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Abstract

In today’s embedded processors, performance and flexibility have
become the two key attributes. These attributes are often conflicting.
The best performance is obtained from custom designed integrated
circuits. In contrast, the maximum flexibility is delivered by a general
purpose processor. Among the architecture types emerged over the
past years to strike an optimum balance between these two attributes,
two are prominent. The first ones are Field Programmable Gate Ar-
ray (FPGA)-based architectures and the second ones are Application-
specific Instruction-set Processors (ASIPs). Depending on the type
of application (i.e. stream-like or control-dominated) either one of
the abovementioned architecture types is able to deliver high perfor-
mance or flexibility or both. Consequently, a new design approach
with partial re-configurability on the application-specific processor
is attracting strong research interest. We call this architecture re-
configurable ASIP (rASIP). Currently, the lack of a high-level ab-
straction of the rASIP limits the designer from trying out various
design alternatives because of long and tedious exploration cycles.
To address this issue, in this paper, a high-level specification for re-
configurable processors is proposed. Furthermore, a seamless design
space exploration methodology using this specification is proposed.

1. Introduction
Over the past few years, the increasing demand of performance

by complex, cutting-edge applications have created a strong research
interest for flexible and high-performance system design. This de-
mand is met by increasing the system complexity to accomodate mul-
tiple cores on a single System-on-Chip (SoC). Due to unique blend of
performance and flexibility, Application Specific Instruction-set Pro-
cessor (ASIP) emerged as one of the key component of such SoCs.
ASIPs can deliver high throughput, consume low power and at the
same time are flexible due to their programmability. However, the
flexibility of ASIP is limited to the soft changes i.e. the hardware im-
plementation remains unaltered after the fabrication. Often this limi-
tation prevents the ASIP from reaching the optimum performance for
a wider range of applications.

Alternatively, in search of higher flexibility, industry and academia
have opted for fully re-configurable architectures, which are modelled
using a variety of field-programmable devices [1]. To combine the
merits of both the architectural alternatives, partially re-configurable
processors are gaining prominence in recent years [2] [3]. These
architectures contain an ASIP part and an FPGA part. The FPGA
part is included to obtain hard flexibility, whereas the ASIP part of-
fers soft flexibility. This higher flexibility allows the re-configurable
ASIP (rASIP) to adapt to changing applications without compromis-
ing the performance. A rASIP architecture can be changed between
the execution of applications or during the execution of an appli-
cation resulting into further classification. The rASIPs, which can
be configured during the execution of an application are dynami-
cally re-configurable, thereby known as d-rASIPs. The statically re-
configurable ASIPs are called s-rASIPs. In this paper, we target s-
rASIPs. However, the concept can be extended easily to the domain

of d-rASIPs.
The flexibility and performance of the rASIP relies strongly on

the organization of the architecture. For example, a rASIP where the
re-configurable part does not have direct access to the data memory
can face a major bottleneck to boost the performance for memory-
intensive applications. A rASIP architecture can be broadly divided
into three partially overlapping components namely, the base proces-
sor, the ASIP-FPGA coupling and the FPGA architecture. Consider-
ing the numerous design alternatives for each of these components, it
is understandable that the design of rASIP is a demanding task. This
complex task calls for an efficient design methodology. In this paper,
this problem is addressed directly by proposing a high-level specifi-
cation for modelling rASIPs.

Architecture Description Languages (ADLs) [4] [5] [6] have been
used successfully during recent years to model ASIPs. From an ADL
description, the software toolsuite like compiler, simulator, assem-
bler, linker as well as the Hardware Description Language (HDL)
implementation of the processor can be automatically generated. In
this paper, ADL LISA [7] is used as the starting point for capturing
the rASIP description. This ADL is extended for modelling rASIPs.
The existing ADL-based automatic software toolsuite generation is
enhanced to cover the new rASIP description. As a case study, a
RISC-based rASIP is modelled and its performance improvement in
comparison with the base ASIP is shown. In short, the contributions
of this paper are to present:

• A high-level specification language for rASIP modelling.

• A fast methodology for rASIP design space exploration.

The rest of the paper is organized as follows. In section 2, some
contemporary work in this field is described. The section 3 presents
an overview of the rASIP architectures and introduces necessary ter-
minology for the understanding of the rest of the paper. In section 4,
the architecture description language LISA is briefly outlined and
the new language elements necessary for rASIP modelling are intro-
duced. Section 5 explains the proposed rASIP design flow in detail.
In section 6, a case study is elaborated. The paper is concluded and
future work is outlined in section 7.

2. Related Work
A detailed discussion of the issues with the rASIP modelling and

the associated tools is documented in [8]. Although ADLs are used
extensively to perform high-level design space exploration and to
model ASIPs [7] [6], the concept of modelling rASIPs in a high-level
specification is novel. Exemplarily, an rASIP architecture from indus-
try is chosen and its design methodology is discussed in the following
paragraph. Subsequently, few interesting approaches to perform the
rASIP design space exploration are discussed.

The Stretch S5000 family of partially re-configurable processors
[2] offers a combination of a RISC processor with an Instruction Set
Extension Fabric (ISEF), which is essentially an FPGA. The proces-
sor comes with a dedicated tool-suite. This tool-suite helps the de-
signer to map an application efficiently to the processor by choosing
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the application hot-spot and by re-configuring the field-programmable
fabric accordingly. This family of partially re-configurable processors
specifically targets video, wireless and biometric applications. How-
ever, the approach of Stretch is not generic enough considering that
the base processor structure is only partially configurable. The in-
terface between the processor and the programmable fabric is also
fixed beforehand, therefore limiting the potential number and organi-
zation of custom instructions. Only the base processor structure and
interface are provided to the end-user. The complete design space
exploration for the rASIP is not feasible.

To allow a generic design space exploration for the complete
rASIP in a single framework, an interesting approach is adopted by
[9]. Here, the base processor is modelled using an ADL. The retar-
getable simulator generated from the ADL description is coupled with
the FPGA simulator. Using this method, the complete design space
exploration can be done. A drawback of this approach is that the re-
configurable part and the fixed processor part are written separately
using different description formats. This prevents a smooth design
space exploration for various degrees of processor-FPGA coupling.
Furthermore, no clear methodology is outlined for custom instruction
synthesis and integration.

In another attempt to create a generic software development tool
chain for re-configurable processors [10], a gcc-based framework is
developed. The complete gcc tool chain including the simulator, com-
piler, assembler and the debugger is extended to support different ar-
chitectural enhancements e.g. DSP-like instructions, VLIW capabil-
ities and the FPGA instructions. Furthermore, specific latencies for
the FPGA instructions can also be specified. This work comes with
several limitations, the most notable being the inflexibility of the un-
derlying architecture. The design space exploration is limited to the
base architectures supported by gcc. The selection of custom instruc-
tions and according modification of the target assembly code is done
manually. Moreover, it does not support a seamless and consistent
flow for implementation, since HDL code generation for the modified
architecture is lacking.

3. rASIP : An Overview
In this section, the various possibilities of rASIP architectures i.e.

the rASIP design space is discussed. Consequently, a generic method-
ology for rASIP design space exploration is proposed.
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Figure 1. rASIP Design Space
In the figure 1, the rASIP design space is partitioned into three sub-

spaces. The rASIP architecture is partially re-configurable i.e. it con-
tains a base processor which is fixed after the processor is fabricated, a
re-configurable part and the interface connecting these two. The base
processor can be of different architecture styles e.g. RISC, VLIW.
The number of pipeline stages, the pipeline control, the width of the
instruction and various other issues are involved with the base pro-
cessor design. These issues are commonplace with an ASIP design.
Regarding the design of the re-configurable block, numerous possibil-
ities can be explored. The granularity of the logic blocks, the intercon-
nect topology and several other aspects determines the performance

and flexibility of the rASIP. Furthermore, the selection of elements to
belong to the re-configurable block provides a large number of design
alternatives. For example, the control path or the decoder of the rASIP
can belong to the base processor only. In this case, the instruction en-
coding for the custom instructions need to be fixed. Whereas, if a part
of the decoder is localized in the re-configurable block, then higher
flexibility can be obtained. The higher flexibility comes at the cost of
higher area and timing due to the irregular structure of the decoder be-
ing mapped to a regular FPGA structure. Finally, the interface of the
re-configurable part and the base processor is of high importance. It
can be tightly coupled meaning the re-configurable block can access
processor internal registers, pipeline registers and is guided by several
control signals coming from the base processor, which does not be-
long to the peripherals usually. The rASIP architecture can be loosely
coupled, where it interacts with external processor ports only. The
interfacing between the re-configurable block and the base processor
strongly influences the post-fabrication flexibility. Note, that the sub-
spaces of this rASIP design are overlapping. For example, the design
of the base processor cannot be done without caring about the inter-
facing. Therefore, the proposed specification to cover the complete
rASIP description is important for rASIP design space exploration
and implementation.

The design space exploration and implementation of rASIPs can
be naturally sub-divided into two phases. The focus of these two
phases are presented in the following.

Pre-fabrication Design Flow: This phase of design happens be-
fore the rASIP is fabricated. Here, the complete design space is open.
The decisions involving all three design sub-spaces are to be taken in
this phase. Finally, the design is implemented partially on fixed and
partially on re-configurable hardware.

Post-fabrication Design Flow: This phase of design happens after
the rASIP is fabricated. In this phase, the base processor and the
interfacing hardware is fixed. The architecture design space is limited
to the possible configurations of the re-configurable block only.

4. High Level Language for rASIPs
In this section, a brief overview of the architecture description lan-

guage LISA is provided, focussing on the parts which are relevant in
this context. Following the overview, the necessary additional ele-
ments for rASIP modelling are introduced.

4.1 LISA Resource Section

The processor resources (e.g. registers, memories, ports) are de-
clared globally in the resource section, which can be accessed from
the processor datapath. The datapath of the processor is modelled as
a chain of LISA operations outside the resource section. Apart from
the resource declarations, the resource section of LISA language is
used to describe the fundamental structure of architecture. For this
purpose the keywords pipeline, pipeline register and unit are used.
The keyword pipeline defines the instruction pipeline of the proces-
sor with the corresponding order and name of the pipeline stages.
The pipeline register is used to define the pipeline registers between
the stages. Using the keyword unit, the designer can define a set of
LISA operations (within a pipeline stage) to form an entity (VHDL)
or module (Verilog) in the generated HDL code.

4.2 LISA Operation Graph

In LISA, an operation is the central element to describe the timing
and the behavior of a processor instruction. The instruction may be
split among several LISA operations.

The LISA description is based on the principle that a specific com-
mon behavior or common instruction encoding is described in a sin-
gle operation whereas the specialized behavior or encoding is imple-
mented in its child operations. With this principle, LISA operations
are basically organized as an n-ary tree. However, specialized oper-
ations may be referred to by more than one parent operation. The
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Figure 2. LISA Operation DAG Example

complete structure is a Directed Acyclic Graph (DAG) D = 〈V, E〉.
V represents the set of LISA operations, E the graph edges as set of
child-parent relations. These relations represent either Behavior Calls
or Activations, which refer to the execution of another LISA opera-
tion. Figure 2 gives an example of a LISA operation DAG. As shown,
the operations can be distributed over several pipeline stages. A chain
of operations, forming a complete branch of the LISA operation DAG,
represents an instruction in the modelled processor.

Instruction Coding Description : The instruction encoding of a
LISA operation is described as a sequence of several coding fields.
Each coding field is either a terminal bit sequence with “0”, “1”,
“don’t care”(X) bits or a nonterminal bit sequence referring to the
coding field of another child LISA operation.

Activations : A LISA operation can activate other operations in
the same or a latter pipeline stage. In either case, the child operation
may be activated directly or via a group. A group collects several
LISA operations, with the elements being mutually exclusive. The
elements are distinguished by a distinct binary coding. All elements
belonging to the same group must have same bit-width.

Behavior Description : The behavior description of a LISA oper-
ation corresponds to the datapath of the ASIP. The behavior descrip-
tion is a non-formalized element of the LISA language (contrary to
formalized elements like coding, activation etc.), where plain C code
can be used. Resources such as registers, memories, signals and pins
as well as coding elements can be accessed in the same way as ordi-
nary variables.

4.3 Extensions for rASIP Modelling
Re-configurable unit : The keyword re-configurable can be ap-

pended to the unit definition in order to identify the LISA operations,
which will be placed in the re-configurable block. This identification
is used during RTL synthesis from LISA to move the complete unit
outside the base processor.

Latency : Every LISA operation, in a cycle-accurate descrip-
tion, is assigned to one particular pipeline stage. An operation in
one pipeline stage takes one cycle to execute. However, the re-
configurable block may run at a different clock-speed. The keyword
latency is introduced for modelling the ratio of the latency of an op-
eration in the re-configurable block compared to the latency of an
operation in the base processor. For every LISA operation an integral
latency can be specified, which corresponds to the number of cycles
it requires to execute. For operations without any latency specifica-
tion, a single-cycle latency (similar to the base processor operations)
is assumed by default.

Fullgroup : The keyword fullgroup is introduced for reserving
the opcode space of additional instructions, which can be introduced
during the post-fabrication enhancements. As mentioned earlier, a
group collects several mutually exclusive LISA operations. The cod-
ing width (w) of the group members dictate the maximum possible
number (2w) of operations, which can belong to the group. If a group
does not contain all possible operations, then additional operation(s)
can be inserted to it. A fullgroup reserves this additional coding space.

Register Localization : This extension is useful during RTL syn-
thesis from the rASIP description. By enabling the register local-
ization option, the designer can move the storage elements, which

are used locally within the re-configurable operations to the re-
configurable block.

Decoder Localization : This extension is also used during the
RTL synthesis. In order to have flexible decoding and custom instruc-
tion encoding during post-fabrication phase, the part of the complete
decoder, which is relevant for the re-configurable operations can be
identified and moved to the re-configurable block. Usually, the full-
group keyword is used in conjunction with decoder localization.

5. rASIP Design Flow
As stated before, the proposed rASIP design flow can be divided

into two major phases, the first one being the pre-fabrication design
flow and the second one being the post-fabrication design flow. In
this section, the pre- and post-fabrication design flow is discussed in
detail.

5.1 Pre-fabrication Design Flow
The pre-fabrication rASIP design flow is shown in figure 3. As

outlined in various literature [11] [12], the design of an application-
specific processor often starts from the analysis of the application(s).
This analysis can be done using static and dynamic profiling [13] of
the application in an architecture-independent manner. The profiling
helps to narrow down the architectural design space. With the aid of
the profiler, the decisions concerning the memory hierarchy, number
of registers, processor architecture (e.g. RISC, VLIW) can be taken.
The designer can use the extended LISA language for developing the
target rASIP. This design flow, so far, is alike to the ASIP design
flow. For rASIPs, the major additional decisions, which need to be
taken are categorized in the following. (i) Selection of instructions (or
parts of instruction), to be mapped to the re-configurable block. (ii)
Decisions concerning the interface between the processor and the re-
configurable block. (iii) Decisions concerning the local decoding at
the re-configurable block. (iv) Decisions concerning the architecture
of re-configurable block.
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Figure 3. Pre-fabrication rASIP design flow
These decisions are key to play the trade-off between the flexibil-

ity and the performance of the rASIP. For example, the availability
of local decoding inside the re-configurable block allows flexibility
in adding custom instructions. On the other hand, the decoder struc-
ture, being irregular in nature, adds to the interconnect cost and power
budget of the re-configurable block. The decisions taken during the
pre-fabrication design flow constrain the optimization benefits (or in
other words, the design space) achievable during the post-fabrication
design. For example, the interface between the fixed processor part
and the re-configurable block is decided during the pre-fabrication
flow. This decision cannot be altered once the processor is fabricated.

Software Tools Generation: The rASIP software tools e.g. simu-
lator, assembler, linker are automatically generated from the extended
LISA description. The only software tool, which is currently affected
by the language extension, is the processor instruction-set simulator.
The existing LISA simulator is extended to support the latency of re-
configurable LISA operations. The instruction-set simulation guides



the designer to make the pre-fabrication design decisions. Note, that
the latencies must be taken into account during the scheduling of as-
sembly instructions.

Coding Leakage Explorer: A stand-alone software tool, named
coding leakage explorer, has been developed for rASIP design space
exploration. This tool analyzes the coding contribution of different
LISA operations. After the analysis, it determines the free coding
space. This free coding space is termed as leakage. The higher the
coding leakage of a particular group of instructions, the more num-
ber of special instructions it can accomodate. The coding leakage
explorer guides the designer to determine the re-configurable LISA
operations and the fullgroups. Detail analysis of this tool is beyond
the scope of this paper.

RTL Synthesis: The LISA-based RTL synthesis tool is extended
to support the rASIP description. In the rASIP description, the re-
configurable block is identified by the unit re-configurable keyword.
The designer can specify decoder localization and register localiza-
tion for the re-configurable block. Accordingly, the complete re-
configurable block is created and moved out of the processor. This
movement generates the processor-re-configurable block interface au-
tomatically. The complete interface is stored in the XML format. The
storage of the interface is necessary in order to ensure that the inter-
face restrictions are not violated during the post-fabrication rASIP en-
hancements. The generated HDL description for the re-configurable
block can be synthesized using an FPGA synthesis tool in order to get
an estimation of the area.

RESOURCE {
…
REGISTER int R[0..15];
REGISTER int mul_res;
PIPELINE PIPE = {DC, EX, WB;};

UNIT RECONFIGURABLE rec_unit = {REC_OP;};
UNIT ex_unit = {ADD, SUB;};
…

}

OPERATION Arithmetic IN pipe.DC {
DECLARE {

FULLGROUP arith_op = {ADD || SUB || REC_OP};
}

…
}
OPERATION REC_OP IN pipe.EX {

DECLARE { LATENCY = 2; }
BEHAVIOR {

mul_res = R[src1] * R[src2];
}

}

Figure 4. rASIP Description Example
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Figure 5. Extended LISA Operation DAG
A rASIP Description Example: Parts of a rASIP description are

given in figure 4 for a better understanding of the pre-fabrication de-
sign flow. The rASIP description corresponds to the DAG as shown
in figure 5. In the DAG, the operation Arithmetic activates an oper-
ation REC OP. In order to save the coding space for future custom
instructions, the group of operations ADD, SUB and REC OP are
put into a fullgroup. The operation REC OP is re-configurable. In
this particular case, the operation REC OP is performing a multipli-
cation between two General Purpose Registers (GPRs) and is writing
the result to the special register mul res. The operation REC OP has
a latency of 2. This indicates that it will take a time correspond-
ing to 2 cycles of the base processor in order to generate the result.

There are few points to be noted here. Firstly, although the operation
REC OP is re-configurable, yet it is placed in the EX stage, in order
to maintain the pipelining behavior of the overall rASIP architecture.
Secondly, from the perspective of the behavioral description, the re-
configurable operation is not distinguished from any other operation.
This provides flexibility and efficiency in the high-level design, where
the designer concentrates on the instruction-set architecture. Thirdly,
the re-configurable operation can load/store operands from/to GPRs,
special-purpose registers or even pipeline registers and memories(not
shown in the example). These decisions directly influence the in-
terface of base processor architecture with the re-configurable block.
The proposed modelling style offers absolute freedom in these deci-
sions. Finally, the latency of the re-configurable block can be easily
modified. The only thing, which must be taken care of is the con-
flict in resource access during multi-cycle re-configurable operations.
There are several possibilities. For example, the write access to the
resources from the base processor can be blocked [14], when it is the
target of a re-configurable operation. Alternatively, dedicated special
purpose registers can be kept for accessing the re-configurable opera-
tions [2]. The high-level rASIP modelling eases the effort in exploring
these alternatives.

5.2 Post-fabrication Design Flow
The proposed post-fabrication rASIP design flow is shown in fig-

ure 6. In this phase, the rASIP is already fabricated. The major design
decision, which needs to be taken, is the selection and synthesis of
custom instructions to reduce the application runtime.
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Figure 6. Post-fabrication rASIP design flow
Several custom instruction synthesis tools and algorithms have

been presented in the literature [15] [16]. In the proposed flow, the
custom instruction synthesis tool (ISEGen) presented in [17] is used.
This tool is extended in order to accept generic interface constraints
and produce custom instructions in LISA description format. During
the custom instruction selection, several hard design constraints must
be maintained. Those are listed below:

• The special-purpose or custom instructions must not violate the
existing interface between re-configurable block and the base
processor. Actually, the custom instruction synthesis tool used
in our flow accepts this interface as an input constraint.

• The additional number of instructions must not exceed the
number allowed by the free coding space available.

• The overall area of the custom instructions’ datapath and cor-
responding decoding logic should be within the area budget of
the existing re-configurable block.

• Additional internal storage elements for the re-configurable
block can be used as long as the area budget of the re-
configurable block is not violated. These internal storage el-
ements can be declared in the LISA resource section, while
turning on the register localization option.



In the post-fabrication design flow, ISEGen generates the custom
instructions with potentially high speed-up. The behavior of the cus-
tom instructions are generated in form of LISA operations, which can
be directly plugged in to the existing LISA model. The software tool
suite for the modified rASIP description is generated automatically.
For the re-configurable block, the generated HDL description is syn-
thesized with standard FPGA synthesis tools and the synthesis results
can be compared with the area and timing budget.

Addition of Custom Instructions : ISEGen embeds the cus-
tom instructions in the target application with special compiler di-
rectives. These compiler directives are used by the compiler as hints
for performing different tasks e.g. the register allocation and latency
of custom instructions. The application can be compiled, assembled
and linked using the re-targeted software tool suite. The re-targeted
rASIP simulator provides an estimation of the application runtime im-
provement. In the following, the modification of target application by
ISEGen tool is explained in detail.

The ISEGen tool utilizes inline assembly functions calls to directly
call assembly statements replacing the C functions for Custom In-
structions (CIs). The inline assembly call defines the usage of argu-
ments, scheduling of the CI and the CI syntax itself. Within the target
application, the custom instructions are called like normal function
calls, which are replaced by inline assembly functions’ assembly syn-
tax portion during compilation. The inline assembly function and the
compiler directives used here are part of the LISATek re-targetable
compiler framework.

Interface Matching: Interface matching is performed during
RTL synthesis from the rASIP during post-fabrication phase. There,
the new interface between the FPGA and the base processor is vali-
dated against the existing interface.

5.3 Analysis of the Overall Flow

The proposed pre and post-fabrication design flow for rASIPs
offers significant advantages compared to the current design flows.
Firstly, the proposed flow is completely generic in nature. Secondly,
the existing tools like custom instruction synthesis can be seamlessly
plugged in to the current flow. Finally, due to the high-level rASIP
modelling, the design space exploration is extremely efficient. How-
ever, the design flow has one limitation, yet to be covered. Cur-
rent rASIP architectures [2] [3] often contain an application-specific
re-configurable block. The re-configurable block architecture itself
presents a wide number of design alternatives. For the available
rASIP architectures, these design points are explored in an ad-hoc
manner or are pre-designed for a wide range of application domains
without allowing the designer flexibility. The rASIP design flow pro-
posed in this paper lacks any kind of re-configurable block explo-
ration and implementation flow. Dedicated, existing commercial FP-
GAs are used instead. In the proposed rASIP design tool-flow, this pa-
per contributes in three categories. Firstly, a new tool called Coding
Leakage Explorer is developed. Secondly, existing ADL LISA and
associated tools for LISA-based processor development are extended.
Finally, a generic interface with the custom instruction synthesis tool
ISEGen is established.

6. Case Study
In this section, first the target processor architecture is discussed.

Then a brief introduction about the chosen applications is given fol-
lowed by the results achieved during the case study.

For this case study, we have chosen LT RISC 32p5 as base pro-
cessor. The LT RISC 32p5 is a 32-bit, 5-stage pipelined RISC based
architecture. The processor contains 16 general purpose registers
and several special-purpose registers. LT RISC 32p5 employs gen-
eral purpose load store instructions, complex multiplication opera-
tions and several instructions for aiding DSP applications e.g. add-
compare-select.

The target applications for the rASIP are chosen from the domain
of cryptography. DES is a symmetric 64-bit block cipher algorithm

with 64-bit key. Blowfish is another symmetric block cipher encryp-
tion algorithm that uses a variable-length key, from 32 to 448 bits.
GOST is a 64-bit block cipher algorithm with a 256-bit key.

As proposed in the design flow, the case study is divided into two
phases i.e. the pre-fabrication and post-fabrication phases. The case
study starts with the analysis of applications for rASIP design in pre-
fabrication phase and then in the post fabrication phase uses the flex-
ibility offered by reconfigurable block to optimize the rASIP. While,
DES is used to take the pre-fabrication architectural decisions, GOST
and Blowfish are used as the post-fabrication applications with the
interface and the base processor remaining fixed.

Pre-fabrication Design Space Exploration : The application
DES is chosen as the starting point for rASIP design. The applica-
tion is subjected to the Microprofiler tool [13] for identification of
hot spots. The function des round is identified as the hot spot of the
DES application. This function is then subjected to the ISEGen tool
for identification of custom instructions with initial constraints of a
2-input interface to 2 GPRs of the base processor, a 1-output inter-
face to 1 GPR of the base processor and 32 internal registers, each of
32 bit width. The ISEGen tool generated 5 custom instructions, the
behaviors of which are mapped completely in LISA description. The
codings of these custom instructions are determined using the Coding
Leakage Explorer.

During RTL synthesis with these CIs, register localization and
decoder localization options are turned on, in order to have flexibil-
ity for adding further custom instructions in the re-configurable part.
The base processor is synthesized with Synopsys Design Compiler
[18] using 0.13 µm process technology of 1.2 V. The re-configurable
block is synthesized with Synopsys FPGA Compiler [18] using Xil-
inx Virtex-II pro [19] (0.13 µm process technology of 1.5 V) as the
target device. The synthesis results are given in the table 1.

Re-configurable Block Base Processor
Area Minimum Latency Area Clock

Clock Delay (ns) (Gates) Delay (ns)
1653 LUTs 12.09 4 88453 4.0
512 Registers

Table 1. Pre-fabrication Synthesis Results

As the synthesis results demand the FPGA latency to be at least
thrice that of the base processor, a latency of 3 is introduced during
the simulation of the modified DES application. The latency infor-
mation can be fed to the inline assembly function (using compiler
directives) to obtain a scheduled assembly application. However, the
current compiler directives do not allow to specify the dependencies
between the internal registers of the FPGA, possibly resulting in a
data hazard. Therefore, the scheduling of the custom instructions is
performed manually. It is observed that the latency of CIs can be com-
pletely hidden by efficient scheduling. The initial simulation results
of the DES application show upto 3.5 times runtime speed-up (table
2). After these simulations, it is observed that the des round func-
tion (the hot-spot function of DES) performs several accesses to data
memory containing S-box. Each S-box contains 64 32-bit elements.
These memory contents are known prior to the hot-spot execution.
Existing studies [20] on exploiting such knowledge show that the run-
time improvement can be stronger by including scratchpad memories
within the CI. To experiment with such extensions, local scratchpad
memory resource is appended to the rASIP description. A special in-
struction to transfer the S-boxes from data memory to the scratchpad
memory is included. ISEGen is then configured to have upto 4 par-
allel scratchpad accesses. Each of these configurations produced dif-
ferent set of custom instructions. Since the scratchpad access is local
to the re-configurable block, the interface constraints are not modified
due to the access. The only modification required is for allowing the
data transfer from the data memory to the scratchpad memory. The
complete simulation and synthesis results for custom instructions with
scratchpad access are given in table 3.

Considering no significant change in speed-up with other interface
constraints (e.g. 3-input,1-output and 4-input,1-output), it is decided



Latency Without CIs With CIs Speed-up
4 1563266 625306 2.5

Hidden 1563266 453397 3.5

Table 2. Simulation Cycles : DES
Number of Parallel Speed-up Minimum Area
Scratchpad Access Clock Delay (ns) (LUTs)

1 4.4 10.7 1342
2 4.2 9.72 1665
3 5.9 9.05 1638
4 6.0 9.05 1616

Table 3. CIs with Scratchpad Access : DES

to keep the 2-input, 1-output interface setting for the rASIP fabrica-
tion. Since scratchpad memories improved the runtime performance
considerably, we decided to keep it. Number of parallel accesses can
be increased or decreased post-fabrication depending on the available
re-configurable block area. Note that these memories can be physi-
cally implemented as EPROMs, SRAMs or flexible hardware tables
on FPGA. The trade-off between these alternatives are to be explored
in future.

Post-fabrication Design Space Exploration : In keeping trend
with cryptographic applications, the hot-spot of Blowfish application
does also contain accesses to pre-calculated memory elements. Those
elements are loaded to the scratchpad memory. ISEGen identified var-
ious set of custom instructions for Blowfish. The interface restrictions
from the pre-fabrication design as well as various scratchpad access
configurations are fed to the ISEGen. The generated set of instruc-
tions are then appended to the rASIP description. The syntheis and
simulation results (refer table 4) demonstrate the prudency of our pre-
fabrication decisions.

Number of Parallel Speed-up Minimum Area
Scratchpad Access Clock Delay (ns) (LUTs)

0 2.7 13.78 1456
1 3.3 8.72 1009
2 3.4 13.78 1221
3 3.5 8.43 1473
4 3.8 9.05 939

Table 4. Simulation, Synthesis Results : Blow-
fish

For the GOST application, the hot-spot function is found to be rel-
atively small, thereby providing little opportunity to speed-up. Even
then, the improvement is strongly different between no scratchpad
access and scratchpad access. The results are summarised in table 5.
Interestingly, 2 parallel scratchpad accesses resulted in poor speed-up
compared to 1 parallel access. It is observed that the ISEGen left some
base processor instruction out due to GPR I/O restrictions (2-input, 1-
output). The base processor instructions with a subsequent custom
instruction incurred exta nops due to data dependency. This serves
as an example of how the interface restriction can control the speed-
up. By allowing increased number of scratchpad accesses a bigger
data-flow graph could be accomodated in the CI, thereby avoiding the
GPR restriction. Similar effect is visible for DES (table 3), too. How-
ever, 4 scratchpad accesses masked the effect of sub-optimal GPR I/O
decision.

The strong improvement in the application runtime shows the im-
portance of flexibility, which could be offered by rASIP in compari-
son with the ASIP. Note that the custom instructions selected for the
DES applications are different from the custom instructions selected
for the Blowfish or GOST application, stressing the importance of
post-fabrication flexibility. The results also reflect that the improve-
ment is strongly dependent on the application and a prudent selection
of the pre-fabrication design constraints. Finally, the complete design
space exploration, starting with a LISA description of the base pro-
cessor, took few hours by a designer. This is a manifold increase in
design productivity, while maintaining the genericness.

Number of Parallel Speed-up Minimum Area
Scratchpad Access Clock Delay (ns) (LUTs)

0 1.02 10.45 1803
1 1.6 9.05 1554
2 1.5 8.23 1513
3 1.7 9.05 1575
4 1.8 8.43 1455

Table 5. Simulation, Synthesis Results : GOST

7. Conclusion and Future Work
Due to the high flexibility, partially re-configurable processors

are attracting significant research interest in today’s processor design
community. In this paper, a specification-driven design framework
for rASIPs is proposed. We have separated the complete design space
exploration framework into two phases, namely the pre-fabrication
phase and the post-fabrication phase. The proposed design flow inte-
grated existing and new tools for a seamless design space exploration
in both the phases.

In future, we will concentrate on the design space exploration and
implementation of the re-configurable blocks in the rASIP. Further-
more, the modelling and exploration for d-rASIPs will be targeted.
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