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ABSTRACT
A new methodology for designing fractional-N frequency
synthesizers and other phase locked loop (PLL) circuits is
presented. The approach achieves direct realization of the
desired closed loop PLL transfer function given a set of user-
specified parameters and automatically calculates the corre-
sponding open loop PLL parameters. The algorithm also
accomodates nonidealities such as parasitic poles and ze-
ros. The entire methodology has been implemented in a
GUI-based software package, which is used to verify the
approach through comparison of the calculated and simu-
lated dynamic and noise performance of a third order Σ-∆
fractional-N frequency synthesizer.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications

General Terms
Algorithms

Keywords
fractional-N,frequency,synthesizer,sigma,delta,PLL,design

1. INTRODUCTION
Phase-locked loops (PLLs) are employed in a wide vari-

ety of communication circuits including frequency synthe-
sizers, modulators and demodulators, and clock recovery
circuits. Of recent interest are fractional-N frequency syn-
thesizers that employ Σ-∆ modulation to achieve fine fre-
quency resolution, fast switching speed, and good noise per-
formance [8]. As shown in Figure 1, the system is similar
to a classical integer-N synthesizer in that it is composed
of a phase-frequency detector (PFD), charge pump, voltage
controlled oscillator (VCO), and a frequency divider.
In contrast to integer-N synthesizers, the fractional-N ap-

proach achieves fine frequency resolution by dithering the
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Figure 1: Σ-∆ fractional-N synthesizer and associ-

ated signals.
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Figure 2: Spectral densities of PLL noise sources.

frequency divider between integer values to achieve frac-
tional divide ratios. As shown in Figure 2, this dithering
action creates quantization noise that is added to other noise
sources such as charge pump and VCO noise. Inclusion of
this extra noise source complicates design efforts compared
to that required for more traditional PLL implementations.
A general model for fractional-N frequency synthesizers

allowing both dynamic and noise analysis of their behavior
has recently been proposed in [6]. This model, shown in
Figure 3, consists of a frequency domain description of each
synthesizer component. As discussed in [6], the closed loop
behavior of the synthesizer is completely parameterized by
the function G(f), which is related to the open loop transfer
function, A(f), of the PLL feedback loop as

G(f) =
A(f)

1 +A(f)
, where A(f) =

αIcpH(f)Kv

Nnom2πjf
. (1)

As an example, the closed loop transfer function from the
reference phase, Φref [k], to the output phase of the synthe-
sizer, Φout(t), is equal to NnomTG(f).
Given the above model, the key to designing a fractional-

N frequency synthesizer is to appropriately realize its G(f)
function according to user specifications, such as desired
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fractional-N synthesizer.

PLL bandwidth, order, etc. However, as shown in Equa-
tion 1, the setting of G(f) depends on the open loop trans-
fer function, A(f). This situation is no different than en-
countered when designing other PLL circuits—the classi-
cal methodology [1, 2, 7, 3] is to choose appropriate open
loop poles/zeros and then properly set the open loop gain to
achieve a desired phase or gain margin specification to insure
closed loop stability. However, the classical design procedure
assumes second order closed loop dynamics, and therefore
proves inadequate for designing closed loop PLL dynamics
with third order rolloff. Further, the procedure is clumsy
when trying to accommodate parasitic poles that are close
in frequency to the desired closed loop bandwidth. Both
of these design conditions are encountered in the design of
fractional-N frequency synthesizers since they improve sup-
pression of quantization noise produced by dithering.
To overcome the shortcomings of the classical design ap-

proach, we propose a new design methodology in which G(f)
is directly designed according to user specifications rather
than indirectly inferred from the design of open loop trans-
fer function, A(f). The algorithm determines G(f) in closed
form and automatically calculates the corresponding values
of open loop parameters. In contrast to the closed loop de-
sign method proposed in [4], our new approach addresses
multiple topologies and also incorporates the impact of par-
asitics. The entire procedure is implemented within a GUI-
based Matlab tool, hence dramatically simplifying the pro-
cess of designing fractional-N frequency synthesizers as well
as other PLL circuits, and allowing the designer to immedi-
ately assess the overall dynamic and noise performance.
An outline of the paper is as follows. Section 2 summa-

rizes the classical open loop design approach and its limita-
tions, motivating the proposed closed loop approach. An
overview of the new approach is presented in Section 3.
Since phase/gain margins are not used to dictate the design
procedure, specification of the closed loop response adopted
for the new approach is explained in Section 4. The method
for calculating the open loop transfer function is described
in Sections 5 and 6, followed by a design example and veri-
fication in Section 7.

2. BACKGROUND
The classical approach for designing a PLL circuit is to

first choose a topology for its open loop transfer function,
A(f), and then appropriately set the gain and pole/zero lo-
cations of A(f) to achieve a desired phase/gain margin. The
phase margin method is illustrated in Figure 4 with an ex-
ample system. Here the topology of A(f) is chosen to be
an integrator cascaded with three poles at fp1 , fp2 and fp3 .
Its Bode diagram, shown on the left hand side of the fig-

ure, is examined to assess closed loop stability based on the
open loop phase at unity gain crossover. The right portion
of the figure reveals that the closed loop poles shift into the
right-half S-plane if the phase margin is less than 0 degrees.
Figure 5 verifies that the corresponding closed loop response
becomes unstable under this condition, as evidenced by high
levels of peaking in its frequency response and growing ring-
ing in its step response. In practice, the open loop gain
and/or open loop pole/zero locations would be iteratively
adjusted to achieve adequate phase margin.
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responding to Figure 4.

The classical approach has become the design methodol-
ogy of choice for PLL circuits due to the relative simplicity of
examining and adjusting the open loop PLL response, A(f),
rather than its closed loop counterpart, G(f). However, the
approach is heuristic in nature and based on the assump-
tion that the closed loop system can be well approximated
as an ideal second order system. As mentioned in the intro-
duction, this assumption may not hold true when designing
fractional-N frequency synthesizers. Further, the approach,
focused primarily on system stability, only provides coarse
control in the actual realization of G(f). Finally, the re-
quirement for manual iteration causes the procedure to be
somewhat tedious for experienced PLL designers and daunt-
ing for novice designers.

3. PROPOSED APPROACH
The proposed closed loop approach achieves the design of

the closed loop response, G(f), directly from user specifica-
tions. The difference between this approach and the clas-
sical open loop design approach is illustrated in Figure 6.

527



As shown by the dotted path, the classical approach fo-
cuses on designing the open loop response, A(f), according
to the phase or gain margin criterion. The closed loop re-
sponse, G(f), is thereby indirectly designed to be stable.
However, the new approach takes a direct design path from
the performance specification to G(f), and then determines
the required A(f) to achieve that G(f).
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Figure 6: Comparison between the classical open

loop approach and the new closed loop approach.

The key to realizing the proposed approach is to recog-
nize that the pole/zero locations of G(f) in the S-plane ul-
timately govern the desired closed loop behavior. Therefore,
a design procedure that achieves accurate placement of the
closed loop poles and zeros will yield a precisely set closed
loop response. Stability robustness is inherently achieved
in this approach by properly positioning the poles in the
left-half S-plane.
Two issues must be addressed to achieve the proposed de-

sign approach. First, since the design procedure is no longer
based on phase/gain margin criterion applied to A(f), a
method of mapping user specifications to the desired closed
loop function, G(f), must be developed. This method is
discussed in Section 4. Second, after G(f) is specified, the
open loop response, A(f), must be appropriately chosen to
implement the desired G(f). A complicating factor is that,
to be practical, the procedure must accommodate the fact
that A(f) may contain parasitic poles/zeros that are some-
what out of the control of the designer. Each of these issues
are addressed in Sections 5 and 6.

4. SPECIFICATION OF CLOSED LOOP RE-
SPONSE

We will assume that G(f) is specified by four parameters:
bandwidth, order, shape and type. Qualitative definitions
for these parameters are provided in this section, followed
by quantitative descriptions of their impact on G(f). As we
proceed, we will alter the choice of independent frequency
variable between f , w, and s according to which variable
offers the simplest parameterization in the given context.
In all cases, it will be assumed that each of these variables
are related as

s = jw = j2πf.

4.1 Qualitative Description
The first two parameters are illustrated in Figure 7. Band-

width, which is denoted as fo, is defined in an asymptotic
manner as illustrated in the figure. Specifically, it is mea-
sured by extrapolating the slope of the rolloff that occurs
after the dominant poles but before the high frequency par-
asitic poles and zeros. Order, which is denoted as n, is also
defined by the rolloff characteristic as shown — n equals
the number of dominant closed loop poles in G(f). This
definition is preferred over specifying n as the number of

independent state variables in the system since the rolloff
characteristic is of key importance for achieving good PLL
noise performance.

fo
f

rolloff =
-20n dB/decade

G(f)

(dB)

0

Figure 7: Definition of order and bandwidth for

G(f).

Shape describes the particular form of the closed loop
transfer function and step response for a given specifica-
tion of order. Typical choices of shape specification include
Butterworth, Bessel, Chebyshev and elliptic. In practice, we
will only consider the dominant closed loop poles when striv-
ing for a given shape specification since non-dominant poles
have only a second order effect on the closed loop response.
Type is defined as the number of integrators in the open

loop transfer function. Practical PLL implementations are
usually type I or II. Since the VCO includes an integrator,
the additional integrator in a type II PLL is realized in the
loop filter. As two integrators contribute a −180o phase
shift, a type II loop filter must include a zero, fz, to allow
stable closed loop implementation of G(f). The correspond-
ing PLL loop filter is described as a lead/lag filter. The type
II implementation introduces an additional factor that must
be included in the closed loop design specification, namely
the ratio fz/fo. The impact of this ratio setting will be
explained shortly.

4.2 Quantitative Description
Table 1 displays G(s) parameterizations as a function of

type and order. The type and order values are constrained
to the values shown since few PLL designs will ever seek
higher values due to the prohibitive analog complexity that
would be required in such cases. In any case, the table
reveals that G(s) is parameterized by a set of variables that
includes wco, wc1, and Q. As shown in Table 2, the value of
these variables are set by the values chosen for bandwidth,
order, and filter shape. Table 2 displays the relationship
between these sets of parameters when the shape is chosen
to be either Butterworth or Bessel. If a Chebyshev or elliptic
filter shape is desired, standard Matlab routines are applied
to solve for the appropriate parameter values.
Table 1 shows that an extra pole and zero are present

for type II systems, namely wcp and wz. This pole/zero
pair occurs due to the fact that the open loop transfer func-
tion has two integrators and a stabilizing zero, as readily
seen through application of the root locus technique [3]. As
shown in Table 1, the ratio wcp/wz is completely determined
by the values chosen for shape, bandwidth, and the ratio
wz/wo. Since wz/wo can be freely chosen independent of
the shape and bandwidth parameters, we will assume that
it is the key parameter for setting a desired wcp/wz ratio.
Practical designs set the value of wz/wo to be in the range
of 1/10 to 1/3.
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Table 1: Allowed G(s) parameterizations for system
with no parasitics

TypeOrder G(s) wcp/wz

1 1

1+ s
wco

N/A

I 2 1

1+ s
wcoQ

+

(

s
wco

)

2 N/A

3 1
(

1+ s
wc1

)

(

1+ s
wcoQ

+

(

s
wco

)

2
) N/A

1

(

1+ s
wz

)

(

1+ s
wcp

)

1
(

1+ s
wco

)

1

1−
wz
wco

II 2

(

1+ s
wz

)

(

1+ s
wcp

)

1
(

1+ s
wcoQ

+

(

s
wco

)

2
)

1

1−
wz

wcoQ

3

(

1+ s
wz

)

(

1+ s
wcp

)

1
(

1+ s
wc1

)

(

1+ s
wcoQ

+

(

s
wco

)

2
)

1

1−
wz
wc1

−
wz

wcoQ

Table 2: Filter parameters for Butterworth and

Bessel responses

Butterworth Bessel
Order wc1 wco Q wc1 wco Q

2 N/A wo 0.707 N/A wo 0.577
3 wo wo 1 (0.9416)wo(1.0305)wo 0.691

5. SPECIFICATION OF IDEAL OPEN LOOP
RESPONSE

Given that G(s) is chosen according to Tables 1 and 2 for
a given type, order, bandwidth, and shape specification, the
next step is to determine its corresponding A(s) according to
Equation 1. Under the assumption that there is no pole/zero
cancellation, Equation 1 represents a one-to-one mapping
between G(s) and A(s), implying that there is a unique A(s)
for a given choice of G(s). The key equation is derived from
Equation 1 as

A(s) =
G(s)

1−G(s)
. (2)

For the constrained set of order and type values for G(s)
considered in Table 1, the corresponding A(s) functions sat-
isfying Equation 2 can be derived as closed form analytical
expressions using algebra. Table 3 displays these analytical
expressions for A(s), and shows the relationship between the
open loop parameters, K, wp and Q, and the corresponding
closed loop parameters displayed in Table 1. As a result,
design of the open loop dynamics amounts to a simple table
lookup procedure.

6. INCORPORATION OF PARASITIC POLES
AND ZEROS

The lookup table design procedure encapsulated by Ta-
bles 1, 2, and 3 assumes that the open loop PLL transfer
function, A(s), can be realized free of parasitic poles and
zeros. However, in practice, this assumption is unrealistic
since various PLL components, such as the VCO and loop
filter, invariably contain parasitic poles and/or zeros whose
values are poorly controlled by the designer. As shown in
Figure 8, these open loop parasitics will shift the dominant
closed loop pole locations away from the values targeted by
the lookup table design procedure. The manner in which

these open loop parasitics shift the dominant closed loop
poles is nonlinear, as seen by inspection of Equation 2.

Original Design

added
parasitic

pole

no
parasitic

pole

dominant
poles

dominant
poles shift

away

Impact of Parasitic Pole

Figure 8: Impact of an open loop parasitic pole on

the dominant closed loop pole locations.

At first glance, the existence of parasitics may seem to in-
validate the lookup table design procedure. However, under
the assumption that such parasitics occur at frequencies rea-
sonably higher than the closed loop bandwidth of the PLL,
their inclusion in the open loop transfer function will not
dramatically shift the position of the dominant closed loop
poles. Therefore, rather than abandoning the lookup table
approach, we can leverage it to obtain a good starting point
for a nonlinear optimzation algorithm that seeks the proper
parameter values of A(s) to achieve the desired closed loop
dominant pole locations specified in Table 2.
Figure 9 illustrates the fundamental idea behind the non-

linear optimization algorithm that we now propose to achieve
the desired closed loop dominant pole placement. First, the
ideal open loop transfer function, A(s), is calculated from
the table lookup procedure so that it achieves the desired
closed loop pole locations. Estimated values of parasitic
poles and zeros, which are obtained from SPICE simula-
tions or measurements of PLL components, are then added
to A(s) and the resulting dominant pole locations are calcu-
lated using a root solver in Matlab—this step is illustrated
in the top left portion of Figure 9. Each open loop parame-
ter specified in Table 3 is then perturbed by a small amount
and the resulting change in the dominant closed loop pole
locations is observed, as illustrated in the remaining portion
of the figure. These observed perturbations are then used
to construct a matrix relationship which is used to calculate
the required shift in open loop parameter values for return-
ing the dominant closed loop pole to their desired locations.

The above matrix relationship is formulated as

∆y = C∆h,

where ∆h is a vector corresponding to a change in the open
loop parameters, ∆y is a vector corresponding to the result-
ing change in the dominant closed loop pole locations, and
C is a matrix representing a linearized relationship between
the two vectors. For the third order example illustrated in
Figure 9, with closed loop dominant poles at Preal , Pcomplex

and P ∗

complex , we have

∆y =





Re{∆Pcomplex}
Im{∆Pcomplex}

∆Preal



 , ∆h =





∆K
∆fp

∆Qp



 ,

C =









Re
{

∆Pcomplex

∆K

}

Re
{

∆Pcomplex

∆fp

}

Re
{

∆Pcomplex

∆Qp

}

Im
{

∆Pcomplex

∆K

}

Im
{

∆Pcomplex

∆fp

}

Im
{

∆Pcomplex

∆Qp

}

∆Preal

∆K

∆Preal

∆fp

∆Preal

∆Qp









,
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Table 3: Formulae for calculating A(s) parameters
Type Order A(s) K wp Qp

1 K
s

wco N/A N/A
I 2 K

s

(

1+ s
wp

) wcoQ
wco

Q
N/A

3 K

s

(

1+ s
wpQp

+

(

s
wp

)

2
)

wcoQ

Q
(

wco
wc1

)

+1
wco

√

wc1

K

wpQ

wco+Qwc1

1
K
(

1+ s
wz

)

s2 wcowcp N/A N/A

II 2
K
(

1+ s
wz

)

s2

(

1+ s
wp

)

wcoQ
Q

wco
+ 1

xcp

wco

(

1

Q
+

wcp

wco

)

N/A

3
K
(

1+ s
wz

)

s2

(

1+ s
wpQp

+

(

s
wp

)

2
)

wcoQ

DEN∗ wco

√

wc1wcp

K

wpQ

wco+Q(wcp+wc1)

DEN∗ = Q
(

wco

wc1wcp
+ 1

wco

)

+ 1

wc1
+ 1

wcp

Compute Pole Shifts due to ∆K       

don't care
about parasitic
pole placement

desired
location current

location
desired
location current

location

Compute Pole Shifts due to ∆fp

desired
location current

location

Compute Pole Shifts due to ∆Qp

desired
location current

location

Pcomplex

Preal

Figure 9: Construction of C matrix for calculating

open loop parameter adjustment.

where

∆Pcomplex = Pcomplex desired
− Pcomplex current

,

∆Preal = Preal desired − Preal current .

Given the above relationships, we calculate the required
change in the open loop parameters to return the dominant
closed loop poles back to their desired locations as

∆h = C
−1∆y.

Since the above matrix formulation is based on a lin-
earization of the nonlinear relationship between the open
and closed loop parameters, the process described above is
conducted iteratively until the dominant closed loop poles
are within a chosen distance from their desired locations.
Application of the algorithm has revealed that less than 20
iterations are typically required to return the closed loop
poles to within 0.1% of their desired locations.
An observant reader may suggest that this iterative ap-

proach has two potential limitations. First, if the parasitics
are too close to the dominant poles, they can seriously al-
ter the dominant poles’ root locus, making it impossible to
return the dominant poles to the desired location by tweak-

ing the open loop parameters. Nonetheless, our observation
confirms that as long as the parasitics are a factor of two
to four above the closed loop bandwidth, depending on the
choices of type and order, the iterative algorithm always
converges.
The second potential limitation is that the closed loop

parasitic poles and zeros also move during the iterations, but
their translations are ignored since the above procedure only
considers the dominant poles. However, other than their
impact of shifting the dominant poles, these parasitics only
have second order influence on the closed loop dynamics.
Further, regardless of the tweaking of open loop parameters,
the closed loop locations of the parasitic poles/zeros end up
being quite close to their open loop counterparts. This fact
is seen by observing that

G(s) =
A(s)

1 +A(s)
≈ A(s)

given |A(s)| ¿ 1, which holds true at frequencies above the
closed loop bandwidth where the open loop parasitics occur.
In summary, the proposed design methodology accurately

places the closed loop dominant poles according to user spec-
ifications and accommodates the presence of open loop par-
asitic poles and zeros. The direct incorporation of the para-
sitics stands in contrast to the classical open loop approach,
which simply seeks to insure that parasitics are at least an
order of magnitude higher in frequency than the closed loop
bandwidth in order to minimize phase margin degradation.

7. RESULTS AND VERIFICATION
We now demonstrate the proposed closed loop design method-

ology applied to a Σ-∆ fractional-N frequency synthesizer
employing a third order Σ-∆ modulator. The example will
include design and verification of the closed loop PLL dy-
namics as well as an estimation of its noise performance.
The complete design operation was performed using a GUI-
based Matlab tool that implements the proposed design ap-
proach. A PLL simulator, described in [5], was used to
confirm the results. Both of these tools are available at
http://www-mtl.mit.edu/∼perrott.
Since the synthesizer uses a third order Σ-∆ modulator,

the closed loop transfer function, G(f), is chosen to be third
order. Other specifications of G(f) include choosing a type
II implementation, with fz/fo = 1/8, a Butterworth re-
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Table 4: Calculated Open loop parameters

Open loop Without With
parameters parasitics parasitics

K 2.538e+11 2.294e+11
fp 4.583e+5 4.841e+5
fz 3.75e+4 3.75e+4
Qp 0.705 0.7931

sponse, and a bandwidth of 300 kHz. Further, a parasitic
pole is purposefully included at 1.2MHz to improve suppres-
sion of the quantization noise caused by dithering the divide
value.
Using Equation 1 and Table 3, the open loop transfer

function is chosen to be

A(s) =
αIcpH(s)Kv

Nnoms
=

K
(

1 + s
wz

)

s2
(

1 + s
wpQp

+
(

s
wp

)2
) .

Therefore, the corresponding loop filter transfer function is

H(s) =
KLP

(

1 + s
wz

)

s

(

1 + s
wpQp

+
(

s
wp

)2
) , where KLP = K

Nnom

αIcpKv

.

The open loop parameter values in the above expression
were calculated according to Tables 2 and 3, and are dis-
played in Table 4 under the “Without parasitics” column.
The parasitic pole was then included and the proposed itera-
tive routine adjusted the open loop values to return the dom-
inant poles back to within 0.1% of their original locations.
The resulting open loop parameter values are displayed in
the same table under the “With Parasitics” column. Note
that tedious manual iterations, as would be encountered
when seeking adequate phase margin with the classical open
loop design procedure, were completely avoided in this pro-
cedure. The new algorithm simplifies the design procedure
and computes all parameters in Matlab.
The PLL is then simulated with the same configuration

and open loop parameters. Figure 10 displays the calculated
closed loop step response from the design procedure versus
the simulated step response. The close correspondence of
the two plots verifies the accuracy of the design calculations.
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Figure 10: Plot of closed loop step response.

Given the resulting G(f) function from the above design
procedure, the phase noise and jitter performance of the
PLL were then evaluated using the noise model described

in [6] and by simulation as described in [5]. For simplicity,
the magnitude of the detector and VCO noise were assumed
to be the same as in [6]. Figure 11 displays the resulting cal-
culated phase noise, which is broken up into contributions
of the individual PLL noise sources, and the overall phase
noise calculated by the simulator. The close correspondence
of the overall calculated and simulated phase noise verifies
the accuracy of the design approach in estimating the syn-
thesizer noise performance.
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8. CONCLUSIONS
A closed loop design methodology is presented and verified

that allows direct design of fractional-N frequency synthe-
sizers and other PLL circuits at the transfer function level
based on closed loop parameter specifications. The tech-
nique uses a lookup table based approach to calculate the
open loop parameter values in the absence of parasitics and
an iterative algorithm to adjust those parameter values to
accommodate parasitic poles and zeros. The entire method-
ology has been incorporated in a GUI-based Matlab tool and
provides designers with a fast and simple methodology for
realizing high performance PLL circuits.
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