
Center for Embedded Computer Systems
University of California, Irvine
__

A Comparison of Error Detection between Simulation-

based Validation and

Model Checking

Patricia Lee, Shireesh Verma, and Ian G. Harris

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-2620, USA

{leep, shireesh, harris}@ics.uci.edu

CECS Technical Report 13-12

October 9, 2013

A Comparison of Error Detection between Simulation-based Validation and
Model Checking

Patricia Lee, Shireesh Verma, and Ian G. Harris
Department of Computer Science

University of California Irvine
Irvine, CA 92697 USA

{leep, shireesh, harris}@ics.uci.edu

Abstract

Design simulation and model checking are two alterna-
tive and complementary techniques for verifying hardware
designs. This paper presents a comparison between the two
techniques based on their detection of design errors, per-
formance, and memory use. While memory and CPU per-
formance gains in simulation-based validation over model
checking verification methods are to be expected, the ability
of simulation-based validation in detecting errors is com-
parable to that of model checking. We perform error de-
tection experiments using model checking and simulation to
detect errors injected into a verification benchmark suite.
The results allow a quantitative comparison of simulation
and model checking which can be used to understand weak-
nesses of both approaches. We see that simulation-based
validation is effective, and where it is not, we define test
generation goals which make it effective.

1 Introduction

Functional verification is known to be a difficult task
accounting for over 70% of the development time and re-
sources [2, 10]. Model checking and simulation-based ver-
ification are two vehicles used for this task. Model check-
ing [8, 5] is a well understood technique for verifying finite
state machine models of designs under verification which
determines whether or not the machine satisfies a given set
of properties. If a given machine can violate a property,
model checking is guaranteed to detect the violation, given
sufficient memory and central processing unit (CPU) time
resources. In the worst case, model checking must implic-
itly explore the entire state space of the machine being ver-
ified in order to find a property violation. The requirement

1This research was supported by the National Science Foundation un-
der grant CCF 0437116

of completeness in identifying property violations makes
model checking susceptible to what has been called the state
explosion problem. This describes the fact that the perfor-
mance and memory requirements of model checking grow
at least linearly with the size of the state space of the ma-
chine under verification. This means that the resource re-
quirements of model checking may exceed practical limits
given the constraints of existing computers.

Simulation-based verification [11] is known to be more
efficient in terms of memory and performance when com-
pared with model checking. For example, it is possible to
perform cycle-accurate simulation of a standard processor
such as an Intel Pentium processor [4]. However, model
checking cannot be attempted for such a complex system
and requires that the design be partitioned. One shortcom-
ing of simulation-based verification is that it may not be
complete in terms of error detection. The main drawback of
simulation is that error detection is dependent on the test se-
quence and its ability to reveal errors. As a result, it is pos-
sible that errors escape detection by simulation while being
caught using model checking.

The goal of this research is to compare the use of model
checking and simulation based on error detection, memory
use, and CPU time. The comparison is accomplished by
performing verification of a set of benchmarks, using both
simulation and model checking techniques. Design errors
are injected into each benchmark, and the error detection
ability of both verification techniques is evaluated by the
number of erroneous designs detected.

unpredictably. Because an incomplete set of properties
can allow design errors to be undetectable by model check-
ing, we perform model checking with all erroneous ver-
sions of each design and discount those errors which do not
cause model checking to fail. This accounts for any pos-
sible missed properties. By focusing on only those errors
which cause the given properties to be violated, the error
detection ability of model checking is not penalized due to

1

an incomplete property set. The generation of tests for sim-
ulation is performed automatically, using random patterns,
with no manual interaction in order not to favorably bias the
test generation results.

The remainder of the paper is organized as follows.
The overview of our comparison of model checking and
simulation-based verification is presented in Section 3. The
techniques used for error injection, model checking, and
simulation-based verification are described in Sections 4,
3.1, and 3.2 respectively. The experimental results of the
comparison are presented in Section 5 and conclusions are
summarized in Section 6.

2 Related Work

Although a comparison of the ability of model checking
with the ability of simulation to detect errors has not been
known to have been made in the hardware realm, a similar
comparison is made in software [?]. Because no work, to
our knowledge, has directly addressed this comparison be-
tween model checking with simulation, we present the fol-
lowing work to account for related efforts which have been
made.

To investigate the ability of these techniques to detect
errors, a standard set of hardware design errors must be de-
fined. In Hardware Design Errors, we discuss various ef-
forts in publishing a defined set of errors. Model Checking
Error Detection and Simulation Error Detection categorize
two methods that evaluate how errors are detected in model
checking and simulation-based validation.

2.1 Hardware Design Errors

We looked at previous work to determine typical de-
sign errors found in industry and in the university setting.
Through systematic collection of design error data, [?, ?]
has compiled a list of design errors and created various er-
ror models to capture the core nature of these design errors.
[?, ?] compiled the design errors from error data published
by industry and from university design projects. The er-
rors range from simplistic to complex. Some of the errors
require a rare combination of events before becoming ob-
servable.

2.2 Model Checking Error Detection

The problem of determining the completeness of a set of
properties for a given design has been addressed in the con-
text of model checking via temporal model checking using
vacuity testing [?]. Model checking determines if a given
property holds in a given system by describing the system,
stating the property, and then verifying that the property
holds in the system [?]. This means that model checking’s

ability to detect errors depends on the ability of the tester
to derive a complete set of properties for the system. With-
out this complete set, there is no guarantee of the complete
correctness of the design.

2.3 Simulation Error Detection

The next group of work addresses the ability of error de-
tection by simulation-based validation methods. This is the
problem of determining when a testbench is complete using
simulation-based validation to show the main correlation to
the ability of simulation-based validation to detect errors
[?]. Many methods offer more accurate assessment of de-
sign verification coverage than line coverage [?]; however,
the focus of this paper is to provide a general comparison
of basic methods of model checking with simulation-based
verification. Specific analysis of the testbench generation is
beyond the scope of this paper.

3 Overview

To compare model checking to simulation-based verifi-
cation, we perform verification using both techniques on a
subset of the benchmarks which are contained in the VIS
downloaded benchmarks [3]. These benchmarks were cho-
sen because they could be model checked by the VIS tool
[3] and simulated using the Synopsys VCS tool [1] with
only minor modification. Each benchmark provided is a
design coded in Verilog and is accompanied with a set of
Computational Tree Logic (CTL) [9] properties which can
be used for model checking.

The comparison process is shown in Figure 1, and the
main steps followed to verify each benchmark are listed
here.

1. Model Checking: Model checking is performed with
each erroneous design (as well as the original correct
design) and with its set of properties. Based on the
completeness of the properties, only a subset of the
errors are detected. To account for the possibility of
human error in generating a complete set of properties
for the designs, we remove errors which cannot be de-
tected by model checking.

2. Simulation-based Verification: The subset of the er-
roneous designs that are detected by model checking
are then verified using simulation. Based on the effec-
tiveness of the testbench, only a subset of these errors
are detected.

3. Error Injection: A set of design errors are inserted
into each benchmark design to generate a set of erro-
neous designs for verification. Each erroneous design
contains a single design error.

2

Figure 1. Comparison Between Model Checking and Simulation-based Verification

The error detection, CPU time, and memory use statis-
tics of each verification run are summarized and presented
for comparison. Each of the three steps listed above are de-
scribed in the following sections.

3.1 Model Checking Process

Model checking is performed to verify each of the 100
erroneous versions of each benchmark design. The bench-
mark suite provides a set of CTL properties for each design.
We use these properties for model checking. Each model
checking run on an erroneous design ended in one of the
following three ways.

1. Error Detected: An erroneous design is in this cate-
gory if model checking completes and at least one of
the properties failed. This indicates that the erroneous
design violates one of the properties of the design.

2. Error Not Detected: An erroneous design is in this
category if model checking completes successfully
without detecting a property violation. This indicates
that the erroneous design does not violate any design
property that is provided in the benchmark suite.

3. Inconclusive: This indicates that model checking did
not complete because of insufficient memory on the
workstation running VIS. Given additional computa-
tional resources these errors will fall into either the Er-
ror Detected or the Error Not Detected categories.

In the results comparing model checking and simulation,
we omit the model checked errors categorized as Error Not
Detected. It is important to omit errors not detected by
model checking in order to simulate a perfect set of proper-
ties that detect all errors. This is because a lack of detection
is due to the incompleteness of the property set rather than
any weakness in the model checking process. Additionally,
the errors categorized as Inconclusive are not considered in

the final results because they can possibly be Error Not De-
tected if additional resources are provided. In summary,
only the errors categorized as Error Detected are consid-
ered in the final results. With respect to these errors, model
checking always provides 100% error detection.

3.2 Simulation-based Verification Process

Each erroneous design detected by model checking,
those categorized as Error Detected, is verified using a
simulation-based verification process. The simulation-
based verification process is depicted in Figure 2.

All of the erroneous versions of a single benchmark de-
sign are simulated with the same testbench so that they are
all tested with the same test sequence. The simulation re-
sults of each erroneous design are compared to the results of
the reference model, which is the correct design. An error is
classified as being detected by simulation if the simulation
results of the erroneous design are different from the results
of the reference model. Simulation results are compared
only at the primary outputs of the design.

3.2.1 Test Generation

The error detection ability of simulation is determined by
the test sequence applied. To ensure that the evaluation is
not affected by manual interaction, we generate the test-
benches for our benchmark designs automatically. We use
VPI (Verilog Procedural Interface) to access the VCS sim-
ulator’s internal data structures, and we statically analyze
them in order to be able to generate the testbench automati-
cally. Based on this analysis, we identify the value domains
of the input signals and generate Verilog code to produce
values randomly from the value domain. We gereate Ver-
ilog code for comparing the primary outputs of the correct
and erroneous versions of the design such that an error is
flagged in case of any mismatch. The testbench supplies
random data to all inputs, with the exception of any reset

3

Figure 2. Simulation-Based Verification Process

signal. The reset signal is asserted once in the first clock
cycle of testing and is de-asserted for the remainder of test-
ing.

An important issue in test generation is that of determin-
ing how many tests to apply. The goal of test generation
is assumed to achieve high statement and branch coverage.
Random test patterns are applied during testing incremen-
tally in the order of tens until statement and branch cover-
age hit a saturation point, i.e. the point where there is no
change in coverage even after applying more test patterns.
We obtain the number of patterns required to obtain a satu-
ration coverage value for both statement and branch cover-
age. This means that we apply the higher of these two for
all our simulations so that sufficient coverage is guaranteed.

Figure 3 shows the statement and branch coverage satu-
ration curves for the benchmark example, Nim. The exam-
ple attains a statement coverage of 86.27% with just 10 test
patterns applied. Applying more test patterns does not im-
prove the statement coverage further. However, the branch
coverage attains a saturation value of 83.33% after apply-
ing 1,000 patterns. Therefore, we use 1,000 test patterns,
the higher of the two test pattern amounts, for simulating
the design.

Table 1 shows the saturation coverage values of state-
ment and branch coverage for all the designs. The first col-
umn shows the design name. The next two columns show
the saturating value of statement coverage and the number
of patterns required to be applied to attain that value. The
final two columns show the saturating value of branch cov-
erage and the number of patterns required to be applied to
attain that value.

It is important to mention that the comparison presented
in this paper is limited to simulation using random test pat-
terns until high statement and branch coverage are achieved.
The use of another test pattern generation approach would
potentially cause a fundamental change in the results.

4 Error Injection

Error injection is the process of inserting design errors
into a design known to be correct. For each design, the pro-
cess involves randomly inserting one error from a complete
set of errors possible for the design into each newly created
erroneous design. We compile a set of realistic errors from
various sources [4] for the compiled realistic set of errors in
addition to creating our own set of errors.

4.1 Textual Errors

Textual errors are applied directly to the original textual
behavioral description [?] and are a type of error that is well
modeled as mutants. Mutation errors come from mutation
analysis which has been studied previously in software test-
ing and hardware validation [6, 7]. In mutation analysis
terminology, a mutant is a version of a behavioral descrip-
tion which differs from its original by a single potential de-
sign error. An operator is a function which is applied to the
original program to generate a mutant. A set of operators
describes all expected design errors. An important feature
of mutation errors is that they are limited to a single line of
code in a behavioral description. The errors created by these
operators include control-flow errors which involve an en-

4

Figure 3. Plot of Statement/Branch Coverage vs. No. of test patterns for benchmark example Nim

Design Statement Cvg. Saturation % Branch Cvg. Saturation % No. of Patterns

am2901 100 100 102

am2910 100 100 103

bpb 100 100 103

bufa 100 100 105

counter 100 100 10
fifo 100 100 102

gcd 98.31 93.75 105

huffman 98.77 100 104

microwave 100 100 10
miim 96.19 89.06 105

nim 86.27 83.33 103

nullmodem 72.46 47.37 102

palu 100 100 102

Table 1. Saturation Values of Statement and Branch Coverage for all Benchmark Designs

5

tire control-flow branch or control-flow construct removal
error. For each of the correct designs, a copy of the pro-
gram with the insertion of a one-line or one-operation mu-
tation is inserted to create a set of designs each with only a
single mutation inserted. Each of these errors model a type
of misinterpretation of the specification on the part of the
designer.

4.1.1 Arithmetic Operator Replacement

This type of error involves a replacement of an arithmetic
operator in the expressions with other arithmetic operators
such that the valuation of expressions differs from their cor-
rect valuation while maintaining the syntactic and semantic
correctness of the design. The operators include +,−, ∗, /.
Each of the other operators replace the correct opperator to
create the replacement error. One main reason this type of
replacement error, as well as all the other replacement mu-
tant errors, may occur is that a designer may have just cre-
ated a “goof” error where the designer simply placed one
operation in place of another because of a mistake in typ-
ing or misunderstanding of a behavior stated in the design
specification. Also, such an error may occur with fatigue
of the designer, a designer’s hast in writing a code excerpt
in the interest of a deadline, or possibly in the designer’s
confusion because of the code excerpt being embedded in
some complex code design. We insert this specific operator
replacement, as well as all the other replacement mutant er-
rors, into the Verilog code by replacing each of the alternate
and erroneous operators with its original correct operator.

Figure 4 (a) shows a code fragment. Replacing the + op-
erator in line 1 of Figure 4 (a) with a − operator as shown in
Figure 4 (b) causes a wrong value to be computed for signal
x which causes the output z to evaluate to a wrong value
creating a data flow error. On the other hand, replacing the
+ operator in line 2 of Figure 4 (a) with a − operator as
shown in Figure 4 (c) causes the wrong control flow path to
be taken which creates a control flow error.

4.1.2 Relational Operator Replacement

This error involves replacement of a relational operator in
the expressions with other relational operators such that the
valuation of expressions differs from the correct valuation
while maintaining the syntactic and semantic correctness of
the design. The operators involved are <, >,≤,≥, =, �=, all
of which could be replaced by each of the other operators.
This operator can cause error in the data as well as control
flow of the design.

4.1.3 Logical Operator Replacement

This error involves a replacement of a logical operator in
the expressions with other logical operators such that the

valuation of expressions differs from the correct valuation
while maintaining the syntactic and semantic correctness of
the design. The operators involved are &&, ||, both of which
could be replaced by the other operator. This operator also
can cause error in data as well as control flow of the design.

4.1.4 Reduction Operator Replacement

This error involves a replacement of unary reduction oper-
ators like | or ∼ from expressions with other reduction op-
erators such that the valuation of expressions differs from
their correct valuation while maintaining the syntactic and
semantic correctness of the design. This operator also can
cause error in data as well as control flow of the design.

4.2 Behavioral Errors

Behavioral errors are those errors which are made based
on the structure of the CFG (control flow graph) of a de-
sign. We have modeled common errors made based on the
CFG of a design by omission of conditional constructs and
branch omission within the code.

4.2.1 Conditional Construct Omission

This error involves removal of a conditional construct com-
pletely from the design e.g. an if or a case statement. These
type of errors may result when a block of logic is omit-
ted by the designer. Natural language specifications often
specify causality between events. This translates directly
to control-flow constructs in a hardware description. Also,
this operator can cause an error in the data as well as control
flow of the design. In the Verilog code, this conditional con-
struct omission is inserted into the code by deleting the en-
tire conditional construct whether that be in form of a “case”
statement or an entire “if/else” construct.

4.2.2 Branch Omission

This error involves removing a branch of a conditional con-
struct such as that of a branch of an if or case statement.
This type of error results when a clause of logic is omitted
by the designer. This arises out of misinterpretation of spec-
ification on the part of a designer. This type of error also
causes error in data as well as control flow of the design. In
addition to being a possible ”goof” type error, this type of
error arises out of misinterpretation of specification on the
part of a designer with respect to the proper functionality
of a component or when the designer overlooks one block
of logic in the specification due to the complexity of the
design specification. Often, a design is built from an FSM
(Finite State Machine) into code using a “case” statement
construct. This means that there is a possibility of an en-
tire state with edges omitted from the design. Additionally,

6

Figure 4. (a) Arithmetic Operator Replacement Example Code Fragment, (b) Data Flow Error, (c)
Control Flow Error

there can be a case where just the state is omitted while the
edges are left behind in the case of maintenance of legacy
code or legacy functions and the possibility of an incom-
plete cleaning of the code with this update or maintenance
process. In the Verilog code, this branch omission was in-
serted into the code by deleting a single case/state (or mul-
tiple cases forming a portion) of the entire “case” statement
or portion of the “if” or “else” part of a complete “if/else”
construct.

4.3 FSM-Based Errors

FSM (Finite State Machine) models are adept at captur-
ing the control and data flow of a design. Error models
based on FSMs well represent design errors made by de-
signers during the design implementation process. The state
machine example described in Verilog HDL (Hardware De-
scription Language) code shown in Figure 5 illustrates these
error models. A graphical representation of the state ma-
chine is shown in Figure 6 to futher illustrate these error
models.

4.3.1 State Elimination

State elimination involves removing a complete state from
the state machine. In Verilog, this is synonymous to a
branch omission, as mentioned in the textual errors section,
and is accomplished by removing a branch of a conditional
construct, such as that of an if or case statement. If state
C is removed from Figure 6, the resulting state machine is
erroneous. A side effect of this removal is that all the tran-
sitions originating and ending at state C become invalid. In
terms of the Verilog description shown in Figure 5, branch
C of the case statement corresponding to lines 22 through
26 are removed to simulate this error.

4.3.2 State Change

State change involves exchanging a label of a state in a state
machine with that of another. For example, if the label of

state A in Figure 6 is changed to B and that of state B is
changed to A, the properties and the operations inside states
A and B are interchanged. This results in an erroneous state
machine, and additionally, this results in many of the transi-
tions becoming invalid. In terms of the Verilog description
shown in Figure 5, this type of error is denoted by replacing
the value A on line 13 with that of B and replacing the value
B on line 17 with that of A. In this case, the design is stuck
in the new state B since there are no outgoing transitions
from it. Alternatively, this error may cause different behav-
iors in other cases. For the sake of completnesss, we include
the description of these types of errors although they arenot
included in our set of inserted errors in the design examples
used in this work.

4.3.3 Transition Elimination

Transition elimination involves the removal of any transi-
tion between two states. In Figure 6, the transition from
state A to B and the transition from state B to A are removed.
Removing these transitions results in an erroneous state ma-
chine. In terms of the Verilog description shown in Figure 5,
multiple code changes can cause this error type of error to
emerge. For instance, line 14 can be deleted to eliminate
the possibility of a transition from state A to B, or the else
branch on line 19 can be omitted to eliminate the transition
from state B to A. Again, just as with the state elimination
error, a branch omission represents this type of error occur-
rence. Other ways of denoting this error are not included in
this work.

4.3.4 Transition Change

Transition change involves changing the destination of a
transition. In Figure 6, changing the transition from state
A to B into a transition from state A to C results in this type
of error. In terms of the Verilog description shown in Fig-
ure 5, this error is shown by replacing the value B on the
right side of the statement on line 14 with value C.

7

Figure 5. Verilog Description for a Finite State Machine

8

Figure 6. Grahical Description of Finite State Machine

4.3.5 Transition Label Change

Transition label change involves changing the pre-condition
of a transition if there is one or introducing a pre-condition
if there is not one. In Figure 6, removing or changing the
the label (in == 0) for the transition from state C to state
B causes an erroneous machine. In terms of the Verilog
description shown in Figure 5, this error of replacing value
1 in the expression on line 23 by the value 0 causes the
pre-condition for the transition to now become (in == 1)
rendering the design erroneous.

4.3.6 Output Change

An output change involves altering the computed correct
output value of the state machine. In Figure 6, if instead of
setting out to 0 in state B it is set to 1, an incorrect output
value is computed by the state machine rendering the de-
sign erroneous. In terms of the Verilog description shown
in Figure 5, this error can be caused by replacing value 0 on
the right hand side of the assignment statement out = 0 on
line 20 by the value 1.

5 Experimental Results

Experimental results on the benchmarks are shown in Ta-
bles 4 and 5. We perform all model checking and simula-
tion experiments using a 1.5 GHz Sun UltraSPARC CPU
running SunOS version 5.9.

5.1 Error Distribution

We inject 100 design errors into each benchmark design
for analysis. For almost all benchmarks, we are able to in-
sert more design errors but instead limit the number of de-
sign errors to 100 for space and complexity reasons.

The Table 2 shows the maximum possible errors in the
benchmark design by applying various operators. The first
column represents the benchmark name. CCO and BO de-
pict conditional construct and branch omission. AOR, LOR
and ROR signify arithmetic, logical and relational operator
replacements respectively. Reduction represents the errors
associated with changes applied to reduction operators.

The Table 2 shows the distribution of errors injected in
the benchmark design by applying various operators.

5.2 Error Detection Results

Table 4 shows the error detection results of model check-
ing. The first three columns are labeled Design (represent-
ing the design name), LOC (the number of lines of code),
and Inputs (the number of inputs). The ED (errors de-
tected) column contains the number of design errors of the
100 injected that are detected using model checking. The
remaining design errors evaded detection for one of two
reasons: either the model checking process could not com-
plete within the memory limit or model checking completed
but the design error failed to violate a property. The mem-

9

Design CCO BO AOR LOR ROR Reduction

am2901 15 57 28 122 161 12
am2910 9 27 24 329 357 6

bpb 17 45 40 11 0 114
bufa 19 54 16 64 42 0

counter 2 6 8 6 0 0
fifo 5 13 32 82 91 0
gcd 7 29 12 106 105 0

huffman 5 47 8 0 21 0
microwave 5 20 0 0 0 0

miim 40 109 12 312 91 0
nim 1 19 52 50 140 0

nullmodem 6 23 16 16 63 192
palu 6 19 12 16 21 0

Table 2. Error Space

Design CCO BO AOR LOR ROR Reduction

am2901 4 15 7 32 40 2
am2910 3 8 8 40 40 1

bpb 16 30 20 2 0 32
bufa 10 25 10 33 22 0

counter 2 6 8 6 0 0
fifo 2 6 16 38 38 0
gcd 6 10 12 40 32 0

huffman 5 47 8 0 21 0
microwave 5 20 0 0 0 0

miim 8 20 0 55 17 0
nim 1 8 20 20 51 0

nullmodem 6 21 10 10 20 33
palu 6 19 12 16 21 0

Table 3. Error Distribution

10

Design Tot. Undet. Err. Low Cov. Data Aliasing

miim 75 49 26
nim 26 16 10

nullmodem 64 57 7

Table 6. Undetected Error Distribution

ory and performance measurements of model checking for
the detected errors are shown in the remaining columns.
Columns Mem. Avg and Mem. WC show the average and
worst case memory use values, and columns CPU Avg and
CPU WC show the average and worst case CPU times. The
memory use and CPU time requirements vary widely across
examples.

Simulation-based validation requires less CPU time and
memory than verification methods using model checking,
with simulation memory requiring consistently 2 to 3 or-
ders of magnitude less than model checking memory re-
quirements.

5.3 Analysis of Error Detection

Based on our analysis of the error detection results, low
coverage and data aliasing are the only two causes for the
errors which are not detected. These two causes can be ad-
dressed to account for these errors by using test generation
techniques that have already been presented [?].

Table 5 shows that there are only three benchmarks with
errors that are not all detected by simulation: miim, nim,
and nullmodem. We have manually examined the each un-
detected error to determine it source cause. We have found
that all of the undetected errors are caused by either low
coverage or by data aliasing. The Table 6 shows the de-
tailed distribution of undetected errors between the two cat-
egories.

Low Coverage The completely random stimulus genera-
tion that is used in simulation has its weaknesses in
not being able to attain a 100% statement and branch
coverage for a few benchmark examples. Especially
in the examples Miim, Nim and Nullmodem, some in-
jected errors are not detected because the statements
or branches where these errors are embedded are never
executed. The example, Nullmodem, attains a maxi-
mum statement coverage of 72.46% and a branch cov-
erage of 47.37%. In this case, 64 out of the total 100 er-
rors injected are not detected. The reason is that these
errors are embedded on complex control flow paths
which are not activated by the random stimulus gen-
eration. Out of the total of 165 undetected errors over
all the benchmark examples, 122 fall under this cate-
gory.

Figure 7 shows an assign statement that describes a
heavily nested control flow that is very difficult to
cover completely. An error on one of these paths is dif-
ficult to detect if stimulus does not activate that path.
For example, if busy[10] on line 7 in Figure 7 is
changed to busy[10], it does not result in an erroneous
output from the design if line 7 is not executed. This
injected error is not detected.

Data Aliasing Data aliasing occurs in case of conditional
expressions which are assigned to other signals. If
an error is injected on the expression of a conditional
predicate and this error does not cause the conditional
expression to evaluate to a value different than its cor-
rect value, then this kind of error is never detected. The
expression may be based on a very specific value of
the signal under question, such that it becomes a cor-
ner case to exercise. Out of the total of 165 undetected
errors over all the benchmark examples, 43 fall under
this category. This category does not include the errors
which are associated with a branch causing the error
to never be exercised. Such errors lie under the low
coverage category because of low branch coverage.

The assign statement shown in Figure 8 (a) is check-
ing if the value of count is 16. An error is injected in
this predicate as shown in Figure 8 (b) by replacing the
== operator by a > operator. If the value of count be-
ing 16 or more is a corner case such that it does not
occur during the simulation, the conditional predicate
will evaluate to the same value in both the cases (a) and
(b).

An important observation of this paper is that there are
only two causes for errors being undetected by simulation,
low coverage and data aliasing. For our experiments, we
have used random test generation, but many approaches
have been presented in previous work to address these
two problems. Several test generation techniques exist to
achieve high coverage [?] and to avoid data aliasing [?]. If
these existing test generation techniques are employed, then
simulation would have detected all of the errors detected by
model checking.

6 Conclusions

We present a comparison of the error detection abilities
of model checking and simulation-based verification and re-
strict our comparison to simulation using random pattern
generation and high line coverage as a termination condi-
tion. Manual interaction in the verification process is min-
imized in our experiments by restricting the design errors
examined and using an automatic test generation process.
The results reveal a weakness in the error detection ability
given the test generation process we use for simulation.

11

Design Information Model Checking Results
Design LOC Inputs ED Mem. Avg (MB) Mem. WC (MB) CPU Avg. (sec) CPU WC (sec)

am2901 140 10 0 ∞ ∞ ∞ ∞
am2910 111 7 9 17.97 26.54 2.2 3.4

bpb 111 6 3 13.14 13.14 0.9 0.9
bufa 86 3 67 47.22 69.28 18.8 122.1

counter 42 0 20 6.21 6.64 0.1 0.1
fifo 147 3 4 64.68 66.01 14.3 18.7
gcd 147 3 35 35.36 70.44 48.6 397.1

huffman 227 1 92 18.85 29.86 1.8 3
microwave 42 4 57 6.45 7.27 0.1 0.1

miim 841 10 98 13.51 39.92 1.9 53
nim 121 2 33 57.17 87.82 233.2 574.3

nullmodem 262 2 100 10.91 11.27 0.3 0.4
palu 115 5 16 9.49 9.78 0.3 0.4

Table 4. Benchmark Information and Model Checking Results

Design Mem (MB) CPU (s) SC BC EC (%)

am2901 0.01 0.28 100.00 100.00 -
am2910 0.01 0.28 100.00 100.00 100.00

bpb 0.01 0.27 100.00 100.00 100.00
bufa 0.01 0.19 100.00 100.00 100.00

counter 0.03 0.24 20 100.00 100.00
fifo 0.01 0.22 100.00 100.00 100.00
gcd 0.01 0.29 98.31 93.75 100.00

huffman 0.01 0.26 98.77 100 100.00
microwave 0.01 0.21 100 100 100.00

miim 0.01 0.22 96.19 89.06 23.47
nim 0.01 0.26 36.27 83.33 21.21

nullmodem 0.01 0.22 72.46 47.37 36.00
palu 0.01 0.21 100.00 100.00 100.00

Table 5. Simulation Verification Results

12

Figure 7. Complex Control Flow

Figure 8. Data Aliasing Example

13

References

[1] Vcs. http://www.synopsys.com.

[2] D. Abts and M. Roberts. Verifying large-scale multi-
processors using an abstract verification environment.
In Design Automation Conference. ACM Press, 1999.

[3] R. Alur and T. Henzinger. Vis: A system for ver-
ification and synthesis. In International Conference
on Computer Aided Verification, pages 428–432, July
1996.

[4] B. Bentley. Validating the intel pentium 4 micropro-
cessor. In Design Automation Conference, 2001.

[5] E. J. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[6] G. A. Hayek and C. Robach. From specification val-
idation to hardware testing: A unified method. In In-
ternational Test Conference, pages 885–893, October
1996.

[7] K. N. King and A. J. Offutt. A fortran language system
for mutation-based software testing. Software Prac-
tice and Engineering, 21(7):685–718, 1991.

[8] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[9] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[10] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi-
valued ar-automata. In Design, Automation and Test
in Europe Conference and Exhibition. IEEE, 2001.

[11] B. Wile, J. Goss, and W. Roesner. Comprehensive
Functional Verification : The Complete Industry Cy-
cle. Morgan Kaufmann Publishers, 2005.

14

