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ABSTRACT 
This paper is concerned with the problem of maximizing capacity 
utilization of the battery power source in a portable electronic 
system under latency and loss rate constraints. First, a detailed 
stochastic model of a power-managed, battery-powered electronic 
system is presented. The model, which is based on the theories of 
continuous-time Markovian decision processes and stochastic 
networks, captures two important characteristics of today’s 
rechargeable battery cells, i.e., the current rate-capacity 
characteristic and the relaxation-induced recovery. Next, the 
battery-aware dynamic power management problem is formulated 
as a policy optimization problem and solved exactly by using a 
linear programming approach. Experimental results show that the 
proposed method outperforms existing heuristic methods for battery 
management by as much as 17% in terms of the average energy 
delivered per unit weight of battery cells. 

1. INTRODUCTION 
With the rapid progress in semiconductor technology, chip density 
and operation frequency have increased, making the power 
consumption in battery-operated portable devices a major concern. 
High power consumption reduces the battery service life. The goal 
of low-power design for battery-powered devices is thus to extend 
the battery service life while meeting performance requirements. 
Dynamic power management (DPM) – which refers to a selective, 
shut-off or slow-down of system components that are idle or 
underutilized – has proven to be a particularly effective technique 
for reducing power dissipation in such systems.  
 
Early DPM works described predictive shutdown approaches [1][2] 
based on “time-out” policy. A power management approach based 
on discrete-time Markovian decision processes was proposed in [3]. 
The discrete-time model requires policy evaluation at periodic time 
intervals and may thus consume a large amount of power dissipation 
even when no change in the system state has occurred. To overcome 
this shortcoming, a model based on continuous-time Markovian 
decision processes (CTMDP) was proposed in [4]. The policy 
change under this model is asynchronous and thus more suitable for 
implementation as part of a real-time operating system environment.  
Reference [5] also improved on the modeling technique of [3] by 
using time-indexed semi-Markovian decision processes. 
 
Although the abovementioned DPM techniques may successfully 
reduce the system power consumption, they are not able to obtain 
the optimal policy for a battery-powered system. This is because the 
characteristics of battery power source are not properly modeled or 
exploited in these techniques. As demonstrated by research results 
in [6], the total energy capacity that a battery can deliver during its 

lifetime is strongly related to the discharge current rate. More 
precisely, as the discharge current increases, the deliverable capacity 
of the battery decreases. This phenomenon is called the (current) 
rate-capacity characteristic. Another important property of batteries, 
which was analyzed and modeled in [8], is named the relaxation 
phenomenon (or recovery effect). It is caused by the concentration 
gradient of active materials in the electrode and electrolyte formed 
in the discharge process. Driven by the concentration gradient, the 
active material at the electrolyte-electrode interface, which is 
consumed by the electrochemical reactions during discharge, is 
replenished with new active materials through diffusion. Thus the 
battery capacity is somewhat recovered during a no-use state. Due to 
these non-linear characteristics, a minimum power consumption 
policy does not always necessarily result in the longest battery 
service life because the energy capacity of its power sources may be 
not fully exploited when the cut-off voltage of the battery is 
reached. 
 
A number of battery models have been proposed. These can be 
divided into two categories: electrochemical model and stochastic 
model. The electrochemical models are based on diffusion equations 
and provide an accurate description of the underlying 
electrochemical process. A low level model for lithium-ion batteries 
and a high level model for the time-varying load were proposed in 
[8] and [9], respectively. The electrochemical models require a 
predetermined workload profile. However, in most real situations, 
the workload is unknown a priori and often evolves as a random 
process. In these cases, stochastic models are needed. Stochastic 
models describe the battery behavior as a stochastic process whose 
parameters are extracted from the electrochemical characteristics of 
the simulated battery. Some stochastic models have been reported in 
the literature, e.g. a discrete-time VHDL model [10] and a discrete-
time Markovian chain model [11]. The stochastic model in [11] is a 
Markovian chain of the battery’s states of charge with forward and 
backward transitions corresponding to the normal discharge and 
recovery effect, respectively. The load is expressed as a stochastic 
demand on the charge units. The model in [11] is mainly focused on 
the recovery effect. 
 
A number of battery management policies have been proposed to 
maximize the battery lifetime. A round robin policy was presented 
in [11]. Other policies were studied and compared in [12]. 
Reference [13] presents a dual-battery power supply structure which 
consists of two batteries that have different rate-capacity 
characteristics and uses them in an interleaved manner in 
responding to different current requirement. A shortcoming of these 
heuristic approaches is that the optimality cannot be guaranteed. 
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To the best of our knowledge, there has been no reported work on 
integrating the model of a power-managed portable electronic 
system with the model of its power source – i.e., batteries. Indeed, 
this is the contribution of the present paper. More precisely, we 
extend the work in [4] to achieve a complete model of a battery-
powered portable system by introducing and incorporating a new 
CTMDP model of the battery source. This model correctly captures 
the two important battery characteristics, i.e., the recovery effect and 
current-capacity curve. Furthermore, it considers the case of a 
multiple battery power source with a power switch that is controlled 
by the power management policy. Based on this model the battery-
aware power management problem is formulated as a policy 
optimization problem based on the CTMDP theory and solved 
optimally by using linear programming (LP). 
 
This paper targets a power-management portable system as shown 
in Figure 1. The example depicts a typical dual-battery powered 
portable system. The system contains a service requestor (SR) to 
generate the tasks to be serviced, a service provider (SP) which 
provides the required services, and a service queue (SQ) to store the 
tasks waiting for service.1 The SP is powered by two batteries (B1 
and B2), which may have different current-capacity and recovery 
characteristics. B1 and B2 alternately discharge and provide power 
for the SP. The power switch (SW) selects either B1 or B2 to 
provide power at any given time. Note that only one of the batteries 
is used at a given time and the other is always resting at that time. 
Based on this model, we will show that an optimal management 
scheme can be obtained by solving a LP problem.  
 

SR SQ SP

Battery
B1

Battery
B2Power Switch  

Figure 1. Dual-battery powered portable system model. 
 
The paper is organized as follows: The model of the battery-
powered portable power-managed system is described in Section 2. 
The solution technique for the optimal problem is described in 
Section 3.  In Section 4, we present the experiment results and we 
conclude in Section 5. 

2. SYSTEM MODELING 
First, we model each component in this portable system. Next, 
based on these models we build the complete model of the power-
managed, battery-powered system.  
The models of the SR, SQ and SP are similar to those described in 
[4]. These components are all modeled as stationary continuous-
time Markovian decision processes. Figure 2 gives examples of each 
of the SR, SQ and SP models.  

                                                           
1 Notice that it is straight-forward to handle multiple SR’s, multiple 

SP’s and even multiple SQ’s. In this paper, we focus on a single 
SR, a single SP, and a single SQ to simplify the presentation. 
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Figure 2. CTMDP models of the SR, SQ and SP. 

The SR model consists of a state set }...,,2,1,0,{ Rir i ==R  and a 
generator matrix 

SRG , where R is the number of the states of the 
SR. The SQ model consists of a state set }...,,2,1,0,{ Qiqi ==Q  and 
a generator matrix ),( srGSQ

, where Q is the maximum length of the 

queue, s denotes a state of the SP, and r denotes a state of the SR. 
The SP model consists of a state set }...,,2,1..{ Sitssi ==S , an 
action set sA , and a parameterized generator matrix )( sSP aG , 

where ss Aa ∈ . The SP can be described by a quadruple 

)),(),(),(,( ji ssenespowsµχ , where χ  is the transition speed 

matrix of the SP. )(sµ  is the service speed of the SP when it is in 
state s, )(spow  is the power consumption of the SP staying in state 
s and ),( ji ssene  is the energy required by the SP to transit from 

state is  to js . There are two kinds of transition: autonomous and 

command-controlled transition. A command-activated transition 
may only occur when the SP receives a command from the DPM 
controller that asks the SP to make such a transition, e.g. the 
transition from state idle1 to state busy1. An autonomous transition 
takes place without any command from the DPM controller, e.g., the 
transition from state busy1 to state idle1 takes place autonomously 
as soon as the SP finishes the current service. 
The expected power consumption (cost rate) of the SP when it is in 
state s  and action sa  is chosen is calculated as 
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represents the probability that the next state of the SP is s′  when 

its present state is s  and action sa  is chosen.  

(2-1)



 

2.1 Model of the Power Switch 
The Power Switch (PS) is modeled as a stationary, continuous-time 
Markovian process, with a state set }...,,2,1..{ Witswi ==W , an 
action set }...,,2,1..)({ WitsiaA swsw == , and a generator matrix 

SWG . Here )(iasw  means that the thi  battery source should be used 
next to power the system. 
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Figure 3. CTMDP model of the PS. 

2.2 Model of the Battery 
The battery (BAT) is modeled as a stationary, continuous-time 
Markovian decision process with a state set 

}...,,2,1,0..,{ Nitsrsb ii ==B , a parameterized generator matrix 

),,( bwsGB , and a function ),( ji bbene : RNN →× . 

The subscript i of state 
ib or 

irs  in the state set B , denotes that in 

this state the remaining energy capacity of the BAT is %100×
N
i  of 

the full energy capacity. Therefore, 0b  implies that the battery has 

been completely discharged whereas Nb  means that the battery is 
fully charged. For example, ignoring the states 

irs  for the moment, 

let 5=N , then the state set is %}100%,80%,60%,40%,20,0{=Β . 
Function ),( ji bbene  represents the energy-capacity difference 

between state ib  and jb . Figure 4 illustrates the CTMDP model of 

the BAT. 
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Figure 4. CTMDP model of the BAT. 

In this model, state 
ib  represents an “active” state, in which the 

battery may be discharged when it is used or can recover capacity 
when it is resting.  

State irs  represents a “stable” state, in which the battery can neither 
discharge nor recover. 

The transition from state 1+ib  to 
ib  represents the discharge process 

of the battery, ),,( wasρ  denotes the transition rate. If PS selects 
this battery and SP consumes power when it is in state s  and action 

a  is chosen, the value of ),,( wasρ  is determined by equation (2-1) 
(cf. Table 1); otherwise, ),,( wasρ  is equal to 0.  

 

The transition from state 
ib  to 1+ib  represents the recovery process 

of the battery, ),,,( ibwasω  denotes the transition rate, which is a 

function of the SP state s  and the battery state ib . If the SP does 
not consume power when it is in state s  and action a  is chosen, or 
if the PS does not select this battery, the value of ),,,( ibwasω  is 

determined by the battery state ib  (cf. Table 1); otherwise 

),,,( ibwasω  is equal to 0. 

The transition from state 
ib  to irs  may only occur when the battery 

is resting. ),,,( ibwasυ  denotes the transition rate. If the SP does 
not consume power when it stays in state s  and action a  is chosen, 
or if the PS does not select this battery, the value of ),,,( ibwasυ  

is determined by the battery state ib  (cf. Table 1); otherwise 

),,,( ibwasυ  is equal to 0. 

The transition from state irs  to 
ib  may only occur when the battery 

is used again. Here ),,( wasδ  means that if the SP consumes power 
when it stays in state s  and action a  is chosen, and if the PS 
selects this battery, the battery goes from irs  to 

ib  immediately. 

The value of ),,( wasρ , ),,,( ibwasω , ),,,( ibwasυ  and 

),,( wasδ  are summarized in the following table. In the first row of 
Table 1, if the SP consumes power when it stays in state s  and 
action a  is chosen, ),( as  is set to 1; otherwise ),( as  is set to 0. If 
the PS selects this battery, w  is set to 1; otherwise w  is set to 0. 

Table 1. Parameters of the BAT 

),( as , w  0, 0 0, 1 1, 1 1, 0 

),,( wasρ  0 0 ),( asρ′ * 0 

),,,( ibwasω  )( ibω′ ** )( ibω′ ** 0 )( ibω′ ** 

),,,( ibwasυ  )( ibυ′ ** )( ibυ′ ** 0 )( ibυ′ ** 

),,( wasδ  0 0 ∞  0 

* ),( asρ′  is defined by equation (2-2) in section 2.2.1. 

** )( ibω′  and )( ibυ′  are functions each defined by a look-up table 
indexed by 

ib . The actual value of each entry in the two tables is 
obtained from simulation results. The method is described in more 
detail in section 2.2.2. 
 
The transition from state 

0b  to 
Nb , denoted by the long wrap-

around dashed arrow line, represents that an exhausted (used-up) 
battery is replaced with a fresh (fully charged) battery of the same 
type. This transition is added because without it, state 

0b  becomes a 
trap. If transition from 

0b  to 
Nb  is not included in the model, then 

when time tends to infinity, the battery will eventually arrive into 
the state 

0b  and cannot subsequently leave this state. Consequently, 



 

no feasible solution would be found when using the LP technique to 
solve the optimal policy problem. 
The battery model is constructed based on the following three 
assumptions: 
During the discharge process of the battery, only a transition from 
state 1+ib  to 

ib  is allowed, where 1,,0 −= Ni " , which means 
that the battery discharges gradually.  
When the battery is resting (i.e. not being used), if it is in state ib , it 
may regain some of its capacity due to the recovery process or it 
may transit to the state irs . However, when the battery is in state 

irs , it cannot recover capacity any more and will continue to 
remain in this state until it is used again to power up the system. As 
soon as this happens, the battery moves from state irs  to ib  and 

then possibly to 1−ib .  

During the recovery process of the battery, only a transition from 
state 1−ib  to ib , Ni ,,2 "= , is allowed, which means that the 
battery always recovers gradually. State 0b  means that the battery 
capacity has been exhausted, so the battery cannot serve any more 
and should be replaced.  
Assumptions (a) and (c) are realistic because of the continuous 
nature of the electrochemical processes. Assumption (b) also is 
realistic because the energy recovery speed of a battery diminishes 
when the rest time increases. A typical simulation result depicted in 
Figure 5 empirically confirms this important observation. Notice 
that the solid curve shows our analytical results based on equation 
2-7 whereas the curve marked by ‘+’ markers is obtained from 
simulating an industrial Li-ion battery. The horizontal axis denotes 
the ratio of the rest time to the discharge time. 
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Figure 5. Relationship between the capacity recovery effect and 
ratio of the rest time to the discharge time for a Li-ion battery.  

 

2.2.1 Determining ),( asρ′  
As stated previously, ),( asρ′ represents the transition rate of the 
battery from state 

ib  to 1−ib , Ni ,,1 "= , when the SP stays in 
state s  and action a  is chosen. It can be formulated as 

NCas
aswpoas
⋅−

′
=′

)),(1(
),(),(

β
ρ  

where C  is the full energy capacity of the battery. Here ),( asβ  
captures the rate capacity of the battery,  1),(0 << asβ . The SP 
state s  and the selected action a determine the current drawn from 
the battery, i.e. determine the value of ),( asβ . As shown in Figure 

6, under different discharge currents, the deliverable capacity of a 
secondary battery may be quite different (in Figure 6, this effect is 
more pronounced for battery B1). So for different batteries, ),( asβ  
may take different forms.  
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Figure 6. Current-capacity relations of two different batteries. 

2.2.2 Determining )( ibω′  and )( ibυ′  

Transition rates )( ibω′  and )( ibυ′  can be obtained from battery 

simulation results. Based on assumption (b), let )(tri , Ni ...,,1= , 

denote the expected recovered capacity during a time period t  
(assuming that during this period, the recovery process is not 
interrupted by the discharge requests, i.e., the battery is not selected 
by the PS to power the SP), if at the beginning of this period the 
battery starts in state 

ib . Define an 1×N  vector 

[ ]TN trtrtrt )()()()( 21 …=r , which satisfies the equation: 

bArr += )()( tt� , 

where A is an NN ×  matrix: NNija ×)( , and 
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b  is an 1×N  vector: 1)( ×Nib , and 
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where C is the full energy capacity of the battery (defined in 
equation (2-2)). 
The boundary condition is: 

0)0( =r  

The )( ibω′  and )( ibυ′  can be determined in a top-down manner as 
described next. 
Since 

Nb  represents a state of full capacity, 0)( ≡trN .  

Thus )(1 trN−
 satisfies:  

)()1()())()(()( 11111 −−−−− ′−+′+′−= NNNNN b
N

Ntrbbtr ωυω�  

By using the boundary condition, we get 

(2-2)

(2-3)

(2-4)

(2-5)
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We do battery simulation, i.e., discharge the battery to 
N

N 1−  of its 

original capacity, let it rest for a time period t, then fully discharge 
the battery. Next we change the value of t and repeat the above 
procedure. Proceeding in this way, we obtain a curve of the 
recovery capacity vs. rest time in battery state 

1−Nb . We then choose 

)( 1−′ Nbω  and )( 1−′ Nbυ  that force the curve determined by 
equation (2-6) match the simulation curve. Since )(1 trN−

 is known, 

we can solve for )(2 trN−
 and determine )( 2−′ Nbω  and )( 2−′ Nbυ  by 

repeating step 2). We repeat this step until )(1 tr  is obtained and 

)( 1bω′  and )( 1bυ′  are determined.  

The steps can be simplified, if two conditions are satisfied:  i) 
)( ibω′  is much less than ),( asρ′ , and ii) υυ ≡′ )( ib  is 

independent of 
ib . In this case, the expected recovered battery 

capacity related to the rest time may be approximated as follows: 

τυωτ υτ detr
t

i
−⋅= ∫

0
)(  

                                     ( )tt tee υυ υ
υ
ω −− −−= 1  

where ∑
−+

=

′=
1

)(1 ki

ij
jb

k
ωω . Setting k  to 2 or 3 is adequate.  

Figure 5 demonstrates that the analytical function describing the 
recovered capacity of the battery as a function of the rest time t 
(shown by the solid curve) is very accurate when compared with 
detailed battery simulation results  (shown by the ‘+’ markers).  
A function ),( ji bbene  is associated with each pair ),( ji bb . This 

function is defined as follows: 
N

Cbbene ji ±=),( , where 

1±= ij . When 1−= ij , 0),( >ji bbene , represents the energy 

consumed when the battery transits from state ib  to jb . When 

1+= ij , 0),( <ji bbene , represents energy recovered in the 

battery due to the battery relaxation process. 
For a two-battery powered system, the generator matrix of the two-
battery model is given as 21 BBB GGG ⊗= , where ⊗  is the tensor 
product of the two generator matrixes of battery B1 and B2 [15]. 

2.3 Model of the Battery-Powered System 
We use five components: SR, SQ, SP, PS and BAT models, to 
construct the model of a power-managed, portable, battery-powered 
system. The state set is given by: 

}{ statesinvalidBWSQRX −××××= . The invalid states 
include the states where SP is busy and SQ is empty. Thus the SYS 
state can be represented as a quintuple ),,,,( bwsqrx = , where 

Bbbb ∈= },{ )2()1( , 1
)1( Bb ∈ , 2

)2( Bb ∈ . 

The system action set sysA is the union of the action set sA for the 

SP and the action set swA  for the PS. We use )(aGSYS  to represent 

the generator matrix of the system, where sysAa∈ . Since the 

service requester is assumed to be independent of the other 
components, the generator matrix )(aGSYS  can be calculated as 

)()()( aGaGaG BATPSSPSQSRSYS −−−⊗= , 

Similarly, independence of SP and PS results in: 

)()()( aGaGaG PSSPPSSP ⊗=− , 

where the SQ-SP-PS-BAT denotes the joint CTMDP model of the 
SQ, SP, PS and BAT, and the SP-PS denotes the joint CTMDP 
model of the SP and PS. 
Unfortunately, the Markovian processes of the SQ and the SP-PS, 
and the Markovian processes of the BAT and the SP-PS are both 
correlated. The SP-PS and the Battery are correlated in the sense 
that when the state of the SP-PS changes, the discharge rate of the 
Battery also changes. We calculate each entry of the 

)(aG BATPSSPSQ −−−  as described next.  

Let 
xx ′,σ  denote the transition rate of the system for going from 

state ),,,( bwsqx =  to state ),,,( bwsqx ′′′′=′ . 

1. If bb =′ , then 
xx ′,σ  is equal to ),,(),,,( wsqwsq ′′′σ , which is the 

joint state transition rate of the SQ-SP-SW. 

2. If ss =′ and qq =′ , then 

1. if 1ww =  and ibb =)1(  and 1
)1(

−=
′

ibb  and )2()2( bb =′ , 
then 

xx ′,σ  is equal to ),(
1

asBρ , which is the discharge 

transition rate of battery 1B  from state ib  to state 1−ib . 

2. if 2ww =  and ibb =)2(  and 1
)2(

−=
′

ibb  and )1()1( bb =′ , 
then 

xx ′,σ  is equal to ),(
2

asBρ , which is the discharge 

transition rate of battery 2B  from state ib  to state 1−ib . 

3. if 2ww =  or the SP is in the sleep state, 

1. if ibb =)1(  and 1
)1(

+=
′

ibb  and )2()2( bb =′ , then 

xx ′,σ  is equal to ),(
1

asBρ , which is the recovery 

transition rate of battery 1B  from state ib  to state 1+ib . 

2. if ibb =)1(  and irsb =′)1(  and )2()2( bb =′ , then 
xx ′,σ  

is equal to ),(
1

wsBυ , which is the transition rate of 

battery 1B  from state ib  to state 
irs . 

4. if 1ww =  or the SP is in the sleep state,  

1. if ibb =)2(  and 1
)2(

+=
′

ibb  and )1()1( bb =′ , then 
xx ′,σ  

is equal to ),(
2

asBρ , which is the recovery transition rate 

of battery 2B  from state ib  to state 1+ib . 

2. if ibb =)2(  and irsb =′)2(  and )1()1( bb =′ , then 
xx ′,σ  

is equal to ),(
2

wsBυ , which is the transition rate of 

battery 2B  from state ib  to state 
irs . 

3. For any other transition, 
xx ′,σ  is equal to 0. 

(2-6)

(2-7)



 

3. SOLUTION METHOD  

3.1 Cost Function 
The expected cost xa

xγ , which represents the expected energy 
delivered from the battery when the system is in state x  and action 

xa  is chosen, is calculated as: 

∑
′

′⋅=
x

a
xx

a
x bbenep xx ),(',γ  

Let xa
xf  denote the frequency that the system will be in state x  and 

action xa  is chosen. Let xa
xτ  denote the expected time that the 

system will stay in state x  when action xa  is chosen. Let xa
xlq  

denote the waiting cost in the queue, xa
xlq  can be calculated as 

.xx a
xx

a
x qlq τ⋅=  

3.2 Objective function 
Our goal is to find an optimal policy for minimizing the energy 
delivered from the batteries under constraints on the average 
number of waiting requests in the queue and the request loss rate. 
Notice that a request issued by the SR is lost in (dropped by) the SQ 
if the queue is full when the request comes in. We formulate this 
problem as a linear program as follows: 
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yxif

yxδ . 

The last constraint ensures that the probability that the queue 
becomes full is less than a preset threshold. It is our way of 
controlling request loss rate in the system.      

4. EXPERIMENTAL RESULTS  
It has been demonstrated that DPM techniques based on Markovian 
decision process outperform heuristic policies, when not 
considering the characteristics of the batteries [14]. To compare the 
effects of different power management policies on the battery 
service lifetime, in this experimental setup, we use the policy 
obtained in [4] to determine the behavior of the SP under a number 
of heuristic methods: M1-M4 (see below). Notice that these 
heuristic methods do not intrinsically account for the battery effects 
as part of solving an integrated battery-aware power management 

problem, which is what we have proposed in this paper. We use the 
low-level simulator called DUALFOIL [7] to simulate the batteries.  
As shown in Figure 1, the experimental system contains a SR, a SP 
with its own SQ and two batteries. We use an input trace file to 
capture the statistical behavior of the SR. More precisely, the 
distribution of the input requests is a combination of the exponential 
and Pareto distribution as observed in [5]. The SP has six power 
states: {busy1, idle1, busy2, idle2, wait, sleep}. The busy1 and 
busy2 states are working states where the SP services the requests 
waiting in the queue. In the wait or sleep states, the SP does not 
service any requests. The only differences between the two states 
are: 1) in the wait state, the SP consumes power than in the sleep 
state; 2) in the wait state, the SP can return to a working state much 
faster than in the sleep state. The idle states are in one-to-one 
correspondence with the busy states. They are abstract states where 
new policy decisions are issued to the SP. Transition from busy to 
idle state is autonomous and instantaneous.  Since the DUALFOIL 
accepts current density as an input, in this experiment, we express 

),(),(, ji ssenespowχ  in terms of the current. 

[ ] ):(03.06.19.06.19.0 Aunitpow = , 



























∞
∞

∞∞
∞∞

∞
∞

=

5.1166.0166.000
5.1454.0454.000
5.0168.10
5.0168.10

9033.000
0002.00

χ
,  

 



























∞∞
∞∞

∞
∞

∞∞∞∞
∞∞∞∞

=

051.069.169.1
3.5025.025.0
11.0056.00017.00
11.0056.0017.000

00
00

ene
):( sAunit ⋅ . 

 
The two batteries have different rate-capacity characteristics and 
recovery abilities. From Figure 6, we can see that in low current 
working state, busy1, battery B1 can deliver more energy than B2, 
while in high current working state, busy2, battery B2 can deliver 
more energy than B1.  Figure 7 shows that battery B1 exhibits a 
much stronger capacity recovery ability than B2.  
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Figure 7. Recovery abilities of battery B1 and B2.                                 
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We consider and compare four heuristic methods of battery 
management with our CTMDP-based policy: 
M1: As in [13], we account for the rate-capacity characteristics of 

the battery, but do not consider the recovery effect. In addition, 
we assign a pre-assigned battery when the SP is in a particular 
state, e.g., we use battery B1 when the SP is running in the 
state busy1, while we use battery B2 when the SP is in state 
busy2. 

M2: Similar to [16], we account for the recovery effect in battery 
but we do not consider the rate-capacity characteristics of 
batteries. In addition, we switch between the two batteries (B1-
B2) with a fixed frequency (0.1 Hz, as suggested in [16]). 

M3: We use two batteries of type B1, switching between them with 
a fixed frequency (0.1 Hz).  

M4: We use two batteries of type B2, switching between them with 
a fixed frequency (0.1 Hz). 

Furthermore, we consider two battery replacement policies: 
P1: As soon as a battery is completely consumed, it is immediately 

replaced with a new battery of the same type. 

P2:  The both batteries are replaced together and only after 
both of them have been completely used up. If only one 
battery is used up, the other battery will be used in all 
situations until it is also exhausted. 

Experimental results are shown in Table 2. We can see that our 
method (Battery-Aware Power Management, BAPM) provides as 
much as 17% improvement over the heuristic methods. 

Table 2. Experimental results for comparison 
  M1 M2 M3 M4 BAPM 

Average 
graviometric energy 

delivered 
(wh/kg) 

 
54.3

5 
 

 
53.2

4 

 
53.3

2 

 
53.2

0 

 
61.25 

 
 
 

P1 
 

BAPM Capacity 
Gain 

 
12.7 
% 

 
15.0 
% 

 

 
14.9 
% 

 
15.1 
% 

 

 
-- 

Average 
graviometric energy 

delivered 
(wh/kg) 

 
51.6
4 

 
52.6
6 

 
53.0

5 

 
53.1

9 

 
60.37 

 
 
 

P2 
 

BAPM Capacity 
Gain 

 
16.9 
% 

 
14.6 
% 

 
13.8 
% 

 
13.5 
% 

 
-- 

5. CONCLUSION 
In this paper, a new stochastic model for the battery-powered 
portable electronic system is proposed based on continuous time 
Markovian decision processes. Two important battery 
characteristics: current-capacity and recovery effect are taken into 
account in this model. The battery-aware power management policy 
is solved as a Linear Programming problem. Experiment results 
demonstrate the effectiveness of this method.  
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