
Collaborative Multithreading: An Open Scalable Processor Architecture for

Embedded Multimedia Applications

Wei-Chun Ku, Shu-Hsuan Chou, Jui-Chin Chu, Chih-Heng Kang, Tien-Fu Chen, and Jiun-In Guo

Computer Science and Information Engineering,

National Chung Cheng University,

Chiayi, Taiwan, R.O.C.,

{kuwc, csh93, cjc, kch91, chen, jiguo}@cs.ccu.edu.tw

Abstract

Numerous approaches can be employed in exploiting

computation power in processors such as superscalar,

VLIW, SMT and multi-core on chip. In this paper, a

UniCore VisoMT processor is proposed, which unifies

VLIW and multithreading by providing an efficient control

and data communication model, while offering explicit

parallelisms for embedded applications. The architecture

concurrently executes a main thread and several

accelerative threads, coordinated by the main thread. A

switch-based register-file is provided for fast data exchange

between these accelerative threads. Moreover, a SMT

helper function unit is employed for controlling and

resource-sharing between accelerative threads, and an

event-driven mechanism is introduced for synchronization

between the main thread and these accelerative threads. Our

results show that the proposed architecture provides area

and performance advantages for embedded multimedia

applications.

1. Introduction

Contemporary portable and home AV electronics with

increasing embedded multimedia functionality demand

large-volume data processing and computation power on

SOC engines. The complication is exaggerated by

requirements of supporting multi-modes on a single system,

such as MPEG 1/2/4 and H.264. Due to a high NRE cost

(Non-Recurring Engineering cost) and limited time-to-

market, a powerful programmable processor-based solution

is preferable to those using dedicated hardware accelerators.

Moreover, a configurable architecture that enables an

embedded processor paying less cost to be suitable for

various embedded applications without significantly

changing its basic architecture is also a key design issue.

Numerous approaches can be employed in exploiting

computation power in processors such as superscalar,

VLIW, simultaneously multithreading (SMT) [1][4], vector

machine [3][5][6], and multi-core on chip (CMP) [2].

In this paper, we propose a UniCore VisoMT

programming paradigm and its implementation architecture

(VIrtual VLIW, SMT with Open configurable architecture),

which can provide a multithreading programming model to

ease programming efforts without relying on compiler to

exploit instruction level parallelism as well as a very fast

data exchange mechanism for high internal data bandwidth.

The main theme of the proposed architecture is made to

minimize integration costs at design time and to reduce the

time to market as does in the multicore architecture (by

independent threads), and but also provides a flexible and

efficient interface for integrating required high-

performance functionalities. The processor can be divided

into two parts as shown in Figure 1. The left part is a

normal RISC-like processor (MPU) and the right part is a

cluster of several data-intensive datapaths, providing vast

computing power. The collaborative multithreading part

adopts a multithreading mechanism where a main thread

running on the RISC processor is responsible for controls

and synchronization of data communication among threads,

and several helper threads, managed by the main thread,

provide large and various computation capabilities for

multimedia accelerations. Moreover, fast data

communication and data reuse are achieved by a “bank-

switchable” register file. The adding and removing of

different FU’s can be configurable at the design time

without re-compiling the code of other threads.

We compare several multithreading architecture in the

Table 1, The new architectures change the thread in every

cycle in general, and the data sharing of our architecture is

dual mode that is RF bank mode and memory mode. The

thread type of Vector architecture and UniCore VisoMT is

heterogeneous, and it more suit to write program for

designer.

Table 1: The comparison of multithreading architecture

Multithread

architecture

Coarse

grained

Fine

grained
SMT Vector MT

UniCore

VisoMT

Thread

Switch

Costly

stall

Every

cycle
intermix

Every

cycle

Every

cycle

Thread

parallelism
No No Yes Yes Yes

Data

Sharing
Memory Memory Memory Memory

Hierarchical

(RF Bank

Memory)

Thread Type homogeneous heterogeneous heterogeneous

251424403677/06/$20.00 ©2006 IEEE ICME 2006

2. UniCore VisoMT Processor Architecture
The UniCore VisoMT model unifies VLIW with

simultaneously multithreading to achieve high performance.

Figure 1: UniCore VisoMT Processor Architecture

The abstract architecture allows concurrent execution of a

main thread with several assistant threads, which are called

accelerative threads (AT). These accelerative threads,

accelerating specific complex computations, are

concurrently executed in a collaborative way and are

coordinated by the main thread by a pre-determined

execution flow. The accelerating part can be extracted by

software profiling for embedded applications, such as sum

of absolute difference and matrix-vector multiplication, etc.

Moreover, the architectural framework provides interface

for plugging functionalities, and they are scalable and

configurable based on the applications required.

 As shown in Figure 1, a main control thread (MCT)

maintains the flow control of the whole program code, and

it starts an accelerative thread by a predetermined execution

flow of software analysis. The starting interface, which

passes the start signal to the front-end process, is completed

by an event-driven synchronization module of an AT by a

package fashion. The activated AT will be started and by its

program counter it executes its own firmware program code,

which is coded in a 2-way VLIW format. The VLIW

instruction contains two micro-operations, and the possible

combination of the two may be one accelerative function

unit (AFU) instruction with one helper function unit (HFU)

instruction or two accelerative function unit instructions.

Therefore, a firmware program code is achieved by the help

of one AFU and the HFU, where the AFU executes data,

and the HFU is in charge of program control.

The work load of the MPU increases significantly while

maintaining the program control of each AT. We provide a

small simultaneously multithreading SMT-HFU that can

execute simple RISC instructions to assist in the flow

control and obtainment of data for each AT. Therefore, the

MPU can be freed to execute the main program control of

the program code or to start an AT. Multiple parallel AT’s

impose on the burden of ports of instruction cache (I-cache).

We simplify the number of ATs that can access the I-cache,

and only one AT can access it at a time. Therefore, we need

an instruction cache schedule (ICS) logic, and only the AT

that has the highest priority can access it. Moreover, each

VLIW instruction may have one HFU instruction. If N

AT’s concurrently executes, there will be at most N HFU

instructions sent to the HFU each cycle. For the reason, we

need a helper dynamic schedule (HDYS) logic to schedule

each HFU instruction according to the priority.

The instruction format of our thread is VLIW format,

each AFU focus on its work, the load/store and branch

work does by HFU, each FU is work balance.

2.1 Efficient Architectural Multithreading Supports

We provide two mechanisms to enhance the efficiency for

control and data communications among AT’s.

Event-driven Communication Mechanism

While the MCT issues start thread signals, a main control

wrapper will pack the signals, and then sent the packed

package to an internal event communication controller

(IECC). While each AT finishes execution, each AT will

also inform the MCT that it has been halted through the

event-driven notification mechanism.

While adding new AFUs, we must spent time on adding

control signals between the MPU and the added AFUs

before. However, it is helpful to reduce the time for

changing the interface while coding through the mechanism.

Moreover, it reduces routing area and unpredictable bugs

possibly occur on adding signals.

Figure 2: Accelerative register file bank switch can be reset

by a start thread instruction.

Data Communication Mechanism

Multimedia applications need bulk of data for computations.

However, the volume of register file that contains control

and data information is not sufficient for computations. It

leads to numerous data movements between memory and

26

registers, resulting in the consumption of power, and

impacts the difficulty on synchronization between ATs. We

provide tightly-coupled data communication between two

ATs as shown in Figure 2. The ARFBS records two ARF

banks used by each AT. While an AT needs data stored in

an ARF bank used by another AT, the bank_set field of the

start thread instruction will be used for exchanging the two

ARF banks. We only have to specify the bank ID, which is

now occupied by a halted AT, as one of the bank ID

indicated by the bank_set field of the start thread

instruction. Therefore, from Figure 2 we can see that the

bank with bank ID 1 used by AT 0 is exchanged with the

bank with ID 0 used by AT 1.

3. Collaborative VisoMT Programming Model

In this section, we describe how to rewrite a program code

to achieve real-time constraint under the architectural

model. We take a function as the basic unit for rewriting,

for example, motion estimation in MPEG-4 codec. Each

original program code of the complex computations is

rewritten to firmware program code. While developing each

firmware program code, we must realize that each AT is

developed individually, which incorporates an AFU for

computation and the HFU for program control. Therefore,

the firmware program code must contain HFU instructions

for flow controls and obtainment of data. For the reason,

each firmware program code must be written by hand.

The basic concept is illustrated in Figure 3. The whole

program code must be embraced by an outer while loop

while programming, and it is controlled by the MT.

Moreover, several complex computations have been

extracted from the internal program code of the while loop.

These extracted program codes are rewritten to firmware

program codes. We analyze iterations of the outer loop, and

make these firmware program codes that are not data

dependent to be executed in parallel for performance

improvement. Therefore, several ATs can be executed

simultaneously to parallelize the iterations. We take video

coding as an example, and use a macro block as the basic

processing unit, such that each iteration loop can process a

macro block at a time. Therefore, several macro blocks can

be processed simultaneously. However, these processed

macro blocks are not started to process at the same time

because each firmware program code must be executed by

its own accelerative function unit. Figure 4 depicts an

example of three iterations which are processed

simultaneously. Original program code is listed on the left

side, and we parallelize each firmware program code with

the main program code, which is depicted on the right side.

Each firmware program code is executed by its

corresponding AT, and each AT is started at different time.

Next we modify the whole program code. First, we must

insert start thread subroutine calls to start these ATs, and it

will pass parameters for each AT. The start thread

subroutine call is a function call, which utilizes inline

assembly code inserted in the original program code. Users

must specify four parameters in the subroutine call,

including the thread_id, the start address of a firmware code,

bank pair number. Second, we introduce interrupt

mechanism to synchronize between the main thread and the

ATs. Therefore, the architects must develop interrupt

service routine (ISR) for the interrupt, and the ISR will

update a flag in a control register, which indicates that an

AT has been halted.

Figure 3: Extracted complex computations are rewritten

Figure 4: Concurrent execution of accelerative threads

4. Evaluation Results

For evaluating the performance of the UniCore VisoMT

model, we use XviD, a public MPEG-4 codec. Based on the

programming model in Section 3, we modify the encoder of

the XviD program code, and build a firmware library for

the extracted computations. Each firmware program code is

evaluated, and the simulation results are compared with TI

C64 DSP processor. Moreover, the MPU is also subsumed

to compare with these processors. We use O2-level

27

optimization option to compile these C codes for TI C64.

Moreover, the firmware program codes are written in

assembly language for our UniCore VisoMT. The overall

system parameters for our chip are listed in Table 2. Three

AFUs are integrated for the encoder, which are vector 0,

vector1, and butterfly. We choose round robin as the

scheduling policy for ICS and HDYS modules.

Table 2: System Parameters for VisoMT architecture
Register File Item Parameter

Bank * Entry * Size

HRF
4 * 16 * 32
4R * 2W

MRF
Read/Write Port

1 * 32 * 32

8 * 32 * 64
2R * 1 W

CRF
4R * 2W

Size

Data Cache

Policy

128 bitsPort Width

2
Instruction Cache

Port

8K

Pseudo LRU

Bank * Entry * Size
Read/Write Port

Bank * Entry * Size
Read/Write Port

Viewable ARF Banks

of Partial Mapping

Size

Policy

32 bits and 64 bitsPort Width

2Port

8K

Pseudo LRU

Policy

FCFS

Round Robin

Round RobinICS Policy

Memory Switch Policy

HDYS Policy

Vector0

Butterfly

Vector1 4

0

0

Table 3 illustrates the comparison of the UniCore

VisoMT processor and TI’s C64 DSP. Moreover, the TI

C64 DSP processor averagely reaches 5.51 frames per

second, while the UniCore VisoMT can reach 15.93 frames

per second.

Table 3: Comparisons of MPU, TI C64, and VisoMT
Frames Per Second@352x288 Resolution in 200MHz

Testcase MPU TIC64 VisoMT

Akiyo 6.16 11.84 17.35

Bus 3.85 5.37 15.18

Foreman 4.15 6.12 15.25

Average 4.72 7.77 15.93

4.2 Chip Implementation

Each module of the UniCore VisoMT is synthesized and

reported in Table 4. Three primary fields are listed in the

table – main control thread, accelerative thread, and

memory system. We also listed the timing constraint, actual

arrival time, area, and the number of each module in the

table. From the table, we can see that the UniCore VisoMT

can run at 200MHz with the area of approximate 0.47 cm2

in 180mm process. Moreover, the butterfly function unit is

designed for DCT and quantization, which consists of 16

multipliers and a quantized table, such that it is the critical

path in the architecture. We provide 8k I-cache, and 8k D-

cache.

Table 4: The Area and Speed of Each Module in 180 mm.
Areas and Speeds of Modules

Module Name

Timing

Constraint

(ns)

Arrival

Time(ns)
Area(m2) Counts

Main Thread

MCT Frontend 3 2.08 101588 1

MPU 5 4.38 424485 1

MCRF 1.5 1.5 120960 1

Accelerative Thread

ICS 1 1.27 29335 1

AT Frontend 3 2.03 242010 1

HFU 5 4.41 403299 1

Vector FU 5 2.74 183058 2

Butterfly FU 5 4.78 782838 1

HDYS 1 0.65 13029 1

HRFS 1 0.38 13425 1

HRF 1.5 1.5 46284 4

ARFBS 1 0.75 111663 1

ARF 1.5 1.5 201600 8

Memory System

I-Cache Controller 3 2.38 261706 1

D-Cache Controller 3 2.78 688172 1

Cache Data Bank 2 1 1493863 8

Cache Tag Bank 2 1 88146 8

Cache LRU Bank 2 1 35046 2

Total 5 4.38 500*9400 1

5. REFERENCES

[1] M. Chaudhuri and M. Heinrich, “SMTP: An

architecture for next-generation scalable multi-

threading”. In Proc. of 31st ISCA, June 2004, 124–135.

[2] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi

and K.I. Farkas, “Single-isa heterogeneous multi-core

architectures for multithreaded workload performance”

In Proc. of 31st ISCA, June 2004, 64–75.

[3] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B.

Pharris, J. Casper and K. Asanovic, “The vector thread

architecture”. In Proc. of 31st ISCA, June 2004, 52–63.

[4] Il Park, B. Falsafi, T.N. Vijaykumar, “Implicitly-

multithreaded processors”. In Proc. of 31st ISCA, June

2003, 39–51.

[5] C. Kozyrakis, D. Patterson, “Overcoming the limitations

of conventional vector processors” In Proc. of 31st

ISCA, June 2003, 399–409.

[6] B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, S.

Ciricescu, R. Essick, and A. Saidi, “The reconfigurable

streaming vector processor”. In Proc. of 36th MICRO,

2003, 141–150.

[7] G. L. Corinna and G. S. Mark “Simple vector

microprocessors for multimedia applications”. In Proc.

of 36th MICRO, 1998, 25–36

28

