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ABSTRACT
In addition to wirelength, modern placers need to consider
various constraints such as preplaced blocks and density.
We propose a high-quality analytical placement algorithm
considering wirelength, preplaced blocks, and density based
on the log-sum-exp wirelength model proposed by Naylor et
al. [20] and the multilevel framework. To handle preplaced
blocks, we use a two-stage smoothing technique, Gaussian
smoothing followed by level smoothing, to facilitate block
spreading during global placement. The density is con-
trolled by white-space re-allocation using partitioning and
cut-line shifting during global placement and cell sliding
during detailed placement. We further use the conjugate
gradient method with dynamic step-size control to speed
up the global placement and macro shifting to find better
macro positions. Experimental results show that our placer
obtains the best published results.

1. INTRODUCTION
High-performance IC designs usually require significant

white space for further performance optimization, such as
buffer insertion and gate sizing. Therefore, density con-
trol and white-space allocation become very important. A
wirelength-driven placer without considering placement den-
sity tends to pack blocks together to minimize wirelength.
However, an over congested region may not have enough
white space for buffer insertion, and thus degrade the chip
performance. Although some congestion-aware placement
algorithms were proposed [18, 23], these algorithms intend
to minimize the routing congestion, which is different from
the density control since density can still be high for some
regions as long as no routing overflows occur in those re-
gions.

Further, modern chip designs often consist of many pre-
placed blocks, such as analog blocks, memory blocks, and/or
I/O buffers, which are fixed in the chip and cannot overlap
with other blocks. These preplaced blocks impose more con-
straints on the placement problem. A placement algorithm
without considering preplaced blocks may generate illegal
placement or inferior solutions.

Based on three sets of state-of-the-art benchmark suites,
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most of the recently proposed placement algorithms can han-
dle the mixed-size constraints [4–6, 8, 12, 15, 24]. However,
very few modern mixed-size placement algorithms can han-
dle preplaced blocks and the chip density well. In this pa-
per, we present a high-quality mixed-size analytical place-
ment algorithm considering preplaced blocks and density
constraints. Our placer has the following distinguished fea-
tures:

• Based on the log-sum-exponential wirelength model 1

proposed by Naylor et al. [20] and the multilevel frame-
work, our placer consistently generates high-quality
mixed-size placement results.

• To solve the unconstrained minimization placement
objective function, we use the conjugate gradient method
with a dynamic step size. Experimental results show
that the method leads to significant run-time speedup.

• Our placer handles preplaced blocks by a two-stage
smoothing technique. The preplaced block potential
is first smoothed by a Gaussian function to remove
the rugged potential regions, and then the potential
levels are smoothed so that the blocks can spread to
the whole placement region effectively.

• Density constraints are considered during both global
and detailed placement. We re-allocate white space
using partitioning and cut-line shifting to remove den-
sity overflows between different levels of global place-
ment. In detailed placement, a cell-sliding technique
is applied to remove the density overflow.

• A macro-shifting technique is used between levels of
global placement to find better macro positions that
are easier for legalization.

• A look-ahead legalization scheme during global place-
ment is used to obtain a better legal placement result.

Table 1 summarizes the comparisons between our placer
and two state-of-the-art analytical placers, APlace 2.0/3.0
[14, 16] and mPL5/6 [6, 7], which are also based on the log-
sum-exp wirelength model. In the table, “Unknown” de-
notes that the corresponding method is not available in the
literature.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the analytical model used in our placer. Our core
placement techniques are explained in Section 3. Section 4
reports the experimental results. Finally, the conclusions
are given in Section 5.

2. ANALYTICAL PLACEMENT MODEL
The circuit placement problem can be formulated as a

hypergraph H = (V, E) placement problem. Let vertices
V = {v1, v2, ..., vn} represent blocks and hyperedges E =
{e1, e2, ..., en} represent nets. Let xi and yi be the x and
y coordinates of the center of block vi, and ai be the area

1The log-sum-exponential wirelength model is a patented
technology [20] and use requires a license from Synopsys.
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Table 1: Comparisons between our placer and APlace and mPL; all the placers are based on the analytical technique

and the log-sum-exp wirelength model. Unknown: not mentioned in the corresponding work.
APlace 2.0/3.0 mPL5/mPL6 Ours

Global Placement V-cycle multilevel framework W-cycle multilevel framework (mPL5) V-cycle multilevel framework
Framework V-cycle multilevel framework (mPL6)
Clustering Best-choice clustering First-choice clustering (mPL5) First-choice clustering

Best-choice clustering (mPL6)
Wirelength Model Log-sum-exp Log-sum-exp Log-sum-exp
Spreading Force Bell-shaped potential Poisson smoothed potential Bell-shaped potential

Nonlinear Objective Conjugate gradient method w/ Explicit Euler method Conjugate gradient method w/
Solver golden section line search dynamic step-size control

Preplaced Block Handling Level smoothing Poisson equation smoothing Gaussion and level smoothing
Density Handling Unknown Network-flow-based cell White-space allocation,

redistribution Cell sliding
Macro Block Handling Unknown Linear programming based Macro shifting

macro legalization
Look-Ahead Legalization No No Yes

of the block vi. The circuit may contain some preplaced
blocks which have fixed x and y coordinates and cannot be
moved. We intend to determine the optimal positions of
movable blocks so that the total wirelength is minimized and
there is no overlap among blocks. The placement problem
is usually solved in three stages, (1) global placement, (2)
legalization, and (3) detailed placement. Global placement
evenly distributes the blocks and finds the best position for
each block to minimize the target cost (e.g., wirelength).
Then, legalization removes all overlaps. Finally, detailed
placement refines the solution.

Figure 1 gives the notation used in this paper.

xi, yi center coordinate of block vi

wi, hi width and height of block vi

wb, hb width and height of bin b
Mb the maximum area of movable blocks in bin b
Db potential (area of movable blocks) in bin b
Pb base potential (preplaced block area) in bin b
tdensity target placement density

Figure 1: Notation used in this paper.

To evenly distribute the blocks, we divide the placement
region into uniform non-overlapping bin grids. Then, the
global placement problem can be formulated as a constrained
minimization problem as follows:

min W (x,y)
s.t. Db(x,y) ≤ Mb, for each bin b,

(1)

where W (x,y) is the wirelength function, Db(x,y) is the
potential function that is the total area of movable blocks
in bin b, and Mb is the maximum area of movable blocks in
bin b. Mb can be computed by Mb = tdensity(wbhb − Pb),
where tdensity is a user-specified target density value for each
bin, wb (hb) is the width (height) of bin b, and Pb is the
base potential that equals the preplaced block area in bin b.
Note that Mb is a fixed value as long as all preplaced block
positions are given and the bin size is determined.

The wirelength W (x,y) is defined as the total half-perimeter
wirelength (HPWL). Since W (x,y) is non-convex, it is hard
to minimize it directly. Thus, several smooth wirelength ap-
proximation functions are proposed, such as quadratic wire-
length [9, 17], Lp-norm wirelength [7, 16], and log-sum-exp
wirelength [6, 15,20]. The log-sum-exp wirelength model,

γ
∑
e∈E

(log
∑
vk∈e

exp(xk/γ) + log
∑
vk∈e

exp(−xk/γ) +

log
∑
vk∈e

exp(yk/γ) + log
∑
vk∈e

exp(−yk/γ)), (2)

proposed in [20], achieves the best result among these three
models [7]. When γ is small, log-sum-exp wirelength is close
to the HPWL [20]. However, due to the computer precision,
we can only choose a reasonably small γ, say, 1% length
of the chip width, so that it will not cause any arithmetic
overflow.

Since density Db(x,y) is neither smooth nor differentiable,
mPL [7] uses inverse Laplace transformation to smooth the
density, while APlace [15] uses a bell-shaped function for
each block to smooth the density. We express the func-
tion Db(x,y) as Db(x,y) =

∑n
v∈V Px(b, v)Py(b, v), where

Px and Py are the overlap functions between bin b and block
v along the x and y directions. In [15], a bell-shaped po-
tential function px provides the smoothed version of Px. By
doing so, the non-smooth function Db(x,y) can be replaced
by a smooth one, D′

b(x,y) =
∑n

v∈V cvpx(b, v)py(b, v), where
cv is a normalization factor so that the total potential of a
block equals its area.

The quadratic penalty method is used to solve Equa-
tion (1), implying that we solve a sequence of unconstrained
minimization problems of the form

min W (x,y) + λ
∑

b

(D′
b(x,y) − Mb)

2 (3)

with increasing λ’s. The solution of the previous problem
is used as the initial solution for the next one. We solve
the unconstrained problem in Equation (3) by the conjugate
gradient (CG) method. We use CG with a dynamic step size
to minimize Equation (3).

3. PROPOSED ALGORITHM
Our placement algorithm consists of three stages: (1)

global placement, (2) legalization, and (3) detailed place-
ment.

3.1 Global Placement

3.1.1 Multilevel Framework
We use the multilevel framework for global placement to

improve the scalability. Our algorithm is summarized in
Figure 2. Lines 1–4 are the coarsening stage. The initial
placement is generated in line 5. Lines 6–23 are uncoars-
ening stages. The details of each step are explained in the
following.

During the coarsening stage, we cluster blocks to reduce
the number of movable blocks. The hierarchy of clusters is
built by the first-choice (FC) clustering algorithm [7].

After clustering, the initial placement for the coarsest
level is generated by minimizing the quadratic wirelength
using the conjugate gradient method, the same method in
quadratic placement.

Then, we solve the placement problem from the coarsest
level to the finest level. The placement for the current level
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Algorithm: Multilevel Global Placement
Input:

hypergraph H0: mixed-size circuit
nmax: the maximum block number in the coarsest level

Output:
(x∗, y∗): optimal block positions

01. level = 0;
02. while (BlockNumber(Hlevel) > nmax)
03. level++;
04. Hlevel = FirstChoiceClustering(Hlevel−1);
05. initialize block positions by SolveQP (Hlevel);
06. for currentLevel = level to 0
07. initialize bin grid size nbin ∝ √

nx;
08. initialize base potential for each bin;

09. initialize λ0 =
∑ |∂W (x,y)|∑ |∂D′

b
(x,y)| ; m = 0;

10. do
11. solve min W (x, y) + λm

∑
(D′

b − Mb)
2;

12. m + +;
13. λm = 2λm−1;
14. if (currentLevel == 0 & overflow ratio < 10%)
15. call LookAheadLegalization() and

save the best result;
16. compute overflow ratio;
17. until (spreading enough or

no further reduction in overflow ratio)
18. if (currentLevel == 0)
19. restore the best look-ahead result;
20. else
21. call MacroShifting();
22. call WhiteSpaceAllocation();
23. decluster and update block positions.

Figure 2: Our global placement algorithm.

provides the initial placement for the next level. In each
level, the bin grid size is set according to the number of clus-
ters, the base potential Pb for each bin is computed, and the
maximum area of movable blocks Mb is updated accordingly.
Then, the value of λ is initialized according to the strength

of wirelength and density gradients, λ =
∑ |∂W (x,y)|∑ |∂D′

b
(x,y)| , and

a conjugate gradient solver with dynamic step-size control
is used to solve the constrained minimization problem in
Equation (1) (in lines 10–17).

Macro shifting and white-space allocation for density con-
trol are applied between uncoarsening levels. We will explain
them in Section 3.1.4 and Section 3.1.5, respectively. Then,
blocks are declustered, providing the initial placement for
the next level.

We define the overflow ratio as the total overflow area in
each bin over the area of total movable blocks as follows:

overflow ratio =

∑
Bin b max(Db(x,y) − Mb, 0)∑

total movable area
, (4)

where overflow ratio ≥ 0.
Our placer uses the overflow ratio to measure the evenness

of block distribution, instead of the discrepancy as in [15].
The overflow ratio has a more global view since it considers
all overflow areas in the placement region while discrepancy
only considers the maximum density of a window in the
placement region. The global placement stage stops when
the overflow ratio is less than a user-specified target value,
which is 0 by default.

3.1.2 Base Potential Smoothing
Preplaced blocks pre-define the base potential, which sig-

nificantly affects block spreading. Since the base potential
Pb is not smooth, it forms mountains that prevent movable
blocks from passing through these regions. Therefore, we
shall smooth the base potential to facilitate block spread-
ing. We first use the Gaussian function to smooth the base
potential change, remove the rugged regions in the base po-
tential, and then smooth the base potential level so that
blocks can spread to the whole placement region.

The base potential of each block can be calculated by
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Figure 3: Base potential using the bell-shaped function.

The z-coordinate is the value of Pb/(wbhb). Note for a

region with potential level > 1.0, it means that the base

potential in the region is larger than the bin area.
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Figure 4: Base potential using exact density and Gaus-

sian smoothing, resulting a better smoothing potential.

the bell-shaped function. However, we observe that the po-
tential generated by the bell-shaped function has “valleys”
between the adjacent regions of blocks. Figure 3 shows the
base potential generated by the bell-shaped function. The
z-coordinate is the value of Pb/(wbhb). If a bin has z > 1,
it means that the potential in the bin is larger than the bin
area. There are several valleys in the bottom-left regions as
shown in the figure, and these regions do not have free space
but their potentials are so low that a large number of blocks
may spread to these regions. To avoid this problem, we cal-
culate the exact density as the base potential, and then use
the Gaussian function to smooth the base potential. The
two-dimensional Gaussian has the form

G(x, y) =
1

2πσ2
e
− x2+y2

2σ2 , (5)

where σ is the standard deviation of the distribution. Apply-
ing convolution to the Gaussian function G with the base
potential P , P ′(x, y) = G(x, y) ∗ P (x, y), we can obtain a
smoother base potential P ′. Gaussian smoothing works as a
low-pass filter, which can smooth the local density change,
and the value σ defines the smoothing range. A larger σ
leads to a more smooth potential. In global placement, the
smoothing range gradually decreases so that the smoothed
potential approaches the exact density gradually. Figure 4
shows the resulting potential by using σ being 0.25 times of
the chip width.

After the Gaussian smoothing, we apply another land-
scape smoothing function [10, 13] to reduce the potential
levels. The smoothing function P ′′(x, y) is defined as fol-
lows:

P ′′(x, y) =

{
P ′ + (P ′(x, y) − P ′)δ if P ′(x, y) ≥ P ′

P ′ − (P ′ − P ′(x, y))δ if P ′(x, y) ≤ P ′,
(6)
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Algorithm: Conjugate Gradient Algorithm
with Dynamic Step-Size Control

Input:
f(x): objective function
x0: initial solution
s: step size

Output:
optimal x∗

01. initialize g0 = 0 and d0 = 0;
02. do
03. compute gradient directions gk = ∇f(xk);

04. compute the Polak-Ribiere parameter βk =
gT

k (gk−gk−1)

||gk−1||2 ;

05. compute the conjugate directions dk = −gk + βkdk−1;
06. compute the step size αk = s/||dk||2;
07. update the solution xk = xk−1 + αkdk;
08. until (f(xk) > f(xk−1))

Figure 5: Our nonlinear placement objective solver.

where δ ≥ 1. δ decreases from a large number (say 5)
to 1, and a series of level-smoothed potential is generated.
Smoothing potential levels reduces “mountain” (high poten-
tial regions) heights so that blocks can spread to the whole
placement area smoothly.

3.1.3 The Conjugate Gradient Algorithm with Dy-
namic Step Sizes

We use the conjugate gradient (CG) algorithm to mini-
mize Equation 3. APlace uses the golden section line search
to find the optimal step size, which takes most portion of its
runtime during the minimization process. Instead, our step
size is computed by a more efficient method. After comput-
ing the conjugate gradient direction dk, the step size αk is
computed by αk = s/||dk||2, where s is a user-specified scal-
ing factor. By doing so, we can limit the step size of block
spreading since the total quadratic Euclidean movement is
fixed, ∑

vi∈V

(∆x2
i + ∆y2

i ) = ||αkdk||22 = s2, (7)

where ∆xi and ∆yi are the amount of the movement along
the x and y directions for the block vi in each iteration.

The value of s affects the precision of objective minimiza-
tion; smaller s values lead to better results but longer run-
time. In our implementation, we set s between 0.2 and 0.3
times of the bin width to obtain a good tradeoff between
runtime and quality. Figure 5 gives our conjugate gradi-
ent algorithm for minimizing the placement objective during
global placement.

3.1.4 Macro Shifting
In the global placement stage, it is important to preserve

legal macro positions since illegal macro positions may make
the task of legalization much more difficult. To avoid this,
we apply macro shifting at each declustering level of the
global placement stage. Macro shifting moves macros to the
closest legal positions.

Integrating with our multilevel framework, only macros
with sizes larger than the average cluster size of the current
level are processed. Then, the legal macro positions pro-
vide a better initial solution for the next declustering level,
and those macros are still allowed to spread at subsequent
declustering levels.

3.1.5 White-Space Allocation for Density Control
After block spreading, some regions may still have over-

flows. We reduce the overflows by assigning appropriate
amount of white space. Unlike the method proposed in [18]
that applies white-space allocation to reduce the routing
congestion, we use white-space allocation to remove over-
flow regions. We recursively partition the placement region
and construct a slicing tree to record the cut directions and
blocks inside the partition until the partitioned area is simi-

lar to that of a global placement bin. To prevent from gener-
ating sub-partitions with large aspect ratios, we choose the
larger side to divide the partition into two sub-partitions
evenly. The process is similar to a partitioning-based global
placement flow, and the difference is that we divide the par-
tition based on geometric locations of blocks instead of the
cut size minimization.

After the construction of the partitions and the slicing
tree, we compute the white space in each partition, and
update the data structures for the leaf nodes of the slicing
tree. A negative white space value w < 0 means that the
partition has an overflow area of |w|. Then, the white space
of an internal node can be computed by summing up the
white space of its two child nodes.

After the white space calculation, the white spaces are
distributed to the two child nodes in a top-down process
according to the following rules:

• If one child node has white space w < 0, we allocate
white space of |w| to this child node, and allocate the
remaining white space to the other child node.

• If two child nodes both have white spaces greater than
or equal to 0, we allocate the white space proportional
to their original white space amount.

The new partition area a′ can be computed by a′ = a +
w′ − w, where a is the old partitioned area, w is the old
white space, and w′ is the new white space. The cut-line
adjustment is also performed in a top-down fashion. We
can know the desired areas of the two sub-partitions from
the data structure of the two child nodes, and then the cut
line is shifted accordingly.

Finally, the new block positions can be computed by linear
interpolation of the coordinates of the old partition and the
new one.

3.1.6 Look-Ahead Legalization
It is often hard to determine when to stop the block

spreading during global placement. If blocks do not spread
enough, the wirelength may significantly be increased af-
ter legalization since blocks are over congested. If blocks
spread too much, the wirelength before legalization may not
be good even the legalization step only increases wirelength
a little. This situation becomes even worse when the den-
sity is also considered, since the placement objective is more
complex.

We use a look-ahead legalization technique to find a de-
sired solution. At the finest level, we apply legalization
after minimizing nonlinear objective in each iteration and
record the best result that has the minimum cost (wirelength
and density penalty). Although look-ahead legalization may
take longer runtime due to more iterations of legalization,
we can ensure that blocks do not over spread and thus obtain
a better legal placement.

3.2 Legalization
To obtain a better solution from the global placement re-

sult, the legalization stage removes all overlaps with minimal
total displacement. We extend the standard-cell legalization
method in [11] to solve the mixed-size legalization problem.
In our legalization stage, the legalization order of macros
and cells are determined by their x coordinates and sizes.
We legalize macros earlier. Then, in the legalization order,
cells are packed into rows while macros are placed to their
nearest available positions. We find this macro/cell legaliza-
tion strategy works well on all benchmarks.

3.3 Detailed Placement
3.3.1 Wirelength Minimization

We extend the window-based detailed placement (WDP)
algorithm [12] and name our approach cell matching here.
The WDP algorithm finds a group of exchangeable cells in-
side a given window, and formulates a bipartite matching
problem by matching the cells to the empty slots in the
window. The cost is given by the HPWL difference of a cell
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in each empty slot. The bipartite matching problem can be
solved optimally in polynomial time, but the optimal assign-
ment cannot guarantee the optimal HPWL result because
the HPWL cost of a cell to each empty slot depends on the
positions of the other connected cells. Our cell matching
algorithm remedies this drawback by selecting independent
cells at one time to perform bipartite matching. Here by
independent cells, we mean that there is no common net
between any pairs of the selected cells.

3.3.2 Density Optimization
In addition to wirelength minimization during the detailed

placement, we optimize the chip density by cell sliding. The
objective of density optimization is to reduce the density
overflow in the congested area. In this stage all macro blocks
are fixed, and we consider standard cells only. We divide
the placement region into uniform non-overlapping bins, and
then our algorithm iteratively reduces the densities of over-
flowed bins by sliding the cells horizontally from denser bins
to sparser bins while the cell order is preserved. Each iter-
ation consists of two phases: left sliding and right sliding.
In each phase, we calculate the density of each bin and then
compute the area flow fbb′ between bin b and its left or right
neighboring bin b′. fbb′ denotes the desired amount of cell
area to move from bin b to b′. Recall that we define Db

as the total area of the movable cells in bin b, and Mb as
the maximum area of movable blocks in bin b. If bin b does
not have any area overflow or the area overflow ratio of b is
smaller than b′, that is Db ≤ Mb or Db/Mb ≤ Db′/Mb′ , we
set fbb′ = 0. Otherwise we calculate fbb′ according to the
capacity of b′. If bin b′ has enough free space, we move the
overflow area of bin b to b′. Otherwise we evenly distribute
the overflow area between b and b′. Therefore, fbb′ is defined
by

fbb′ =

{
Db − Mb, if (Mb′ − Db′) ≥ (Db − Mb)
DbMb′−Db′Mb

Mb+Mb′
, otherwise,

(8)
where the second condition of Equation (8) is derived from

Db−
(

Mb +
(Db − Mb + Db′ − Mb′)Mb

Mb + Mb′

)
=

DbMb′ − Db′Mb

Mb + Mb′
.

(9)
After the area flow fbb′ is computed, we sequentially slide
the cells across the boundary between b and b′ until the
amount of sliding area reaches fbb′ or there is no more area
for cell sliding. Then we update Db and Db′ . In the right
sliding phase, we start from the left-most bin of the place-
ment region, and b′ is right to b. In the left sliding phase, we
start from the right-most bin, and b′ is left to b, accordingly.
We iterative slide the cells from the area overflow region
to a sparser region until no significant improvement can be
obtained.

4. EXPERIMENTAL RESULTS
We compared our placer with APlace 2.0 and mPL5, which

achieved best published results among all publicly available
placers, based on the ICCAD’04 IBM mixed-size [1] and
the ISPD’05 placement contest [2] benchmark suites. All
results were generated on the same PC workstation with
an Opteron 2.4GHz CPU based on the default parameters
given in each placer, and no manual parameter tuning for
individual circuits is allowed for fair comparison.

We also compared with other eight state-of-the-art aca-
demic placers, such as APlace 3.0 and mPL6, based on the
ISPD’06 placement contest benchmark suite [3]. Since the
eight academic placers are not available to us, we reported
the results given in [3, 19].

4.1 ICCAD’04 IBM Mixed-Size Benchmarks
In the first experiment, we evaluated the performance of

our placer on the ICCAD’04 IBM mixed-size benchmark
suite. Table 2 lists the HPWLs and CPU times for our

Table 2: Comparison among our placer (NTUplace3),

APlace 2.0, and mPL5 on the ICCAD’04 IBM mixed-

size benchmarks.
NTUplace3 APlace 2.0 mPL5

HPWL CPU HPWL CPU HPWL CPU
(×e6) (sec) (×e6) (sec) (×e6) (sec)

ibm01 2.17 30 2.14 346 2.22 83
ibm02 4.63 57 4.65 793 4.68 240
ibm03 6.65 65 6.71 923 6.86 273
ibm04 7.21 81 7.57 888 7.69 237
ibm05 9.66 145 9.69 696 10.09 118
ibm06 5.94 86 6.02 879 6.16 473
ibm07 9.90 199 10.00 1178 9.96 629
ibm08 12.29 214 12.50 1349 11.92 1030
ibm09 12.00 194 12.13 1670 13.15 1239
ibm10 28.49 319 28.83 2408 29.36 1504
ibm11 17.54 305 18.67 3467 17.87 974
ibm12 32.07 302 33.42 3330 33.43 1290
ibm13 22.16 487 22.80 3495 22.52 981
ibm14 35.36 1158 35.92 4294 34.99 1444
ibm15 45.38 1337 46.81 4926 50.88 4535
ibm16 57.59 1450 54.53 5554 55.21 5636
ibm17 66.73 1930 65.67 6032 66.96 1937
ibm18 41.58 2613 41.99 9932 43.99 2252
average 1.00 1.00 1.01 7.87 1.03 3.30

Table 3: Comparison among our placer (NTUplace3),

APlace 2.0, and mPL5 on the ISPD’05 placement contest

benchmarks.
NTUplace3 APlace 2.0 mPL5

HPWL CPU HPWL CPU HPWL CPU
(×e6) (sec) (×e6) (sec) (×e6) (sec)

adaptec1 80.93 803 78.35 7001 87.40 4419
adaptec2 89.85 824 95.70 9793 105.41 4389
adaptec3 214.20 1767 218.52 24849 263.03 5020
adaptec4 193.74 2114 209.28 29377 232.03 5080
bigblue1 97.28 1523 100.01 10318 112.04 2832
bigblue2 152.20 3047 153.75 24789 201.57 5715
bigblue3 348.48 5687 411.59 44805 432.41 23653
bigblue4 829.16 10280 871.29 115363 956.17 25414
average 1.00 1.00 1.05 10.32 1.19 3.31

placer, APlace 2.0, and mPL5, where APlace 2.0 and mPL5
were both performed in the default mode. The last row in
Table 2 shows the average normalized wirelength and CPU
time ratio based on our results. Compared with APlace
2.0, our placer achieves 1% shorter wirelength and is 7.87X
faster. Compared with mPL5, our placer obtains 3% shorter
wirelength and is 3.31X faster. On average, our placer pro-
duces the best solution quality in smaller runtime.

4.2 ISPD’05 Placement Contest Benchmarks
Table 3 lists the results of ours, APlace 2.0, and mPL5.

As shown in the table, our placer achieves the best average
wirelength in the shortest CPU time. On average, our re-
sulting HPWL is smaller than that of APlace 2.0 by 5% and
mPL5’s by 19%, and our placer is 10.32X and 3.31X faster
than APlace 2.0 and mPL5, respectively.

4.3 ISPD’06 Placement Contest Benchmarks
In the third experiment, we reported the results on the

ISPD’06 placement contest benchmark suite [3]. The results
of other placers were taken from [3, 19]. Table 4, Table 5,
and Table 6 compare the HPWL, density HPWL, and CPU
time of the placers on the ISPD’06 benchmarks, respectively.
The density HPWL (DHPWL) is defined as follows [3, 19]:

DHPWL = HPWL × (1 + density penalty). (10)

To compute density penalty, we made the bin grid width and
height equal to 10 circuit row height, and density penalty is
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Table 4: HPWL (×e6) comparison based on the ISPD’06 benchmarks.
HPWL NTUplace3 APlace3 [16] Capo [21] DPlace Dragon [22] FastPlace Kraftwerk mFAR mPL6 [6] NTUplace2 [12]

adaptec5 378.56 449.61 491.60 463.95 500.24 478.47 444.07 448.43 425.12 404.98
newblue1 60.74 73.26 98.35 102.37 80.76 84.49 78.29 77.36 66.90 62.40
newblue2 198.76 197.42 308.64 324.07 259.95 209.73 205.87 211.65 197.53 201.95
newblue3 278.87 273.63 361.21 379.19 524.41 361.05 279.94 303.58 283.80 291.14
newblue4 274.48 377.55 358.28 305.78 340.70 319.08 311.09 307.73 294.43 284.99
newblue5 474.84 545.90 657.40 600.11 613.34 601.45 555.48 567.65 530.67 494.57
newblue6 484.81 522.58 668.33 674.39 572.19 539.16 537.32 527.36 510.40 504.39
newblue7 1056.78 1098.26 1518.49 1398.85 1408.97 1173.15 1139.17 1135.80 1070.33 1116.86
average 1.00 1.13 1.41 1.37 1.36 1.21 1.12 1.14 1.06 1.04

Table 5: Density HPWL (×e6) comparison based on the ISPD’06 benchmarks.
DHPWL NTUplace3 APlace3 [16] Capo [21] DPlace Dragon [22] FastPlace Kraftwerk mFAR mPL6 [6] NTUplace2 [12]

adaptec5 448.58 520.97 494.64 572.98 500.74 805.63 457.92 476.28 431.14 432.58
newblue1 61.08 73.31 98.48 102.75 80.77 84.55 78.60 77.54 67.02 63.49
newblue2 203.39 198.24 309.53 329.92 260.83 212.30 208.41 212.90 200.93 203.68
newblue3 278.89 273.64 361.25 380.14 524.58 362.99 280.93 303.91 287.05 291.15
newblue4 301.19 384.12 362.40 364.45 341.16 429.78 315.53 324.40 299.66 305.79
newblue5 509.54 613.86 659.57 752.07 614.23 962.06 569.36 601.27 540.67 517.63
newblue6 521.65 522.73 668.66 682.87 572.53 574.18 545.94 535.96 518.70 532.79
newblue7 1099.66 1098.88 1518.75 1438.99 1410.54 1236.34 1170.85 1153.76 1082.91 1181.30
average 1.00 1.10 1.34 1.41 1.29 1.38 1.08 1.10 1.01 1.02

Table 6: CPU time (sec) comparison based on the ISPD’06 benchmarks. Our CPU time is measured on an Opteron

2.4GHz machine, while others are on an Opteron 2.6GHz machine.
CPU Time NTUplace3 APlace3 [16] Capo [21] DPlace Dragon [22] FastPlace Kraftwerk mFAR mPL6 [6] NTUplace2 [12]

adaptec5 4718 20267 9718 2877 2257 4055 3293 6875 8265 10494
newblue1 1168 4303 2562 1026 989 516 1135 2538 2252 2163
newblue2 2750 5533 5642 6393 1631 1033 1007 2892 6089 4425
newblue3 1670 12503 6076 1028 1170 2437 912 2958 9696 6646
newblue4 3627 14982 6926 1647 1486 1388 2772 6362 5815 7468
newblue5 17955 32799 20854 4550 3529 6224 7423 11426 12349 20441
newblue6 9679 29124 18485 4032 3860 4157 5350 12154 12035 13849
newblue7 20436 54852 54962 9508 9902 6624 7465 19484 28385 21464
average 1.00 3.64 2.20 0.75 0.51 0.58 0.59 1.38 2.08 1.92

defined by

density penalty =
(overflow ratio × bin area × density target)2,

(11)

and overflow ratio is defined by Equation (4).
Among all placers, we obtained both the best average

HPWL and the best average DHPWL. Further, according
to the scoring function in the 2006 ISPD Placement Con-
test [3,19], placers with 2X (4X) CPU time incur about 4%
(8%) penalty. Therefore, our overall result considering (1)
HPWL, (2) density penalty, and (3) the CPU factor, is the
best among all participating placers, and is about 4%, 5%,
and 6% better than the three leading placers, Kraftwerk,
mPL6, and NTUplace2, respectively.

5. CONCLUSION
We have proposed in this paper a high-quality mixed-

size analytical placer considering preplaced blocks and den-
sity constraints. Experimental results have shown that our
placer achieves very high-quality placement results and is
very efficient.
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