
Implementation of Parallel LFSR-based Applications on an Adaptive DSP
featuring a Pipelined Configurable Gate Array

Claudio Mucci�, Luca Vanzolini�, Ilario Mirimin�, Daniele Gazzola�, Antonio Deledda�,
Sebastian Goller�, Joachim Knaeblein�, Axel Schneider�, Luca Ciccarelli�, Fabio Campi�

�ARCES - University of Bologna �Technische Universität Chemnitz
�Alcatel-Lucent Deutschland AG �FTM, STMicroelectronics, Agrate Brianza

Abstract

Linear feedback shift registers (LFSRs) are common
structures in many application fields, including cryptog-
raphy, digital broadcasting and communication. High-
throughput requirements need highly parallel implementa-
tions, usually accomplished in state of the art system on
chips (SoCs) with application specific coprocessors. Al-
though this approach achieves the required performance,
it rapidly shows lack of flexibility when those devices are
proposed, as an example, for multi-standard modems or for
security applications in which run-time update can provide
added value. This paper shows the implementation of paral-
lel LFSR-based applications on an embedded adaptive DSP
featuring a Pipelined Configurable Gate Array (PiCoGA).
With respect to standard embedded FPGAs, pipelined de-
vices usually provide better performance, e.g. in terms of
speed, but they commonly show the undeniable drawback of
additional design constraints. As a test-case, we consider
the implementation of the 32-bit CRC used in the Ether-
net standard that achieves on the target architecture up to
�25Gbit/sec throughput, with a parallel LFSR processing
128 bit at time, which is comparable to the performance
offered by some ASIC devices.

1. Introduction

Linear feedback shift registers (LFSRs) are widely used
circuits in modern multimedia and communication devices.
As an example, they represent the mathematical back-
ground of the well known Cyclic Redundancy Check (CRC)
code used in many telecommunication protocols to verify
the correctness of transmitted data. Furthermore, thanks to

The work presented in this paper is done within the MORPHEUS
project (IST FP6, project no. 027342), which is sponsored by the Euro-
pean Commission under the 6th Framework program.

their statistical proprieties, LFSRs are commonly used to
scramble the information content of a data stream, for ei-
ther security increase or noise effect reduction. In this case,
the LFSR provides a pseudo-random sequence which can
be correlated with the data stream to be transmitted or dis-
tributed. To provide a brief overview of LFSR applications,
we can consider three main fields, analyzing added value
provided by flexible implementations.

CRC is the redundancy check commonly used in the
physical layer of transmission protocols like Ethernet,
SONET and Bluetooth. Only in the Wikipedia, �25
standards are reported, featuring different numbers of
bits used in the shift register and polynomial generator.
Most of them are also different for the required bit-
rates, which can range from few Mbit/sec to the tens
of Gbit/sec of Gigabit Ethernet protocols. Multi-mode
devices need to handle this in a flexible way, requir-
ing a dedicated circuit for each supported standard or
a reconfigurable/reprogrammable implementation.

Digital Broadcasting and Communication use LFSRs to
randomize the transmitted bitstream in order to avoid
short repeating sequences of 0’s or 1’s which may
complicate symbols tracking at the receiver or inter-
fere with other transmissions. Depending on the stan-
dard, bit streams can be randomized correlating the
original data with the sequence generated by an LFSR
which can work at the same frequency (and in this
case is termed scrambling) or with a different fre-
quency (and in this case is termed spreading). 802.11
(WiFi), 802.15.4 (ZigBee), 802.16 (WiMax), Digi-
tal Audio/Video Broadcasting (DAB/DVB) are well
known examples of standards including scrambling or
spreading or both in their definition, making thus ap-
pealing reprogrammable solutions for flexible multi-
standard devices.

Stream ciphers are symmetric encryption systems which

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



correlate the plaintext bits with a pseudo-random se-
quence generated by the combination of the bit streams
of one or more LFSRs working in parallel. Example
of applications of stream ciphers are the A5/1 stan-
dard which ensures communication privacy of GSM
telephones, E0 standard for the Bluetooth or the con-
tent scramble system used for digital right manage-
ment which uses a 40-bit stream cipher.

Flexible solutions offered for the integration in SoCs in-
clude of course processors, be it general-purpose or appli-
cation specific DSPs, embedded FPGAs [1] and reconfig-
urable datapaths [2–4]. Targeting the Gbit/sec bandwidth,
most of them are not suitable solutions for parallel LFSR-
based applications which couple high performance to bit-
level programming. In fact, general-purpose processors
provide word-level computation, while for LFSRs most of
the computation is performed at bit-level. On the contrary,
the full bit-level programmability offered by embedded FP-
GAs shows the undeniable drawback to be paid for added
flexibility: the possible working frequency is reduced. Re-
configurable datapaths are in the middle of this scenario,
and thanks to their deeply pipelined organization they can
offer the required performance and flexibility.

This paper shows the implementation of LFSR-based
applications on the Pipelined Configurable Gate Array
(PiCoGA) integrated in the DREAM adaptive processor
[5] featuring a working frequency of 200MHz. After an
overview of the theory, the main parallelization methods
proposed in literature for both processors and application-
specific circuits will be analyzed. Then, the implementation
on the target architecture of the 32-bit CRC defined for the
Ethernet protocol will be described. Our implementation
allows to achieve up to �25 Gbit/sec, which is a bandwidth
comparable to the performance of some ASIC implementa-
tions, as will be shown at the end of the paper, and roughly
three orders of magnitude better of the performance offered
by embedded RISC processors.

2. Theoretical background and related work

The serial block diagrams of both CRC and Scrambler
are reported in Fig. 1, which shows that the main difference
between the two is the fact that in the case of CRC input bits
are combined with bits flowing in the feedback loop, while
in the case of the scrambler the LFSR is an autonomous
system whose output bits are combined with the input bit
stream. In both cases, as well as for most of the real LFSR
applications, we consider feedback loops defined over an
extension of the Galois Field GF(2). This means that the
additions necessary in the loop are defined in GF(2) and
thus implemented with exclusive-ORs.

Let us define ���� the state of the serial LFSR at time

Figure 1. Scrambler and CRC block diagrams

�, thus the most general form in which an update can be
represented is:

���� �� � � �����

where� is the � � � companion matrix:

� �

�
��������

� � � � � � � ���
� � � � � � � ���
� � � � � � � ���
...

...
. . .

...
...

...
� � � � � � � �����

� � � � � � � �����

�
��������

�

and � is the degree of the polynomial generator for the
LFSR, and �� is the ��� root of the polynomial generator.
Given an input sequence of bit ����, with � � �� �� � � � � ��
�, the CRC mathematical formulation is:

���� �� � � ���� � � �����

where � is a the vector ���� � �� � � � � ���� � �����
� .

The checksum provided by the CRC computation will be
the value of the state variable ����. On the contrary, the
mathematical formulation of a scrambler is:

���� �� � � �����
���� � � ���� � � �����

where� is a � � � matrix which selects the state bits com-
bined to the data stream (usually only one bit in the diagonal
is used) and 	 is a single-1 vector in the form �� � � � � ��,
used to select the state bit to be correlated to the input
stream. Putting all together, we can consider the system:

���� �� � � ���� � � �����
���� � � ���� � � �����

2



Figure 2. Generic scheme for an M-bit LFSR-
based application

in which� is the identity matrix and� is a null vector for
the CRC, while � is a null vector and� a single-1 diagonal
matrix for the scrambler.

In both cases, parallelization required to work with mul-
tiple input bits at the same time implies the exponentiation
of the matrices involved in the computation. If we consider
elaborating 	 bits at time, then we need to apply a 	-level
look-ahead:

���� 	� � � ���� �� � � ���� ��
� � �� ���� � � ����� � � ���� ��
� �� ���� �� � ���� � � ���� ���

��� � 	� � � ���� �� � � ���� ��
� � �� ���� � � ����� � � ���� ���
� �� ���� �� � ���� � � ���� ���

Previous result can be generalized for the 
 -level look-
ahead in the following form:

����
� � �� ���� ��� �� ����
��� �
� � �� ���� �	� �� ����

where �� ��� is the M-element vector

�����
 � �� ����
 � 	� � � � ���� �� ������

and �� and 	� are the � �
 matrices:

�� � �� �� ��� � � � ������
	� � �� �� ��� � � � ������

From an implementation point of view, the resulting
overall schema is reported in Fig. 2. The matrix �� is
no more a companion matrix and since it is part of the
feedback loop its complexity directly impacts on the perfor-
mance achieved and in particular on the clock period. On
the contrary, the implementation of �� , �� and 	� can
be pipelined to match the performance requirement.

In [6], Pei et al. showed that exponentiation of �, even
if optimized, limit the achievable speed-up to 0.5
 for


 � ��� �� � � � 
	�. In [7], J.H. Derby proposes a novel
state-space transformation method which moves computa-
tion and circuitry complexity out of the feedback loop. Let
us consider the linear transformation of the state vector
���� through a non-singular matrix 


���� � 
 ������

Both 
 and 
�� are defined over the field GF(2), thus we
can rewrite the 
 -level look ahead as:

�����
� � 
����
 ����� �
���� �� ����
��� �
� � ��
 ����� �	� �� ����

The initial state ���� shall also be transformed in
����� � �������. Given that �� and �����
 are sim-
ilar matrices, there must exist an appropriate matrix 
 such
that ��� � 
����
 is a companion matrix. In general,
the matrix 
 is not unique and can be obtained selecting an
arbitrary vector � such that the � vectors��� � are linearly
independent, and thus using those vectors as columns for
the matrix:

�� �� � ��� � � � � ������� � ������� � �

Now, we can substitute blocks in Fig. 2 with:

��
� ��� � 
����


�� � ��� � 
����

�� � ��� � ��


Hence, ��� is in companion form, which implies an
implementation with minimal loop complexity. On the con-
trary,��� grows in complexity, but it can be fully pipelined
being out of combinatorial loops.

Focusing now on CRC implementations, other par-
allelization methods have been proposed for software-
oriented implementations. [8] proposes a fast implementa-
tion for processors. Look-ahead is applied to the serial im-
plementation resulting in a byte-wise parallel implementa-
tion whose the feedback network is implemented as a look-
up table plus shift-and-add operations. Another approach
is proposed in [9, 10], where Galois field theory is applied
to implement parallel subword GFMACs suitable for CRC
calculation on customizable processor. Let us consider
��������� bits for the input message, and���� �

��

��� ��
�

the corresponding polynomial form. Being ���� the M-
order polynomial generator, the CRC is defined as:

��������� � ������� ���	����

It is possible to demostrate that CRC computation can be
obtained working in parallel on M-bit message chunks ��,
such that:

��������� �
�
�

����

3



Figure 3. Simplified DREAM architecture

where �� are N/M constants dependent on the message
length N and the polynomial generators����. CRC compu-
tation requires N/M GFMACs, and then to XOR the prod-
ucts.

3. DREAM Architecture Overview

DREAM adaptive DSP [5] is a dynamically reconfig-
urable processor featuring a Pipelined Configurable Gate
Array (PiCoGA) directly accessing a local high-bandwidth
memory sub-system. While a RISC core (the STxP70 core
of STMicroelectronics) handles control and configuration
of the platform, PiCoGA is responsible of data intensive
computation. PiCoGA is a pipeline matrix of mixed-grain
logic cells, featuring a 4-bit arithmetic/logic unit and a 64-
bit look-up table. In addition, conditional operations, sat-
urating and Galois Field arithmetic facilities are provided
to improve the effectiveness of the computation. Routing
architecture features 2-bit granularity segmented wires, al-
though bit-wise interconnection is allowed with resource
underutilization. Each PiCoGA row is the basic element for
building a pipeline stage, under the supervision of a ded-
icated programmable pipeline control unit. Furthermore,
PiCoGA provides 12 32-bit primary input ports and 4 32-
bit output ports, and a 4-context internal configuration cache
that allows exchanging the active layer in only 2 clock cy-
cle. PiCoGA design is oriented to simplify system-on-chip
integration (especially for processor-centric systems), fea-
turing a fixed working frequency of 200MHz and an area
occupation of �11��� in ST CMOS 90nm technology.
Moreover, as part of DREAM, it allows to achieve effi-
cient figures of merit like average 2 GOPS/��� and 0.2
GOPS/mW, as shown in [5] for a heterogeneous spectrum
of application kernels.

4. Implementation of the CRC on DREAM

This section presents the design exploration phase and
the decision process we followed implementing the 32-bit
CRC used in the Ethernet standard [12]. We analyzed the
various approaches presented in section 2, trying to find
that one best matching the DREAM computation paradigm.
While we supposed to handle control parts (e.g. message
start and stop) with the processor, we considered to map all
the CRC computation on PiCoGA. As an additional con-
sideration, we planned to exploit pipelining on PiCoGA as
much as possible thus considering as appealing solutions
all those which are not requiring pipeline breaks during the
processing flow.

We selected the approach proposed by J.H. Derby in [7]
since it allows exploiting pipelining without increasing the
complexity of the feedback loop. Hence, the CRC is imple-
mented as:

�����
� � ��� ����� ���� �� ����
����
� � � ������

As well as most of the coarse and mid grained reconfig-
urable fabrics, PiCoGA programming is performed through
an assembly-like language. The programmer selects the ap-
propriate instructions among the set offered by the architec-
ture, in a way similar to that followed by DSP programmers
with intrinsics or (built-in functions) instance. In our case,
all the operations are defined over GF(2), thus additions are
implemented by XORs. For that, we decided to massively
use the 10-bit XOR operation which can be implemented in
a single logic cell of PiCoGA.

The next step of our analysis is the selection of the look-
ahead factor and the eventual partitioning on one or more
PiCoGA operations, depending on both I/O bandwidth and
computational resources available. In order to automate the
investigation of the design space, we implemented a Matlab
program which provides all the necessary matrices, starting
from the size and polynomial generator of the CRC under
construction. Furthermore, it maps the required matrices
on 10-bit XORs, by an algorithm that reduces the number
of required XORs detecting 10-bit common patterns among
the rows of ��� and � . We also empirically analyzed the
impact of the arbitrary vector � in the definition of the state-
space transformation� , but we didn’t find significant differ-
ence in the complexity of � (e.g. 1’s per each row). As a
result, we selected � � �� � � � � ��.

We partitioned CRC on two PiCoGA operations: the first
one implements the status update described by �����
�,
and the second one implements the computation of ��� �

� depending on the reached state. The main benefit of this
approach is that we increase the resources available thus al-
lowing greater look-ahead factors, hence the number of bits
processed per cycle. On the other hand, this partitioning

4



Figure 4. Throughput vs. message length (for
a single message)

Figure 5. Throughput vs. message length (for
32 messages)

should not decrease performance because ��� �
� is re-
quired only at the end of the message and it does not break
the pipeline evolution. We generated PiCoGA operations
for different values of 
 , finding that PiCoGA is able to
elaborate up to 128 bit per cycle.

5. Experimental results

We have implemented on DREAM the 32-bit CRC de-
fined for the Ethernet standard (but it is the same defined
for MPEG-2) and we have analyzed as figures of merit the
throughput and the computational efficiency.

Fig. 4 shows for different look-ahead factors (
 ) the
bandwidth sustained with respect to the message length.
The variation is due to the control overhead introduced by
the processor and the pipeline break caused by the config-
uration switch when the second PiCoGA operation is trig-
gered to provide the anti-transformed state. To give an idea
of real cases, Fig. 4 also shows the message length win-
dows supported in the Ethernet standard that range from
368 to 12000 bit. Bandwidths reported are achieved for the
single message case, while Fig. 5 shows the case of in-

Speed-up
Message Length � � �� � � �� � � ���

128 29.76 27.69 27.32
640 104.17 108.08 99.38
3200 255.96 347.68 389.93
7296 325.93 515.47 682.35
9856 345.23 571.79 805.55

12416 357.60 610.90 900.99

Table 1. Speed-up vs. Fast software CRC on
RISC processor

Figure 6. Application specific CRC: through-
put vs. look-ahead factor

terleaving multiple messages (in that case 32) as proposed
in [13]. Message interleaving allows working concurrently
on multiple messages reducing the impact of any configu-
ration change. It is important to observe that in a message
window compliant with Ethernet standard we can perform
transfers at the Gbit/sec speed for 
 equal to 32, 64 and
128, thus allowing the user to explore additional trade-off
point between area (resource utilization) and speed in the
context of the final application.

As a reference point, Table 1 shows the speed-up
achieved by DREAM with respect to Fast software imple-
mentation on a RISC processor working at the same fre-
quency. In [10], 2-3 cycles are required to compute the CRC
for 128 bit message in a custom processor featuring 16 GF-
MAC running at 200MHz. A rough analysis of performance
figures in Table 1 also shows that the area increase due to a
reconfigurable datapath, that can be estimated in 10� the
area of a basic processor, is returned by an adequate perfor-
mance improvement, also for short messages.

A different comparison is proposed in Fig. 6, where we
tried to compare our implementation with respect to some
ASICs. We started our analysis from the Ultimate CRC
(UCRC [14]) distributed in the OpenCore site, which al-
lows implementing look-ahead factors from 2 to 512. We
synthesized UCRC with Synopys Design Compiler on STM

5



Figure 7. Energy efficiency

CMOS LP 65nm technology, with different parallelization.
We have also reported two theoretical bandwidths:

M theory , which refers to the bandwidth achievable ap-
plying to custom design the method proposed in [7],

M/2 theory , which refers to the bandwidth achievable ap-
plying to custom design the method proposed in [6].

For both, we consider the serial bandwidth achieved by
UCRC ASIC synthesis, and then the theoretical speed-up
factor is applied to obtain the curves. It should be observed
that for small parallelization, performance of DREAM is
limited by the fixed working frequency. Curves in Fig. 6
do not consider any communication overhead, but they an-
alyze only the computational kernel. Hence, in the case of
DREAM, as well as for the ASIC cases, we reported the
case in which 
 bit are elaborated per cycle, without any
configuration overhead, a condition that correspond to an
infinite message. For 
 � �	�, DREAM achieves a peak
performance of �25 Gbit/sec, that is greater of the perfor-
mance offered by UCRC.

Fig. 7 shows the energy efficiency of our approach for
different message length and factors of parallelization. As
a term of comparison, we can consider that a RISC pro-
cessor requires for this CRC computation �400pJ/bit (in-
dependently from the message length), which is �5-60�
more than on DREAM in 90nm technology [5].

To demonstrate the generality of the approach, we have
implemented also a scrambler compliant with the 802.16e
standard working with up to 128 bit in parallel, thus reach-
ing the max output bandwidth achievable. The implemen-
tation requires a single operation on PiCoGA and Fig. 8
shows the throughput with respect to different look-head
factors and block lengths. Although this second factor
is probably not so interesting on wireless communication,
mostly block based, it gives an idea of the performance that
can be achieved when scrambling is used in cryptography
as basis for stream ciphering.

Figure 8. Throughput on 802.16e scrambler

6. Conclusions

In this paper we present the implementation of LFSR-
based applications on the DREAM adaptive DSP, featuring
a pipelined run-time programmable datapath. We consid-
ered the implementation of the 32-bit CRC defined for the
Ethernet standard, achieving performance comparable with
some ASIC implementations, with a peak of �25 Gbit/sec.
This is in our opinion a very interesting result, since it is
achieved with a software programmable solution and since
it provides the bandwidth required for most of the standard
considered.

References
[1] M2000 Embedded FPGA www.m2000.fr
[2] H. Singh et al. MorphoSys: An Integrated Reconfigurable

System for Data-Parallel and Computation-Intensive Appli-
cations, IEEE Transactions on Computers, May 2000.

[3] M. Vorbach, J. Becker, Reconfigurable processor architec-
tures for mobile phones Proceedings on the IPDPS, 2003.

[4] R.R. Taylor, S.C. Goldstein A High-Performance Flexible Ar-
chitecture for Cryptography, CHES 1999.

[5] Omitted for blind review
[6] T-B. Pei and C. Zukowski, High-speed parallel CRC circuits

in VLSI,IEEE Trans. Commun. Apr 1992.
[7] J.H. Derby, High-speed CRC computation using state-space

transformations, Global Telecom. Conf. 2001.
[8] G. Albertengo and R. Sisto, Parallel CRC generation, IEEE

Micro,vol. 10, pp. 63-71, Oct. 1990.
[9] S. Roy, A sub-word-parallel Galois field multiply-accumulate

unit for digital signal processors, IEEE ISCAS 2005.
[10] H.M. Ji, E. Killian Fast parallel CRC algorithm and im-

plementation on a configurable processor IEEE International
Conference on Communications, 2002. ICC 2002.

[11] J-S. Lin, C-K. Lee, M-D. Shieh, J-H. Chen High-speed CRC
design for 10 Gbps applications, IEEE ISCAS 2006.

[12] IEEE Std 802.3, 2002 Edition
[13] J.J. Kong, K.K. Parhi Interleaved cyclic redundancy check

(CRC) code, IEEE Conf. on Signals, Systems and Computers,
2003.

[14] OpenCore Ultimate CRC
http://www.opencores.org/projects.cgi/web/ultimate crc/

6


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




