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Abstract— Leveraging the power of scratchpad memories (SPMs)
available in most embedded systems today is crucial to extract maximum
performance from application programs. While regular accesses like

scalar values and array expressions with affine subscript functions
have been tractable for compiler analysis (to be prefetched into SPM),
irregular accesses like pointer accesses and indexed array accesses have
not been easily amenable for compiler analysis. This paper presents

an SPM management technique using Markov chain based data access
prediction for such irregular accesses. Our approach takes advantage of
inherent, but hidden reuse in data accesses made by irregular references.
We have implemented our proposed approach using an optimizing

compiler. In this paper, we also present a thorough comparison of
our different dynamic prediction schemes with other SPM management
schemes. SPM management using our approaches produces 12.7% to
28.5% improvements in performance across a range of applications with

both regular and irregular access patterns, with an average improvement
of 20.8%.

I. MOTIVATION

Scratchpad memory (SPM), is a small, high-speed on chip data

memory (SRAM) that is physically addressed but mapped into

the virtual address space. The advantages of on-chip scratchpad

memory over a conventional hardware managed on-chip cache is two

fold. Firstly, references to a cache are subject to conflict, capacity

and compulsory misses, while references to scratchpad guarantee

that they will result in a hit, as data movements are managed by

software. Secondly, scratchpads are accessed by direct addressing.

This mitigates the overheads of expensive hardware cache tag

comparison, typically present in set associative caches. However,

exploiting these advantages of SPMs is possible only when we have

appropriate compiler analysis techniques to effectively analyze the

data access patterns exhibited by the application code and identify

the frequently reused data to be maintained in limited scratch pad

memory space that is available.

While there are numerous publications ([1], [2], [3], [4], [5], [6])

that focus on SPM management for programs with regular array

accesses, only a few prior studies have considered irregular accesses.

What we mean by ”irregular accesses” in this paper are data accesses

that cannot be statically resolved at compile time. Two examples of

such irregular accesses are illustrated in Figure 1. In (a), a pointer is

used to access data elements within a loop. Since in general it may

not be possible to completely resolve pointer accesses statically, the

compiler may not be able to determine which data elements will be

accessed at runtime. Similarly, in (b), the set of elements accessed

from array A depends on the contents of index array X , which may

not be known in general until runtime. In both these cases, it is not

possible at compile time to determine the best set of elements to

place into the SPM.

However, we want to point out that the lack of static an-

alyzability does not necessarily mean lack of locality in data
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for (t = 1; t<N;t++){

…

a = *x + t;

x = x -> next;

…

}

(a)

for (t = 1; t<N;t++){

…

a = A[X[t]];

…

}

(b)

Fig. 1. Sample irregular access patterns. (a) Irregular access to data by
pointers (b) Irregular access to data by indexed array expression.

accesses. Consider, for example, Figure 1(b) again. Within the

main loop of this code fragment (loop t), the same array ele-

ments may be reused over and over again. Consequently, based

on the contents of this index array, accesses to array A can also

exhibit high levels of data reuse, although this is not evident

at compile time. To be more specific, assuming N is 20 for

illustrative purposes, if the contents of array X happen to be

{8, 3, 6, 3, 3, 17, 18, 3, 3, 3, 6, 8, 18, 18, 17, 6, 8, 8, 6, 18}, the same

five elements of array A ({A[3], A[6], A[8], A[17], A[18]}) are

accessed repeatedly by loop t. Therefore, if somehow this pattern

can be captured dynamically (during the course of execution), via

a compiler inserted code, significant performance gains can be

achieved. In this paper, we present and evaluate a novel approach to

this problem. Specifically, targeting data-intensive applications with

irregular memory access patterns, this paper makes the following

contributions:

• We propose a Markov Chain (MC) based data access pattern

prediction scheme. The goal of this scheme is to predict the

next data block to be accessed by execution, given the current

data block access.

• We present a compiler-based code restructuring scheme that

employs this MC based approach. This scheme transforms a

loop into two sub-loops. The first sub-loop forms the training

part and is responsible for constructing a MC based memory

access pattern prediction model. The second sub-loop is the

prefetching part where data is prefetched into the SPM based

on the MC based prediction model constructed in the training

part.

• We quantify the benefits of this approach using seven data-

intensive applications. Five of these applications have irregular

data accesses and two have regular data accesses. Our experi-

mental results show that the proposed MC based scheme is very

successful in reducing execution time for all seven applications.

We also present the results from our sensitivity experiments,

and compare our approach to several previously proposed SPM

management schemes.

II. RELATED WORK

Scratch-pad memories (SPMs) have been widely used in both

research and industry, focusing mainly on the management strategies

such as static versus dynamic and instruction SPM versus data SPM
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Fig. 2. CDF of the number of distinct data elements accessed by a reference.

[7], [8]. Egger et al [9] present a dynamic SPM allocation strategy

targeting a horizontally partitioned memory subsystem for processors

in the embedded system domain. In [10], authors propose a fully

automatic dynamic SPM management technique for instructions,

where required code segments are being loaded into the SPM on

demand at runtime. Puaut and Pais [11] present an algorithm for

off-line selection of the contents of on-chip memories. Li et al [4]

employ a compiler-based memory coloring technique to allocate the

arrays of a program onto an SPM. Golubeva et al [12] tackle the SPM

management problem from a leakage energy perspective. Nguyen et

al [5] present an SPM allocation scheme that does not require any

compiler support for interpreted-language based applications such as

Java. In [13], authors present a compile-time method for allocating

heap data to SPM. Nguyen et al [14] discuss an SPM allocation

scheme targeting a scenario where SPM capacity is unknown at

compile time. This compiler method provides portability to different

processor implementations with different SPM sizes.

Some embedded array-intensive applications do not have regular

access patterns that can easily be analyzed by static techniques. For

such applications, conventional SPM management schemes will fail

to produce the best results and will prevent allocating the SPM

efficiently [15], [16], [17]. To tackle this problem, Absar et al [15]

propose a compiler-based technique for analyzing irregular array-

access, and mapping such arrays to the SPM. On the other hand,

Chen et al [16] present an approach for data SPMs, where the task

of optimization is divided between compiler and runtime. Cho et

al [17] present a profiling based technique that generates a memory

access trace. This trace, then, is used to identify the data placement

within the SPMs. While [15] and [16] can handle only irregular

accesses due to indexed array expressions, our approach can handle

pointer codes as well. Also, as against [17], we do not use profile

data, and instead use compiler support to capture runtime behavior

and exploit it. Since [15], [16] and [17] are the most relevant prior

works to this paper, in our experiments we compare our approach

to these three approaches.

III. OUR APPROACH

A. Hidden Data Reuse in Irregular Accesses

As stated earlier, the main motivation for our work is the fact that

the lack of compile-time analyzability does not necessarily mean

lack of locality in data accesses. To quantify this, we collected

statistics on five data-intensive applications that are hard to analyze

using compile-time techniques alone. The graph in Figure 2 plots

the CDF of the number of distinct data elements accessed by a

reference (when all references are considered). A point (x, y) in

this plot indicates that y% of the accesses made by the reference

are to x or fewer distinct data elements. For example, for application

vpr, 11.4% of the memory accesses made by a reference are to only
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Fig. 3. High level view of our approach depicting the division of
iterations into training part and prefetching part and associated transformation
procedures.

5 distinct data elements, that is, there is significant data reuse per

reference. Unfortunately, due to irregular data accesses (i.e., because

of the way the code is written), this data reuse cannot be captured

and exploited at compile-time.

We propose to use Markov Chains (MC) to capture and optimize

such data accesses at runtime. Figure 3 shows the high-level view

of our approach. For each loop nest of interest, the first few loop

iterations are used to build a Markov Model, which is used to fill

a compiler-generated data structure, so that the remaining iterations

can take advantage of the available SPM. In the remainder of this

section, we present the details of our MC based approach.

We can think of MC as a finite state machine such that if the

machine is in state qi at time i, then the probability that it moves

to state qi+1 at time i + 1 depends solely on the current state. In

our MC based formulation of the SPM optimization problem for

irregular data accesses, each state corresponds to an access to a data

block, i.e., a set of consecutive data elements that belong to the

same data structure. The weight associated with edge (i, j), i.e., the

edge that connects states qi and qj , is the probability with which

the execution touches block qj , right after touching data block qi.

B. Different Versions

Figure 4 gives an example that shows the code transformation

performed by our proposed approach. Our approach operates at a

loop nest granularity, that is, it is given one loop nest at a time.

It divides the given loop nest in two parts (sub-loops). The first

part is the training part and its main job is to fill a compiler-

generated data structure, which is subsequently used in the second

part. This data structure represents the MC based model of data

accesses encountered in the training part. The second part, called

the prefetching part, uses this model to issue prefetch requests. Each

prefetch request brings a new block to the SPM ahead of time,

i.e., before it is actually needed. Therefore, at the time of access,

the execution finds that block in the SPM and this helps improve

performance and power, though in this work only performance

benefits have been evaluated. We can see from Figure 4 that the first

k iterations (k << N ) are used for the training part. The remaining

iterations are tiled into tiles of t iterations each, and prefetching for

the each tile is performed at the beginning of the tile. Selection of

t is done such that off-chip memory access latency can be hidden.

We now want to discuss the functionality of next(.). For a

given data block Bi, next(Bi) gives the set of blocks that are to

be prefetched within the prefetching part. Clearly, there are many

different potential implementations of next(.). Below, we summarize

the implementations evaluated in this work, using the sample Markov

Model illustrated in Figure 5:

• A1: It returns only one block which corresponds to the edge

in the Markov Model with the highest weight (transition of
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for (i = 1; i<N; i++){
…
a = a + A[X[i]] * B[X[i]] ;
…

}

for (i = 1; i<k; i++){
Compute next(A[X[i]]) and next(B[X[i]]);
…
a = a + A[X[i]] * B[X[i]] ;
…

}

for (ii = k; ii<N; ii=ii+t){
…
prefetch next(A[X[i]]);
prefetch next(B[X[i]]);
…
for(i=ii;i<ii+t;i++){

…
a = a + A[X[i]] * B[X[i]] ;
…

}
}
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Fig. 4. Code transformation depicting the training and prefetching parts in
our approach.
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Fig. 5. Sample Markov Model. Note that this figure shows only high
transition probabilities; low ones are omitted for clarity. Each state qi denotes
an access of block Bi, and the weight associated with edge (i, j),between
states qi and qj corresponds to the probability with which the execution
touches block qj , right after touching data block qi.

probability). For example, in Figure 5, if the current data

block being accessed is B0, next(.) will return B2. While

this implementation is simple and can be effective in many

cases, it may not perform well in every case, as even the

highest weight may not be very high. For example, in the same

transition diagram, if the current block being accessed is B6, the

prefetched block will be B9, but, the corresponding probability

is only 22%.

• A2: This alternative is a variant of the previous one and

returns a block only if the corresponding transition probability

is the largest among all blocks and above a preset threshold

value (δ). In this way, we guarantee that the likelihood of the

prefetched block being accessed by execution is high. Again, in

the example of Figure 5, if the current data block is B0 and δ is

50%, no block is prefetched under the A2 scheme. As another

example, if the threshold value is 50%, next(B4) is B3.

• A3: The third alternative prefetches k blocks with the largest

transition probabilities. In our example of Figure 5, next(B2)

would be {B4, B5} if k is set to 2.

• A4: The last alternative we experiment with selects k blocks

to prefetch such that the cumulative sum of the transition

probabilities of these blocks is larger than a preset threshold

value (δ). As an example, if δ is set to 80%, next(B4) would be

{B3, B9} under this alternative. Notice that under this scheme

next(.) set can contain any number of blocks.

It is to be noted that some of these alternatives work with

parameters, the values of which may be critical to their success.

More specifically, schemes A2 and A4 use a threshold parameter (δ),

whereas A3 operates with a k parameter.When there are multiple

TABLE I

BENCHMARKS AND THEIR CHARACTERISTICS.

Name Data Size (MB) Dominant Access Type

terpa 1.2 3.88 index arrays

aero 5.27 index arrays

bdna 5.9 index arrays

vpr 4.43 pointer based

vortex 2.71 pointer based

oa filter 2.86 regular

swim 3.76 regular

options (combination) that lead to the same threshold value of δ,

the A4 alternative selects the combination with minimum number

of blocks. The important point to note is that the code shape shown

in Figure 4 does not change much with the particular scheme

(alternative) adopted; the different schemes change only the contents

of next(.).

After determining the next(.) blocks in the training part, it

is important to efficiently insert the prefetch instructions to the

scratchpad memory for each next block to be used in the successive

iterations of the prefetching part. We use an algorithm similar to [19]

in order to insert prefetch instructions in the code to prefetch data

into the SPM. The prefetch distance (the time difference between

time of prefetch and time of first use of a data block) is an important

parameter that is determined using the approach in [19], which can

be computed as a simple function of the estimated time for a single

prefetch and the estimated cycle of each loop iteration. Note that,

although this compiler prefetch algorithm is efficient, the choice of

the compiler algorithm for prefetching is orthogonal to the problem

of predicting the next(.) blocks. It is also important to note that, the

next(.) set of each block could potentially consist of more than one

block (depending on whether A1, A2, A3 or A4 is being used), and

in such a case, we conservatively insert prefetch for each block in

the next(.) set.

TABLE II

SIMULATION PARAMETERS.

CPU 2-issue embedded core

SPM Capacity 64KB

Block Size 1KB

SPM latency 2 cycles

Off-chip memory latency 200 cycles

A fully adaptive scheme that selects these parameters dynamically

can be expensive to implement. Therefore, we fix the values of

these parameters at compile time. Obviously, a programmer can

experiment with different values of parameters in a given alternative,

and select the best performing one for the application at hand.

Another potential issue is what happens when our approach is

applied to code with regular data access patterns. While our approach

works with such codes as well, the results may not be as good

as those that could be obtained using a conventional (static) SPM

management scheme. This is due to the overheads incurred by our

approach (mainly within the training part) at runtime. In order

to quantify this behavior, we also applied our approach to two

codes with regular data access patterns, and reported the results in

Section IV. Note that a compiler implementation can select between

our approach and a conventional static scheme, depending on the

application code at hand. This is possible because a compiler can

infer that a given reference is irregular, though it cannot fully analyze

the irregularity it detects.
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Fig. 6. Percentage improvement (reduction)
in execution cycles under different schemes.
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IV. EXPERIMENTS

We implemented our proposed approach using the SUIF compiler

[21], and performed simulations with the schemes (A1 through A4)

above as well as three SPM management schemes. To perform

our simulations, we enhanced SimpleScalar [22]. The important

simulation parameters and their default values are listed in Table II.

The set of applications used in this study are given in Table I.

In the following discussion, Static, Alt-I and Alt-II represent the

schemes explained in [3], [16], and [15], respectively. The results of

our schemes include both the training and prefetching parts, i.e.,

all overheads of our schemes are captured. All the performance

improvement results presented below are with respect to a version

that uses a conventional (hardware managed) cache of the same size

as the SPM capacity used in other schemes.

Our first set of results are present in Figure 6, and give the

percentage improvement (reduction) in execution cycles under the

different schemes explained above. Our first observation is that the

average performance improvements brought by schemes Static, A1,

A2, A3, A4, Alt-I, and Alt-II are 11.9%, 21.0%, 21.5%, 20.5%,

20.0%, 10.4% and 10.6%, respectively. We also note that our

dynamic schemes (A1 through A4) generate much better savings

than the static scheme for all five applications with irregular access

patterns. This is expected as the static SPM management scheme in

[3] can only optimize a few loop nests in these applications, namely,

the nests with compile-time analyzable data access patterns, and the

remaining loop nests remain unoptimized. In contrast, our approach,

using the explained MC based model, successfully optimizes these

applications. We also observe that our dynamic scheme improves

performance for our two regular applications (oa filter and swim) as

well, though the results (savings) are not as good as those brought

by the static scheme. This difference is mainly due to the runtime

overheads incurred by our scheme as discussed earlier. However,

as explained earlier in Section III-B, an optimizing compiler may

choose between the static and dynamic schemes depending on the

application code at hand.

Among our schemes, we observe that A2 generates better results

than the rest in terpa 1.2. This is because the transition diagram for

terpa 1.2 is very dense, and as a result, given a node, transition

probabilities are almost equally distributed in many cases. This

behavior in turn favors A2 over A1, as A2 is more selective in

prefetching and does not perform useless prefetches. On the other

hand, A3 and A4 issue too many prefetches in this application, and

this contributes to the runtime overheads. In applications vpr and

vortex, the extra overheads brought by A3 and A4 are compensated

by their benefits (the increase in SPM hit rate as a result of more

prefetches), and the overall performance is improved.

We now discuss how our approach compares against two

previously-proposed schemes that try to address irregular data ac-

cesses. Alt-I tracks the statements that make assignments to index

arrays and use these values to determine the minimum and maximum

bounds of the data arrays. Since this scheme targets irregularity that

arises from indexed array accesses, it does not offer a solution for

pointer based applications, and consequently, it performs no better

than the static scheme for our pointer applications (vpr and vortex).

In fact, due to the overheads involved, Alt-I performs worse than the

static scheme [3] in these two applications. The same observation

goes for Alt-II as well, which also targets exclusively indexed array

accesses. When the index array applications (terpa 1.2, aero, and

bdna) are considered, our schemes are better than both Alt-I and

Alt-II, thanks to the inherent locality exhibited by the indexed array

based data accesses.

We also compared our approach (version A1) to the SPM man-

agement scheme in [17] which uses profile data to place data into

the SPM. To do this, we profiled each application using an input set

(Input-0) and then executed the same application using two different

input sets, Input-I and Input-II, both of which are different from

Input-0. The bar-chart in Figure 7 gives the additional performance

benefits our approach brings over the scheme in [17]. The average

improvement when considering all benchmarks is around 13.5%.

The reason for this is that in irregular applications the input data

used for execution can change the behavior of the application

significantly. Therefore, any profile based method will have difficulty

in optimizing irregular codes, unless the profile input is the same as

the input used to execute the application.

Since our schemes (A1 through A4) incur runtime overheads, it

is also important to quantify these overheads. Figure 8 gives the

contribution of these overheads to the overall execution cycles in

our applications. We observe that the overheads range between 4.4%

and 9.1%, depending on the particular alternative. As expected, most

overheads are incurred by the A4 alternative.

As noted earlier, different versions (A1 through A4) work with

different parameters. Now, we quantify the impact of these parame-

ters. Due to space constraints, we focus on A2 and A3 versions only.

First, in Figure 9, we present the sensitivity of the A2 version to the

threshold value (δ), for our irregular applications. It is easy to see

from these curves that, for each application, there is an optimum

threshold value (among those tested). Working with a smaller

threshold value causes unnecessary prefetches to the SPM, while

employing a larger threshold value suppresses a lot of prefetches,

some of which could have been useful. Similarly, Figure 10 plots the

sensitivity of the A3 version to parameter k. It can be seen that the

different applications reach differently to varying k. For example,
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terpa 1.2 and vpr take advantage of increasing k values, whereas

aero’s performance decreases as we increase k.

We now quantify, in Figure 11, the influence of the granularity

of prefetch on our savings. Each curve in this plot represents the

average improvement value (across all applications) under varying

data block sizes. the default block size used in our experiments

so far was 1KB (Table II). We see from these results that block

size selection is a critical issue. For example, working with large

blocks is not very useful as it causes frequent displacements from

the SPM. While this argues for employing smaller blocks, doing

so can lead to complex Markov models, which may be costly to

maintain at runtime. In addition, small block sizes also increase the

activity between the SPM and the off-chip memory, which can in

turn affect overall performance. Considering these two factors, one

has to make a careful choice for the block size.

It is also important to study the behavior of our scheme under

different SPM capacities. The default SPM capacity used in our

experiments is 64KB (Table II). The results plotted in Figure 12,

which represent average performance improvement values across all

applications, show that our dynamic scheme is consistently better

than the remaining schemes for all SPM capacities tested. As can

be seen, our performance improvements reduce a bit with increasing

SPM capacities. This is expected as the presented results are values

normalized with respected to the original case, i.e., the case with

conventional hardware-managed cache. As the on-chip memory

capacity (SPM or cache) is increased, the difference between our

scheme and the original case gets reduced. It should also be noted

however that, as the increase in data set size is usually much higher

than increase in on-chip memory capacities, we can expect higher

savings from our scheme in future systems.

V. CONCLUDING REMARKS

We proposed various schemes to predict irregular data accesses in

data intensive applications using a Markov chain based model. Using

such a data access pattern prediction model for prefetching data into

scratchpad memory helps improve the performance of applications

with irregular data accesses to a large extent. We observe that

scratchpad memory management using our approaches produces

12.7% to 28.5% improvements in performance across a range of

applications with both regular and irregular access patterns, with an

average improvement of 20.8%. Our current work includes porting

this SPM management scheme to a chip multiprocessor environment

and testing its effectiveness using multithreaded applications.
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