of IEEE 1500 Bypass operation. 

The MSC is converted into text using a tool called Mscgen 
[16] which parses MSC descriptions and produces from the 
textual representation of the MSC shown in Fig. 4 from the 
graphical MSC shown in Fig. 3.  

Figure 4.  Textual representation of the MSC of the IEEE 1500 BYPASS 
operation. 

 

V. ASSERTIONS 

Assertions act as constraints that determine and define legal 
and expected behavior when blocks interact with each other.  
We concentrate mainly on converting MSCs to concurrent 
assertions that are represented as the MSCs are as sequentially.   

The layers of a concurrent assertion build from a Boolean 
expression to a sequence to a property to the top-most layer of 
the abstraction for concurrent assertions which is the assertion 
directive layer where a property is associated with a specific 
block of code with a clear intention of its instantiation [21]. 
Figure 5. shows an assertion created using the MSC2SVA tool 
we have developed. Comments have been added manually. 

 

Figure 5.  Excerpt of assertion generated from MSC of IEEE 1500 BYPASS 
operation. 

The sequence which puts the WIR into BYPASS mode 
begins the sequence layer of the assertion (the antecedent of 
our assertion property).  This is represented by the signals 
SelectWIR_ip and ShiftWR_ip going high while 
CaptureWR_ip and UpdateWR_ip go low.  After one clock 
cycle, the WSI_ip is low, causing the value ‘0’ to be shifted 
into the WIR.  After another clock cycle, the WSI_ip is low 
again, causing another ‘0’ value to be shifted into the WIR.  
This brings the wrapper to BYPASS mode with the WIR 
containing the value ‘00’ which represents the BYPASS 
instruction in the design.  The consequent of the assertion is the 



check that the appropriate instruction was entered into the WIR 
instruction register. 

VI. MSC2SVA SYSTEM 

The MSC2SVA program compiles input specifications in 
the form of MSCs and outputs assertions in the form of System 
Verilog.  The SVA is completed with a header and footer 
added automatically by the program.  The binding file to 
associate the assertion component block with the design block 
is created manually.  The binding file and assertion file is also 
included manually in the testbench file.  The program is 
implemented with the SVA generation algorithm presented in 
section VII as a Python scripted program.   

After the SVA is run with the correct design, it is checked 
with the incorrect design to see whether the assertion is 
triggered.  Several different errors could have triggered the 
assertions; however, we elected to stop after the first error 
triggered the assertion. 

VII. SVA GENERATION ALGORITHM 

We address the aspect of managing ordering of events via 
the smallest measure of time in the logic design.  Time 
advances via this clock and are represented as row numbers in 
the algorithm.   

The input is a set of MSCs, and the output is derived from 
the algorithm mentioned in this section under Subsection B.   

A. Inputs 

The input is a set M of MSCs m[i], where I = number of 
elements in M and i = index of element in M, each with the 
following: 

1) Component instances: A set C of boxes representing 

physical/system component instances c[j], where J = number 

of elements in C and j = index of element in C.  Component 

instances represent structural components within the design.  

They can send and receive signal messages which may trigger 

additional events to occur. 

2) Lifeline instances: A set I of dotted vertical lines 

representing lifeline instances i[k] where K = number of 

elements in I and k = index of element in I.  (Note:  j = k and J 

= K as each lifeline instance corresponds to exactly one 

component instance).  Lifeline instances designate how long a 

component is active in the MSC.  The virtical dotted line starts 

with a component instant and ends with a terminal character 

representing the end of the component’s function life with 

respect to the MSC. 

3) Signal messages: A set S of horizontally-lined arrows 

representing signal messages s[l] with text t[l], where L = 

total time progression represented as a total number of rows of 

an elements in all S (i.e. the last time tick for all instances 

represented in m[i]) and l = index of the row of an element in 

S (Note:  All rows span across all S).  Signal messages are 

messages sent via wires or buses from one component to 

another.  They determine what signals trigger certain events in 

time. 

4) Terminal characters: A set E of boxes (at the end of 

each lifeline instance i[k] in I) representing terminal characters 

e[k].  Terminal characters denote the end of the life of the 

component’s function with respect to the MSC.  The last 

terminal character on the far right and associated with the 

component on the far right is the terminal character of the 

entire MSC life. 

5) Lifeline of messagess: A set L of vertical bars 

representing the life of the message l[m], where M = number 

of elements in L and m = index of element in L.  Lifeline of the 

messages represent how long the signals in the message 

should be either set high or cleared low.  

6) Symbols: A set of symbols within the message label 

denote whether the message causes an event (i.e. is an 

antecedent) or is affected by a previous message or event (i.e. 

is a consequent).  

a) *: is an antecedent.  

b) $: is a consequent. 

B. Outputs 

The output is a set A of assertions written in System Verilog 
and created from each m in M MSC list: 

1. for each m[i] in M  
2.    for each l until L  
3.       for each i[k] in I 
4.          if e[L] in i[K],  // last terminating block 

(e[l]) in last lifeline instance (i[k])  
5.             then return 
6.          if not t[l] of i[k],  // if there is no text t[l]  
7.             then increment k 
8.          if initial * in t[l] of i[k], 
9.             then start antecedent of assertion ‘if (’ 

and 
10.             then add to antecedent of assertion and  
11.             then increment k 
12.          if not initial * and * in t[l] of i[k],  
13.             then add “AND” operation ‘&&’ to 

antecedent of assertion and 
14.             then add to antecedent of assertion and 
15.             then increment k 
16.          else if not * in t[l] of i[k], // i.e. end of the 

antecedent  
17.             then end antecedent of assertion ‘)’ 
18.             // do not increment k 
19.          if $ in t[l] of i[k],  // this is current k (for 

consequent/checker construction) 
20.             then consequent checker and 
21.             then increment k 
22.  
23.          if i[K],  // i.e. k = K 
24.             then increment l and 
25.             then initialize k 
26.             then  



27.                if * in t[l] of i[k],  
28.                   then add time increment ‘#1’ to 

antecedent of assertion and 
29.                   then add to antecedent of assertion 
30.       // end for each i[k] in I loop 
31.    // end for each l until L loop 
32. // end for each m[i] in M loop 

 

This output algorithm was implemented in the Python script 
for the MSC2SVA program.  For each MSC, the algorithm 
starts at the top left corner of the diagram and follows the 
horizontal signal messages from left to right until the last signal 
message is reached.  Then, the next row of messages is 
evaluated (moving down one row).  Again, the horizontal 
messages along the new row are evaluated from left to right 
until the last signal message is reached in that row.   

These steps are repeated until the last termination character 
on the last block is evaluated (farthest right, bottom corner of 
the MSC).  As each signal message is evaluated, the symbols 
“*” and “$” determine whether the signal is part of the 
antecedent or consequent of the concurrent assertion sequence 
and properties. 

VIII. EXPERIMENTAL RESULTS 

The results demonstrate that our MSC2SVA technique 
generates SVAs that are effective in detecting errors.  The 
results demonstrate the possible automation of SVA creation 
from MSCs and from timing diagrams that can be converted 
into MSCs. 

We implemented a simple version of the IEEE 1500 
wrapper that does not include optional instructions or parallel 
instructions.  Our IEEE 1500 design has 779 lines of Verilog 
code.  The SVAs generated for the IEEE 1500 specification 
contained 3 assertions each approximately 30 lines.  Each SVA 
was run first with the correct design and then with the design 
containing an error which would trigger the assertion.  The 
types of errors included mainly bit flipping errors; however, the 
errors specified in [7] and [22] could also be utilized. 

MSC2SVA is implemented as a Python script which was 
executed on a personal computer with Intel® Core™ i5-2450M 
CPU @ 2.50 GHz with 4.00 GB of RAM with a 64-bit 
Operating system running Windows 7 Home Premium.  

The three instructions are as follows:  

A. Instruction WS_BYPASS (BYPASS) 

The mandatory WS_BYPASS instruction enables the 
functional configuration of the wrapper.  WS_BYPASS is 
selected when no test operation of that core is required and 
allows only the WBY to be selected.  The WBY provides a 
minimum-length serial path between the wrapper’s WSI and 
the WSO.  This allows more rapid movement of test data to and 
from other core wrappers, provided the wrappers are connected 
serially [13]. 

B. Instruction WS_INTEST (INTEST) 

One core test instruction that allows the core to be tested 
according to a test procedure specified by the core provider or 

core user is required. IEEE Std 1500 does not describe how to 
test individual cores; this is the responsibility of the core 
provider. The core test invoked by the Wx_INTEST instruction 
(the x in Wx is a place holder for an S, P, or H to indicate 
whether the instruction is serial, parallel, or hybrid) is 
completely specified with the CTL provided for the core [13]. 

C. Instruction WS_EXTEST (EXTEST) 

The mandatory WS_EXTEST instruction allows testing of 
off-core circuitry and core-to-core interconnections.  It allows 
circuitry external to the core wrapper, typically the 
interconnects and user-defined logic (UDL), to be tested. The 
wrapper boundary cells at WFOs are used to apply test stimuli, 
while the cells at wrapper input terminals capture test results. 
This instruction also allows testing of blocks of UDL between 
cores that do not themselves incorporate wrappers [13].  

The three instruction assertions performance and memory 
measurements are shown in Table 1.   

 

TABLE I.  ASSERTION LIST 

No. 
Assertions 

Assertion Name Performance Memory* 

1 Instruction WS_BYPASS 0.073s 8MB 

2 Instruction WS_INTEST 0.076s 8MB 

3 Instruction WS_EXTEST 0.080s 8MB 

*Memory includes overhead for Python infrastructure. 

 

The assertions sequenced the selection of each instruction.  
A property was created from the sequence, which acted as the 
antecedent, and the resulting check of the instruction register, 
which acted as the consequent of the assertion property.   

An error was injected into the design in order to trigger the 
assertion.  For each of the instructions, an alternate value was 
provided in the WIR.  Multiple errors might have triggered the 
assertions, but we tested only with one error to trigger each 
assertion. 

Additional assertions could be made from these wrapper 
instructions that verified specific behavior with respect to the 
core (device under test for this wrapper).  Also, assertions 
specific to the operations of the wrapper (namely, shift, update, 
transfer, and capture) could be made and evaluated using this 
method. 

IX. CONCLUSION 

In this paper, we automate the response checking process 
by generating SVAs directly from MSCs representing the 
design specification.  Our MSC2SVA technique can be used 
together with both an automated testbench generation 
technique and coverage-based test generation to detect errors.  
This research represents an effort to automate the traditionally 
manual process of response checking from high-level 
specification constructs.  Our results have shown that errors can 
be detected utilizing this method of assertion generation.  

 



ACKNOWLEDGMENT 

We would like to thank the National ARCS Foundation, 
Inc. and the Hulings Family for support of this work. 

REFERENCES 

[1] D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner.  Embedded System 
Design:  Modeling, Synthesis, and Verification, Springer, 2009. 

[2] Information technology—Serial Attached SCSI -3 (SAS-3) Specification 
by the Working Draft American National Standard Project T10/BSR 
INCITS 519, http://www.t10.org/drafts.htm#SCSI3_SAS, 
http://www.t10.org/cgi-bin/ac.pl?t=f&f=sas3r05b.pdf 

[3] ITU-TS, Recommendation z.120, message sequence chart (msc), 
Technical Report Z. 120, International Telecommunication Union, 
Geneva.  

[4] ITU-TS, Recommendaton z.120 annex b: algebraic semantics of 
message sequence charts, and recommendation z.120 annex c: syntax 
requirements of msc, Technical Report Z.120 B,C, International 
Telecommunication Union, Geneva, 1995. 

[5] E. Rudolph, P. Graubmann, J. Grabowski, Tutorial on message sequence 
charts, Computer networks and ISDN systems 28 (12) (1996) 1629–
1641. 

[6] S. Hertz, D. Sheridan, S. Vasudevan.  “Mining hardware assertions with 
guidance from static analysis.” IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, 2013. 

[7] P. Lee, I. Harris, “Test generation for subtractive specification errors,” 
IEEE VLSI Test Symposium, 2012.   

[8] A. Ito, H. Saito, F. Nitta, Y. Kakuda, "Transformation technique 
between specification in SDL and specification in message sequence 
charts for designing protocol specifications" Communications, 1992. 
ICC '92, Conference record, SUPERCOMM/ICC '92, Discovering a 
New World of Communications., IEEE International Conference on 14-
18 Jun 1992, pp. 442 - 447, vol.1.  

[9] P. Murthy, S. Rajan, K. Takayama, “High level hardware validation 
using hierarchical message sequence charts,”  IEEE International High 
Level Design Validation and Test Workshop, Sonoma CA, Novemeber 
2004.  

[10] S. Mauw, M. Reniers, T. Willemse, "Message sequence charts in the 
software engineering process," Handbook of Software Engineering and 
Knowledge Engineering, S.K. Chang, editor.  World Scientific, 2001.  

[11] Cadence Designs Systems and Mentor Graphics Inc., "Open Verification 
Methodology User Guide" Version 2.0, Sept. 2008 available from 
http://www.ovmworld.org. 

[12] Standard Universal Verification Methodology  developed by the VIP 
Technical Committee available from 
http://www.accellera.org/downloads/standards/uvm 

[13] IEEE Std 1500, IEEE Standard for Embedded Core Test—IEEE Std. 
1500-2004. New York: IEEE, 2004. 

[14] System Verilog 3.1 – Accellera’s Extensions to Verilog, Accellera, May 
29, 2003. 

[15] K. Chen, "Assertion-based verification for SoC designs." ASIC, 2003. 
Proceedings. 5th International Conference on, pp. 12 – 15, vol.1. 

[16] Mscgen from http://www.mcternan.me.uk/mscgen/ 

[17] B. Korel, A. Al-Yami, “Assertion-oriented automated test data 
generation,”  Software Engineering, 1996., Proceedings of the 18th 
International Conference on, pp. 71-80, 1996. 

[18] B. Keng, S. Safarpour, A. Veneris, "Automated debugging of 
SystemVerilog assertions."  Design, Automation & Test in Europe 
Conference & Exhibition (DATE), 2011. 

[19] J Zhi, V. Garousi, "On Adequacy of Assertions in Automated Test 
Suites: An Empirical Investigation." Software Testing, Verification and 
Validation Workshops (ICSTW), 2013 IEEE Sixth International 
Conference on, pp. 382 - 391, 2013. 

[20] P. Chang, L. Wang, "Automatic assertion extraction via sequential data 
mining of simulation traces."  Design Automation Conference (ASP-
DAC), 15th Asia and South Pacific, pp. 607-612, 2010. 

[21] System Verilog Assertion Tutorial from Project-VeriPage.com:  
http://www.project-veripage.com/sva_3.php 

[22] S. Verma, P.S. Lee, I.G. Harris, “Error Detection Using Model Checking 
vs. Simulation,” IEEE International High-Level Design, Validation and 
Test Workshop, Nov. 2006. 

 

 


