Efficient Computation of Discharge Current Upper Bounds for Clustered Sleep
Transistor Sizing

A.Sathanur* A.Calimera* L.Benini®

* Politecnico di Torino
10129 Torino, ITALY

Abstract

Sleep transistor insertion is a key step in low power de-
sign methodologies for nanometer CMOS. In the clustered
sleep transistor approach, a single sleep transistor is shared
among a number of gates and it must be sized according to
the maximum current that can be injected onto the virtual
ground by the gates in the cluster. A conservative (upper
bound) estimate of the maximum injected current is required
in order to avoid excessive speed degradation and possible
violations of timing constraints. In this paper we propose
a scalable algorithm for tightening upper bound compu-
tation, with a controlled and tunable computational cost.
The algorithm leverages the capabilities of state-of-the-art
commercial timing analysis engines, and it is tightly inte-
grated into standard industrial flow for leakage optimiza-
tion. Benchmark results demonstrate the effectiveness and
efficiency of our approach.

1 Introduction

Leakage power has increased incessantly with the scal-
ing of CMOS technology in the nanometer regime. Even
though a number of new leakage sources are emerging as
transistors shrink, the main contributor to overall leakage
is still drain-to-source leakage through transistors that are
nominally off. Drain-to-source leakage can be reduced
by manufacturing slower high-threshold transistors, but the
performance penalty associated with this solution is often
unacceptable. Hence, a number of circuit, logic, architec-
tural and system-level techniques have been devised in re-
cent years to reduce leakage power [1].

One of the most popular approaches to leakage power re-
duction relies on the insertion of sleep transistors which are
placed between the ground (or V4) terminal of the gates
and the ground (or V4) distribution network. Several dif-
ferent embodiments of this technique have been proposed in
the literature based on the granularity at which sleep tran-

978-3-9810801-2-4/DATEQ07 © 2007 EDAA

A Macii* E.Macii* M.Poncino*

¢ Universita di Bologna
40136 Bologna, ITALY

sistors are inserted. In the distributed sleep-transistor ap-
proach, these devices are added on an cell-by-cell basis [1].
The main issues with this technique are: High area over-
head and large number of sinks for the activation signal net,
which becomes extremely hard to route. On the other side
of the granularity spectrum, the approach known as power
gating insert very large sleep transistors on the root of the
power distribution networks of large sub-units (typically
many thousands of gates). This is by far the most com-
mon sleep transistor insertion technique and it is supported
by most state-of-the-art industrial design flows. The main
shortcoming of this approach is the long transition delays
between sleep and active states.

On a middle ground between the two approaches men-
tioned above, a very promising alternative is clustered sleep
transistor insertion, where a subset of a gate network (i.e.,
a gate cluster) is connected to a single sleep transistor. This
reduces overhead with respect to distributed sleep transis-
tors, while reducing turn-on transition times with respect to
power gating. This paper addresses one of the key steps in
automated sleep transistor insertion, namely the estimation
of the maximum current [,,,,, produced by a gate cluster.

Estimation of maximum current is challenging for two
reasons. First, exact computation of I,,,,, iS computation-
ally unfeasible, because it requires the solution of a number
of large-size weighted satisfiability problems. On the other
hand, we do not want to grossly oversize the sleep transis-
tor to avoid the ensuing overheads. Several attempts have
been made in the past to compute upper bounds of 1,4,
at an acceptable computational cost. This work presents a
novel technique for obtaining an upper bound that can be
computed efficiently. We leverage a state-of-the-art timing
analysis engine, and embed it in an optimization loop that it-
eratively tightens an initial loose upper bound computed us-
ing basic min-max delay analysis. Experimental results on
a set of benchmarks demonstrate that our solution achieves
maximum current upper bounds of 12% tighter, on average,
than a traditional approach based on the plain overlapping
of switching windows.

2 Previous Work

The estimation of the maximum current drawn by a cir-
cuit in a given clock cycle is a well-studied problem. Max-
imum current (and thus maximum power) is in fact impor-
tant because it is related to the reliability of a VLSI cir-
cuit [3]. Nowadays, besides reliability issues, estimating
the maximum current is also extremely important for prop-
erly sizing the sleep transistors. several techniques for siz-
ing sleep transistors based on maximum current estimation
have recently appeared in the literature.

In [4], the authors address the issues of sleep transistor
sizing based on mutually exclusive discharge current pat-
tern. They recursively apply their methodology to size a
sleep transistor for an entire circuit consisting of smaller
sub-modules. They show that grouping the gates which
have mutually exclusive current discharge pattern can re-
sult in very optimal sleep transistor sizes. This method has
the drawback of giving an upperbound estimate of the maxi-
mum current that may be too pessimistic, leading to an over-
sized sleep transistor.

In [5], [6] and [7], the authors propose a method of con-
structing a current envelope for the entire cluster of gates,
which will share a sleep transistor, by computing the ex-
pected discharge current of the gates. They multiply the
maximum discharge current of each gate with its switching
activity and refer it as expected discharge current of each
gate. This method may not be suitable for designing sleep
transistors because, since they compute the expected dis-
charge current instead of peak current, their value signifies
the average or mean value of the peak current distribution
of the gate cluster. Since the sleep transistor sizing phase
has to rely upon extreme value of the discharge current in-
stead of just the average current, this method can lead to
very inaccurately sized sleep transistors for very complex
and large circuits. In [8], the authors use the same method-
ology as in [5] to build a current envelope based on expected
discharge current of the gate cluster. But they show that
sizing based on timing criticality can lead to lower sleep
transistor sizes as compared to [5] and [4]. Among other
techniques, in [9] the authors propose a heuristic for esti-
mating the maximum discharge current based on artificially
setting a gate to switch. This is based on the correlation of
the gate with the other gates. Even though this method per-
forms an upper bound peak current estimation, it is a sim-
ulation based methodology and hence, for complex circuits
with a large number of inputs, the number of simulations
runs to achieve a good upper bound value might be large
and hence could be very time consuming. Our technique
on the contrary uses static timing analysis to compute the
current upper bound and thus is completely independent of
the population of the simulation data needed. This is very
important because as the circuits grow in size the technique

MSW

T, T,
— — time
T/ -

Figure 1. Switching Windows and MSW.

in [9] requires more simulation data points to achieve accu-
racy which requires very high computation time. In [10],
the authors show that considering not only topological as-
pect of the circuit, but also considering the functionality of
the circuit, can help in optimal clustering and hence sizing
of the sleep transistor. This method has the disadvantage to
be too time consuming since it performs functionality based
relation graph construction.

3 Maximum Current Estimation

The problem of maximum discharge current estimation
can be stated as follows. Given a set of gates in a clus-
ter sharing the same sleep transistor, we need to compute
an upper bound to the current value this set of gates will
discharge (in order to size the sleep transistor accordingly).
The difficulty in computing an upper bound for that value
is that, for a very complex circuit having thousands of gates
and many input ports, it is infeasible to find the input vec-
tor transition that discharges the peak current value using
dynamic simulation. Our technique does not require any
dynamic simulation, in contrast to other techniques and it
only utilizes static timing analysis to achieve the task (thus
being very fast). We first propose our iterative algorithm
and follow it up with a simple example.

3.1 Preliminaries and Definitions

We define the switching window of a gate under an input
pattern as the interval between the arrival time and the out-
put transition of the gate. There is one switching window
for each path through a particular gate. The width of the
switching window of a gate for a given path is equivalent
to the propagation delay of the gate for a rising or falling
transition.

For a given gate in the cluster, the maximum switching
window (MSW) is defined as the time interval encompassing
all possible switching time intervals of the gate.

Figure 1 shows an example of MSW, where for simplicity
only 4 switching windows are shown. Here T'1, T2, T'3 and
T4 denote the possible switching time intervals for the gate.

If a gate has n such switching windows, the set of values
T1,...,Tn is called the full switching window (FSW) of
the gate.

3.2 Maximum Current Estimation
Algorithm

Figure 2 shows a high-level pseudo-code of our maxi-
mum current estimation algorithm. The first step (Line 1)

1. Compute MSWs for all the gates
2. Construct current plot
while not convereged {
3. Identify gates contributing to maximum current
4. Perform gate ordering
5. Extract FSWs
6. Update current plot
}

Figure 2. Algorithm for Maximum Current Es-
timation.

consists of computing the MSW for each gate in the cluster.
The motivation behind extracting the MSW and not all the
switching times of a gate is that, for a complex circuit and
for a gate very deep in the logic, there are possibly a very
large number of switching time intervals, each one corre-
sponding to a path being activated through a gate. More-
over, it is very time consuming to extract all these windows
for all the gates, which form a cluster. Conversely, it is
very fast to extract the MSW for each gate. In fact, it only
requires the calculation of the first (earliest) switching win-
dow T'1 and of the last (latest) one T'n; the MSW is simply
obtained as the time interval encompassing 7'1, T'n and the
time between them as well as shown in the Figure 1. We
thus need to extract only two switching time intervals for
each gate in the cluster, which can be accomplished very
fast.

The second step (Line 2) consists of the construction of a
plot of current over time (hereafter, the current plot), which
records the gates that switch at a particular time interval
and hence the total discharge current in that time interval.
This plot is the superposition over time of rectangles whose
base corresponds to the MSWs of the individual gates of the
cluster (which will in general partially overlap), and whose
height corresponds to the current drawn by the gate (e.g.,
derived by a technology library). From this current plot, we
obtain the time interval during which the maximum current
discharge occurs and the gates that contribute to this current
discharge.

Figure 3 shows an example of current plot, in which five
MSWs (a to e) are shown. The interval in which the current
drawn is maximum is shown, corresponding to the overlap-
ping of the c, d, and e MSWs.

Here, we emphasize the usefulness of the conservative

current

Figure 3. Example of Current Plot.

approach to quickly obtain the MSW for all the gates in the
cluster. The reason behind this is that it allows us to iden-
tify (based on MSWs) the time interval during which the
maximum current discharge occurs. We are only interested
in extracting the detailed FSW information for those gates
which contribute to this maximum value (disregarding those
that do not contribute to the maximum discharge current).

From the current plot we find the gates, which con-
tributes to this maximum current value (Line 3). Gate order-
ing (Line 4) on the set of gates identified in Line 3 is done
to maximize the probability of non-overlapping switching
of the gates that contribute to this maximum current value.
This part is explained in more detail in the next section.

After this ordering of the gates, we perform the FSW
extraction (Line 5) gate by gate or for a set of gates. We as-
sume that only a subset of these gates, which contribute to
the maximum current, is sent for FSW extraction. Once we
extract all the possible switching time intervals for the sub-
set of gates, we update the current plot (Line 6) and then we
repeat the process of obtaining the gates, which contribute
to the new maximum current.

The process is repeated until we converge. In the worst
case, we have to extract the FSW for all the gates in the clus-
ter and compute the maximum current. Hence we guarantee
the convergence of our algorithm.

3.3 Gate Ordering

We use gate ordering to speed up the process of FSW ex-
traction of a set of gates that contribute to maximum current
value. In the algorithm, the interval that exhibits the current
peak moves as the iteration progresses, each time reducing
or maintaining a constant value of the maximum discharge
current. Figure 4 shows this effect. Consider the time inter-
val during which a current peak occurs; there will typically
be a set of gates that have switching times that extend on
both sides of this time interval. For instance, in Figure 3,
the MSW of gate ¢ extends both to the left and the right of
the time interval T (whereas d extends on the left side of T’
only, and e to the right only).

For gates such as c, there is a good probability that it will
not switch at 7" which we call as the virtual switching win-
dow, which will disappear when we extract the complete
FSW for that particular gate. Then, the previously found
current peak actually collapses and might move onto a new
time period (peak current hopping). Since it is desirable that

P1

P2

current l l

>

i > i
0 10 20 30 40 50 Time 0 10 20 30 40 50
=

\4

G4 G1 G a1
N 2 et
G3 G2 “gp” G2
G3
G2
|

G1

Figure 4. Peak Current Hopping through Al-
gorithm lteration.

we hop to new current peak as quickly as possible to con-
verge on the final maximum discharge current, it is essential
that we send gates having this virtual switching window for
FSW extraction. This technique speeds up the algorithm
since we do not perform FSW extraction for all the gates
that contributes to this maximum current.

3.3.1 Speeding up FSW extraction

As already mentioned, for a gate in a complex circuit at a
considerable logic depth, there are a very large number of
switching windows. Some of these are overlapping win-
dows and hence do not constitute unique switching times
for the gate. In general, there is a perticular distribution of
the number of switching windows for each gate in a circuit.
It is important to point out here that there tend to be a large
number of switching windows in the middle than those to-
wards the extremes. To achieve convergence in extracting
these non-overlapping switching windows for each gate, we
do a two-way extraction of the switching windows as shown
in Figure 5.

First, we extract, for each gate, a certain number of
early switching windows W,,;, and a certain number of
late switching windows W,,... Then, we check if the lat-
est switching window of W,,;,, and the earliest switching
window of W, overlap. If they do, then we stop at this
point. Then we merge the overlapping switching windows
and construct unique switching windows from W,,;,, and
Whnaz- There is the possibility that even after extracting a
few hundred W, 4, and W, switching windows, they do
not converge.

In that case, we make a check to see if the extracted
Wnaz Windows reach a threshold 6,,,,,. and if the extracted

Earliest switching Latest switching
Step One — — _h"les_ —_ - _tEEi —
Step Two "%

Latest switching window of

R . Earliest switching window of
early switching times

late switching times

threshold_min threshold_max

Time

Figure 5. Full window extraction method.

.5
=

N ~ 3.4
1 | G4 | L% N
¥ - G11
G2) .) L

Figure 6. A Simple Gate Network.

Wnin Windows reach another threshold 6,,,;,,. If this hap-
pens, then we construct a big switching window, which has
a starting time at 6,,,;,, and ends at 0,4

We can tradeoff accuracy for execution speed by taking
different values of 0,,,;, and 6,,,4..

3.4 Example

Let us consider a simple example of a gate network as
shown in Figure 6. For simplicity, we assume that each gate
has a switching time of 1 unit and it discharges 1 unit of
current in that time interval. As outlined in the algorithm,
we first construct a current plot from MSW of all the gates
in the network, shown in Figure 7. Values above each gate
indicate its corresponding switching window.

We see that during iteration 1, the time at which max-
imum number of gates are switching is at time period 2.
The gates which contribute to this current are G3, G4, G5,
G6, G7, G8 and G9. We can see that G5, G6 and G7 have
switching times on either side of the common overlap time,
which is the time period 2. In our MSW extraction, we

Iteration 2

Iteration 1 [Iteration 3

Current
Current

Figure 7. Current Graphs Showing 3 Itera-
tions of the Algorithm.

extract the earliest and the latest switching windows only.
Thus, the probability of G5, G6 and G7 having an empty
space or virtual switching window in the time interval 2 is
very high as compared to G9. G9 has a very high proba-
bility of having a void space in 3 but not in 2 since 2 is a
switching time interval already extracted and G9 will defi-
nitely switch in this time period.

So after gate ordering, we have ordered gates as G5, G6,
G7, GY, G3, G4 and G8. Now sending only G5, G6, G7 for
FSW extraction and updating the current plot, we see that
the current peak moves to time interval 3 which is equal to 6
units of current. Now at time 3, we apply the gate ordering
and we obtain G9, G10 and G11. Since G5, G6 and G7
already have their FSW extracted and it is certain that G5,
G6, G7, G10 and G11 will switch during the time period 3,
we send only G9 for FSW extraction. After FSW extraction
of G9 and updating the current plot, we have the maximum
current at time periods 1 and 3 equal to 5 current units. The
iteration stops here since at both times 1 and 3 there are
no gates which have a virtual switching window in them.
Since we use gate ordering, we save a lot of time by not
extracting the FSW for all the gates that contribute to the
maximum current value at a particular time period.

4 Experimental Results
4.1 Experimental Flow

We have used a set of benchmark circuits taken from
the ISCAS and MCNC benchmark suites for testing our
methodology. Each benchmark was synthesized using a re-
duced set of gates taken from a 65nm technology library
from STMicroelectronics and using Synopsys DesignVi-
sion. Using this reduced set of library gates makes the char-
acterization process easier, without loss of generality. For
these reduced set of library gates, we perform SPICE simu-
lation to extract peak discharge current. In the experiments

we have used a FO4 as the output capacitive load and char-
acterize the gates for a input transition time of 300ps.

Extraction of switching windows for a given gate was
done by using static timing analysis; in our experiments we
use PrimeTime from Synopsys, which can report all possi-
ble data arrival times at the inputs of a specified gate. So the
data arrival time at the input constitutes the starting point of
the switching window. The ending point of the switching
window is just the starting point plus the propagation delay
through the gate. Here we try to emphasize the importance
of using a static timing analysis, which allows to compute
the switching window very quickly, at the expense of some
conservative approximation on delay computations. This
gives our algorithm an added value since it can be used on
large designs.

4.2 Clustering

Our methodology estimates the peak discharge current
given a cluster of gates of a larger design. Even if cluster-
ing is not the subject of this work, and our algorithm can be
applied to any set of gates, the clusters used in the experi-
ments have been built using a simple clustering technique,
in order to make experiments more meaningful. In particu-
lar we have used a traditional path-driven algorithm to build
clusters. In fact, since gates that lie on a path have mutually
exclusive switching times, grouping them to form a cluster
minimizes the simultaneous current discharge.

4.3 Experimental Data

Table 1 show the results obtained on a set of ISCAS and
MCNC benchmarks of different sizes. For each design, two
different cluster sizes are considered. Results report the
peak discharge current (Column /Initial Current) obtained
by considering only the superposition of MSW versus the
estimate achieved by our algorithm (Column Final Cur-
rent). Our algorithm provides an average 11.73% improve-
ment of the upper bound on average (23% maximum). We
clearly notice that the savings are strongly dependent on the
benchmarks which is a function of the topology of the cir-
cuit.

The efficiency of our algorithm can be measured by com-
paring its execution time against a solution based on the
complete extraction of FSWs for all gates in the cluster. No-
tice that our method and full FSW extraction will yield the
same result, the difference being only the number of FSW
extractions performed.

For none of the benchmarks reported in the Table 1 has
been possible to complete the full extraction the FSWs (us-
ing a 50,000s bound). Conversely, selectively extracting
FSWs as done in our approach allows to compute maximum
current (the longest execution time is below 2000s).

Circuit | #Gates | Clus Current [uA] % red
Size Initial | Final

c499 426 85 1211.6 1035.4 14.5
169 2291.1 2082.4 9.1
c1355 942 70 973.3 759.1 22.0
255 3018.3 2701.5 10.5
c1908 990 50 1120.3 923.5 17.6
432 93539 | 7300.6 22.0
c2670 1178 67 2354.5 2181.3 7.4
850 | 19717.6 | 15119.9 23.3
c3540 1620 294 8564.6 | 7761.0 9.4
79 2131.0 | 2111.5 0.9
apex6 879 145 4170.8 3609.6 13.5
454 | 12392.5 | 10532.2 15.0
x4 1596 250 | 6062.6 | 4996.0 17.6
501 | 13232.9 | 11509.7 13.0
term1 1482 845 | 14569.4 | 12464.3 14.4
1026 | 16057.7 | 13914.8 13.3
frg2 4323 152 | 4610.2 | 4267.5 7.4
398 | 12111.1 | 11661.8 3.7

| Average | 11.73]

Table 1. Maximum Current Estimation Re-
sults.

To realize a direct comparison, we have designed a small
4-bit array multiplier, for which full FSW extraction is fea-
sible. Results are in this case less evident than for larger
benchmarks (Table 2), because of the relatively small num-
ber of resulting MSWs, as well as the cost of building the
current plot, which is comparable to a single FSW extrac-
tion.

Cluster Size | Our Algo. | Complete FSW | SpeedUp
(#Gates) (s) (s)
50 297 347 1.17X
86 496 589 1.19X
104 600 717 1.20X
125 675 820 1.21X
140 813 1337 1.64X

Table 2. Complete FSW Extraction vs. Our Al-
gorithm.

5 Conclusions

We have proposed an effective algorithm for the com-
putation of tight upper bounds of the maximum discharge
current of a circuit, with application in the problem of the

sizing of sleep transistors in a clustered MTCMOS-based
leakage power optimization scenario.

The algorithm iteratively refines current peak estimates
by carefully selecting the time intervals in which to extract
the switching windows of the gates in a cluster. Our ap-
proach provides the same accuracy as that achievable with
a full extraction of switching windows for all the gates, yet
in much shorter time. Other fine-grain optimizations allow
to further speed up the computation allowing faster conver-
gence.

Results show that our solution achieves maximum cur-
rent upper bounds of about 12% tighter, on average, than
a traditional approach based on the plain overlapping of
switching windows. The efficiency of our algorithm is also
very good since we achieve the same approximation quality
provided by a full extraction of all switching windows, yet
with much shorter execution times.

References

[1] K. Roy et al. “Leakage Current Mechanisms and Leakage
Reduction Techniques in Deep-Submicrometer CMOS Cir-
cuits,” Proceedings of the IEEE, Vol. 91, No. 2, pp. 305-327,
2003.

[2] F. Fallah, M. Pedram, “Standby and Active Leakage Current
Control and Minimization in CMOS VLSI Circuits,” IEICE
Transactions on Electronics, Vol. E88-C No 4. pp. 509-519,
2005.

[3] N. E. Evmorfopoulos et al. “A Monte Carlo approach for
maximum power estimation based on extreme value theory,”
IEEE TCAD, Vol. 21, No. 4, pp. 415-432, 2002.

[4] J. Kao et al. “MTCMOS hierarchical sizing based on mutual
exclusive discharge patterns,” DAC-35, pp. 495-500, 1998.

[5] M. Anis et al. “Design and optimization of multithreshold
CMOS (MTCMOS) circuits,” IEEE TCAD, Vol. 22, No. 10,
pp. 1324-1342, October 2003.

[6] M. Anis et al. “Dynamic and leakage power reduction in
MTCMOS circuits using an automated efficient gate clus-
tering technique,” DAC-39, pp. 480-485, 2002.

[7] W. Wang et al. “Fast techniques for standby leakage reduc-
tion in MTCMOS circuits,” SOCC-04, pp. 21-24, 2004.

[8] A. Ramaligam et al. “Sleep transistor sizing using timing
criticality and temporal currents,” /0th ASPDAC, pp. 1094-
1097, 2005.

[9] C. Long, L. He, “Distributed sleep transistor network for
power reduction” /IEEE TVLSI, Vol. 12, No. 9, pp. 937-946,
2004.

[10] T.W. Chang et al. “Functionality directed clustering for
low power MTCMOS design,” 10th ASPDAC, pp. 862-867,
2005.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

