
 Abstract
We present a circuit clustering technique based on graph coloring.
A given netlist is modeled as an undirected graph and its vertices
are colored. Based on this coloring information and the notion of
rank of a node and the number of adjacent unique colors it sees, we
derive cost functions for the graph edges. We identify cliques in
the graph and use these cliques, starting from the max_clique, as
building blocks for our clusters. A cost function is derived using
the cluster density notion and edge costs. Finally, we use this cost
function to identify the critical edges, which when deleted, yield
good clusters in the original circuit.

1 Introduction

1.1 Motivation
Recent advances in VLSI technology has made it possible for

system designs to contain millions of gates. Increasing gate com-
plexity has made it necessary for CAD tools to come up with ways
to keep these designs tractable. Circuit clustering and partitioning
are important techniques in keeping "strongly connected" compo-
nents of designs together for efficient placement and routing.

A "cluster" can be viewed as a group of strongly inter-con-
nected nodes in a circuit such that the number of edges connecting
these nodes to one another is much greater relative to the number
of edges connecting this subset of nodes to the remaining nodes in
the circuit. Clustering can hence be viewed as a bottom-up
approach to dividing a larger problem into smaller problems by
identifying these regions of densely inter-connected nodes. Effi-
cient algorithms are therefore needed to identify these regions of
strongly connected nodes within a circuit. Greedy clustering meth-
ods fall into the class of iterative approaches and are more popular.
The famous Fiduccia-Mattheyses(FM) iterative algorithm is
widely used for circuit bisection. Circuit clusters can be generated
using recursive application of the FM algorithm. However, the
solution quality hence generated is not very predictable. Flow ori-
ented approaches use the concept of maximum flow minimum cut.
Yeh, Lin and Cheng [6] used this approach in their clustering work
which utilized the "ratio cut" approach. Yeh explores the trade-
offs between the flow oriented clustering quality and running times
in [7].

Density based clustering approaches define cluster density as
|E| / C(n,2) where |E| is the number of edges and n is the number of
nodes in the cluster. Cong and Smith find r-cliques in a graph and
use this cluster density criteria to find clusters in a circuit. Cluster
density is used to determine the quality of the generated clusters.

*

This work was supported in part by the NSF grant MIP 9529077 and by California
MICRO program through Xilinx and Actel Corporation.

Clusters with a higher density are considered to be of a higher
quality. This clustering metric , however , favors smaller clusters
as the term C(n,2) increases quadratically in n.

In this paper, we model a given netlist as an undirected graph,
find the max-clique in the graph and use the max-clique as a pre-
processing step to exactly color the graph. Recently, Coudert [1]
showed that most real-time graphs appear to be 1-perfect , i.e., the
size of the max clique is equal to the chromatic number of that
graph, and hence can be colored exactly with little time overhead.
We use the results of the coloring algorithm to extract information
about the nodes in a given circuit. After exactly coloring the
graph, we assign rank and color values to each node and edge in
the graph. This assignment is detailed in the subsequent section.
These rank/color values are then used to assign costs to the edges
in the graph. A cluster is formed when the sum of the edge costs in
a subset of nodes is relatively much larger than the sum of edge
costs connecting this subset of nodes to the remainder of the graph.
This in a sense is an extension of the cluster density criteria.

1.2 Previous Work
Previous work on clustering can be categorized as either bot-

tom-up or top-down. Top-down approaches partition a given
netlist into smaller subclusters. On the other hand, a bottom-up
approach starts by assigning each cell into its own cluster and then
merges these small clusters into larger clusters. These two
approaches achieve different objectives. Top-down approaches
have the advantage of having available an overall “global” view of
the netlist, yet these approaches suffer from having to perform a
global analysis at every step. Bottom-up approaches have the
advantage of being more time efficient , yet they may suffer from
making mistakes and having to backtrack.

The bottom-up approach relies on the distance between the
nodes in a cluster , e.g greedy cluster growth, random walk and k-l
connectedness. These approaches are analogous to the process of
growing crystals. Density based approaches fall into this bottom-
up category. Other works in bottom-up clustering have utilized the
compaction algorithm [9] and the k-l connectedness algorithm.
The compaction algorithm increases the average degree of a graph
by finding a maximal random matching on the graph. In this algo-
rithm, each edge in the matching represents a cluster and 2 nodes
which are connected by a matching edge are collapsed to form a
single node in the compacted graph. However, the compaction
algorithm fails to find natural clusters in a graph. The k-l connect-
edness algorithm is a constructive algorithm that uses the transitive
closure property of the relation [10] to form clusters in a given
netlist. However, the main drawback of this algorithm is how to
chose the best values for k and l.

Another bottom-up clustering algorithm uses the random walk
approach [11]. This approach is based on traversing the graph at
one end and taking n2 steps through the graph. The clusters are
based on cycles during the random walk. A major disadvantage of
this approach is the O(n3) time it takes. So for very large netlists,
this becomes time inefficient.

Top-down clustering approaches have used the Kernighan-
Lin/ FM partitioning algorithm. Ratio-cut approaches fall into this

Circuit Clustering using Graph Coloring *

 Amit Singh Malgorzata Marek-Sadowska

 Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106, USA
 asingh@guitar.ece.ucsb.edu mms@ece.ucsb.edu

category. A modification of this ratio-cut approach is the cluster
ratio approach. These approaches generalize the concept of maxi-
mum-flow-minimum-cut. Nodes in the circuit are modeled as com-
munication hosts and nets are modeled as communications links
having finite capacities. Yeh and Cheng used this approach in
devising a stochastic flow injection method. The main goal of this
flow based clustering approach is to produce optimal flow distribu-
tion as quickly as possible. However, the running time is prohibi-
tively long and not very feasible for large scale applications.

Substantial work has also been done in the area of spectral
partitioning/clustering. In spectral partitioning/clustering, the
eigenvectors and eigenvalues of a graph matrices are computed,
and a cost function obtained. This cost function is then minimized.
Iterative heuristics are then devised to map the information pro-
vided by the eigenvectors into an actual partition. These heuristics
explore the solution space by making a large number of usually
greedy moves to attempt and achieve a global minimum.

Several different clustering objectives exist that determine the
quality of the clusters generated. These include:
• DS Ratio: The cluster degree is the average number of nets
incident to each component in the cluster and the cluster separation
is the average distance between 2 components in a given clus-
ter.This degree/separation cluster metric utilizes the fact that clus-
ters with higher DS values are of higher quality. This metric takes
cubic time so is very time-inefficient.
• Split: This objective evaluates clustering results with respect
to a netlist bisection that partitions the netlist into 2 equal-area par-
titions. A better clustering result will have fewer clusters that are
split by this netlist bisection.
• Density: This metric evaluates a given cluster consisting of
n nodes according to its density , i.e. |E| / C(n,2). We use this crite-
ria for our cluster evaluation.

Kahng and Sharma in [12] study more clustering metrics in
detail. Specifically, they define their own cluster criteria and study
different clustering heuristics including matching-based clustering
and cone-based variants. In the matching-based-clustering, a set
of disjoint pair of cells are found such that each pair shares a com-
mon net. A maximal random matching is then found and each pair
of cells is merged into a single cluster. It is interesting to note that
all matching-based variants are done in the context of hypergraph
partitioning. They also outline several heuristics that perform clus-
tering separately on sequential and combinational parts of a given
netlist. They implement different variations of this algorithms in
their work [12]. In related work, Cong and Ding [13] find maxi-
mum fanout free cones in the DAG of a combinational network for

clustering purposes.

2 Circuit Model and Terminology
We use the information about graph coloring to find natural

clusters in a given circuit. We do not predetermine the size or the
number of clusters to be generated. We model a given netlist as a
graph G(V,E) with node set V = {vi | i = 1,2,3,....n} and edge set E
= {eu | u = 1,2,3,.....m}.

Figure 1 shows how a given net is mapped into edges and

nodes in a graph. We use this model instead of mapping anr-ter-
minal net into anr-clique. Our model forms a node for each mod-
ule/cell in the net and then forms an edge from the source terminal
node to the nodes representing the remaining modules/cells in the
net.

Recently, Courdert [1] showed that most real-life graphs can
be colored exactly with little time overhead since most of them are
1-perfect. This allows us to model a given netlist as a graph,
exactly color the graph and then use the exact coloring of the graph
to extract connectivity information on the graph.

We define thecolor of a node as the number of unique colors
that are adjacent to it. Therankof a node is the number of its adja-
cent nodes. A node is then given acolor/rank value. Edge rank/
color values are assigned as follows. Consider an edge ab con-
necting nodes a and b. Then

Rankab= Ranka + Rankb - 2 (2.1)

 Colorab= Sum(# unique colors nodes adjacent to nodes a and b
on removing edge ab) (2.2)

These Edge rank/color values are used in finding the eventual
costs on the graph edges. p-cost is the compensatory cost assigned
to each edge and is defined in the next section.

3 Analysis of our Approach
The key idea involved in using coloring information about a

graph for clustering purposes is that the number of unique colors a
graph node sees is a measure of the connectivity of that node. For
example, a node that has 4 neighbors but sees only 1 unique color
is less strongly connected to it’s neighbors than a node that has 4
distinct neighbors and sees 4 distinct colors. In the latter case, we
have a very strongly connected group of nodes. In the case where a
node sees 4 distinct colors despite not being strongly connected to
it’s neighbors (this may happen because of the way we color our
graph) ,we use a compensatory cost to distinguish between this
node and a node that sees 4 unique colors and is strongly con-
nected to it’s neighbors. We call this the p-cost (Figure 2). Here p-
cost are indicated in ().

Each edge has 2 costs associated with it, r-cost and p-cost. The
r-cost of an edge is simply obtained by observing the rank (number
of neighbors seen by a node) and color (number of distinct colors
the node can see) of the opposite nodes to that edge.

r-cost node =(rank/color) * 100 (3.1)
r-cost edge =(sourcenode-cost /targetnode-cost) *100 where

source node is the higher costing node. (Here source node does not
mean the source node in the original net list)(3.2)

p-cost Edgeab = Sum (r-cost Edgeac , r-cost Edgebc) if node c has
edges whose opposite ends are nodes a and b . (3.3)

An example graph and the necessary steps are shown in Figure
3. All the nodes have been given arank/color value and all edges
have been assigned costs (p-cost + r-cost) according to our algo-
rithm. The total cost for each edge as calculated is shown along-
side each edge.

s a b c
Net n with source node s

s
a
b

c
Graph representation

Figure 1: Graph representation of a net

2/2

2/2

3/2

1/1

100

100

150

100

150(250) 150(250)

150(0)

100(300)

 Figure 2: Calculating p-costs

r-cost

r-cost

p-cost ab = (sum r-cost edges ab and bc)

 d

 c

 a
 b

p-cost
p-cost

The critical edge costs are indicated by arrows.

It is necessary to have the p-cost measure while coming up with
the edge costs. Consider Figure 4 for instance. This figure is the
same as Figure 2, except that p-costs have been excluded.

It can be seen that edge costs with p-cost excluded identifies edge
ab to be the least costing edge though it is evident that edgeab is
part of a max-clique consisting of nodesa,b,c. Hence an exclusion
of the p-cost factor incorrectly identifiesab to be the critical edge
(the least costing edge) as opposed to edgecd as shown in Figure
2. p-cost takes into account the fact that deleting edgeab also
involves the cost of deleting edgesac andbc. Since edgecd has
nodesc andd as its opposite nodes which in turn have no common
nodes between them, p-cost for edgecd is zero.

Hence, it is extremely important that we add the p-cost factor
to the total edge costs. This compensates for the fact that there may
be nodes in the graph that see many unique colors , thereby indi-
cating that they are strongly connected when in fact they are not.
The p-cost factor actually finds out if a particular node is strongly
connected to its neighbors by considering if it is a part of a clique.

Since the graph coloring technique [1] involves finding the
max-clique in the graph, we can store information about this max-
clique and other cliques found during the max-clique search to
identify removable edges. Consider the example in Figure 5 (this
example is the same as in Figure 3). A max-clique search finds A,
B and C as the possible max-cliques, (it is possible that other
smaller cliques are found en-route to finding the max-clique, this
smaller cliques information is also stored in the data structure).

Edges a and b are the edges that connect these max-cliques to one
another. A combination of the coloring information and the infor-
mation generated during this max-clique search can be effectively
used in identifying edges a and b as being critical and hence
removable.

Our clustering approach is analogous to that of growing crys-
tals. Our seed each time is a max-clique. We add nodes and edges
to this initial group of nodes comprising the max-clique until add-
ing additional nodes is not beneficial as determined by our cost
function , outlined below in Section 4.

We start with the max-clique of the graph as a seed cluster,
find the sum of the internal edge costs of this max-clique, find the
sum of the external edge costs leaving this max-clique, and find the
ratio of the two. Depending on this ratio, we choose those edges
leaving the max-clique which have the most cost and add the
nodes opposite to these edges to our current max-clique and check
the feasibility of our cluster according to our cost function. We
outline the algorithm in section 4.

4 Algorithm
Based on our above analysis, we propose the algorithm outlined
below:

Algorithm Cluster(G)
1) Graph G(V,E)
2) Mc = Maximum-Clique(G)
3) int best_color = Exact_Color(G,Mc)
4) Forall nodes n ∈ G

a) find rank
b) find color
c) node-cost = (rank/color) * 100

5) Forall edges e ∈ G
a) find r-cost /* (sourcenode-cost /targetnode-cost) *10 0 */
b) find p-cost /* see Figure 2 */
c) total-cost = r-cost + p-cost

6) Best_Cost = 0
7) Cluster_list = Find_Clusters(Mc , G, Best_Cost)

The Flow for identifying good clusters is outlined below:

Algorithm Find_Clusters(Mc, G, Best_Cost) /* initially
Best_Cost = 0 */

1) Cluster = Mc
2) Mc = Max-Clique of remaining Graph
3) Cd = Cluster Density = |E| / C(n,2)
4)Wd = Sum (edge_costs internal to the cluster)/
Sum(edge_costs leaving the cluster)
5) Cluster Cost = Wd * Cd

6) If (Cluster Cost > Best_Cost) then Mc = Mc + N! ; GOTO
(3)
else
 Cluster_list.Add(Cluster) ; /* We have generated a new
Cluster */
7) G = G - Cluster
8) If G != empty
then Cluster_list = Find_Clusters(Mc , G ,Cluster_Cost)
else return(Cluster_list)

! N = set of nodes which are opposite to the nodes in Mc and con-
nected by the highest costing edges leaving Mc. We determine
when to stop adding these opposite nodes when we cannot get a
better Cluster Cost as explained above.

Figure 3: Edge rank/color and edge costs for sample graph

2/2

2/2
4/2

2/2

3/2

2/2

3/2
2/2

2/2

500
500

133

133

400

400

400

400

400
400

500

critical edge

critical edge

a b

c

d

2/2 2/2

1/1

3/2

150

100

150150

r-cost

r-cost

r-cost

r-cost

Figure 4: Example Graph with only r-costs shown

A B

C
Figure 5: Using Clique search to find critical edges

a
b

Consider the sample graph shown in Figure 6. All the edges
have costs assigned to them according to our algorithm. This
graph has a max-clique consisting of nodes A,B,C and D and is
connected to the remainder of the graph by edges AF, AE and DE.
So this max-clique is our starting point for critical edge identifica-
tion. The sum of the edge costs in this max_clique equals 3485.
Note that since this is a clique, Cd = 1.The sum of the edge costs
leaving this max_clique is 1396. The ratio of these two costs
comes out to be 2.5. So we add these edges in the set of non-criti-
cal edges , add nodes E and F to our current cluster (since edges
AB, AD and DE all have high costs and satisfy our cost criteria)
and next consider edges in the clique EFG. As can be observed,
neither of edges EF, EG and FG can be identified as critical edges
since their costs add up to 1679 , and deleting any of these edges
will not lead to any good cluster formation.

Now, consider the graph in Figure 7. This graph has edge AE
deleted from the original graph in Figure 6. max_clique A,B,C,D
is again our starting point.

Analyzing the edges as before gives us the following:
 Sum of edge costs in max-clique A,B,C,D = 4392 (4.1)
 Sum of edges leaving max_clique = 226 (4.2)
 Ratio of (1):(2) = 19.4 (Cd = 1) (4.3)
 Sum of edge costs in clique E, F, G = 1200 (4.4)
 Ratio of (3):(2) = 5.3 (Cd = 1)

By the above analysis, we can identify edges AF and DE as
critical edges. Removing them from the graph, gives us 2 clusters,
Cluster 1 consisting of nodes A,B,C and D and Cluster 2 consist-
ing of nodes E,F and G. Now consider another modification of the
graph in Figure 6 as shown in Figure 8.

This graph has edge EF missing. An analysis of this graph yields
the following:
Sum of edge costs in max_clique A,B,C,D = 4337 (4.5)
Sum of edge costs of edges AF, AE and DE = 814 (4.6)
Ratio of (4):(5) = 5.3 (4.7)
Sum of edges EG and FG = 350 (4.8)

From the above analysis, we observe that deleting edges AE,
AF and DE will not lead to an optimum clustering. Instead, if we
add node E to the set of nodes comprising the max_clique, we will
get a set consisting of nodes A,B,C,D and E. Note that we find that
edge AF has a cost of 120 and adding the node opposite to it , i.e F
to Mc will not benefit our current cluster Mc. Sum of edge costs in
this node set = 5151. Sum of edge costs leaving this node set = 270
giving us a cluster cost of 19.01 * 0.8 = 15.21 (Here Cd = 0.8) This
leaves us with nodes F and G in the remainder of the graph. They
can be in turn be grouped into another set since they form a
max_clique in the remaining graph. Hence we get 2 clusters. Clus-
ter 1 consisting of nodes A,B,C,D and E and Cluster 2 consisting
of nodes F and G. By dynamically adding node E to the starting
node set of nodes A,B,C and D , we have managed to generate
good clusters.

In this above example we have generated clusters by building
on a group of nodes that comprise a max-clique. We dynamically
add nodes that are adjacent to the nodes in the max-clique but not a
part of it, by evaluating the feasibility of adding them according to
out cluster density and edge cost criteria. Recall that ,Cd = Cluster
Density = |E| / C(n,2) and our edge cost criteria is defined asWd =
Sum (edge_costs internal to the cluster) / Sum(edge_costs leaving
the cluster). In essence, we create a threshold value dynamically,
and the building process stops when we can no longer improve on
the cluster quality as defined by our cluster quality functions out-
lined above. The edge costs determine which nodes need to be
added and which nodes need not be added . If an edge with a
higher cost connects a node in a cluster to a node outside the cur-
rent cluster, then this node is a better candidate to be added to the
cluster than a node which is connected by an edge with a low cost.
The way we determine the edge costs initially helps us identify
these possible node candidates. Note that instead of adding one
node at a time to the cluster (which is expensive) we add a set of
nodes to the cluster .

5 Experimental Results
Table 1 shows the size of the test cases on which we tried our

clustering algorithm, as well as the exact coloring obtained for
these circuits (based on our graph model). Most test cases are from
the standard MCNC set of circuits. However, we have also incor-
porated 3 of the smallest ibm circuits that were released in
[ISPD98]. Work is currently under way to try this clustering algo-
rithm on the remaining ibm circuits.

We compare our results to the Breadth First Clustering (BFC)
approach in [7], the Shortest Path Clustering (SPC) approach [6]
and the Recursive Ratio Approach (RR) [14]. Table 2 shows the
obtained cluster sizes for all the benchmark circuits. The netlists in
Table 1 have been modeled as graphs as explained earlier in sec-
tion 2, instead of the traditional hypergraph. This is to facilitate the
exact coloring of the graph . This may affect the clustering results
we obtain since we model our netlists as graphs while most pub-
lished results model them as hypergraphs. Even when other pub-
lished results use a graph model, they use the standard clique-

A

 B

 C

 D
 E

 F

 G

5/3
363

638

395
713

483

483

690

698 657
657690

993

3/3

 3/3 4/3

4/2

3/2

2/2
Total edge costs

Figure 6: Example Graph with Edge costs

A

 B

 C

 D
 E

 F

 G

4/3

113

690

732 732
732732

732

3/3

 3/3 4/3
3/2

3/2

2/2
Total edge costs

113

400

400

400

Cut

Sum of edge costs = 4392
Sum of edge costs = 1200

Figure 7: Same Example graph with edge AE removed

A

 B

 C

 D

 E

 F

 G

347

690

698 657

657
690

945
120

Figure 8: Example Graph with edge EF removed

347

150

200

Cut
Cluster 1 Cluster 2

based hypergraph transformations.

Table 2 shows the size of the generated clusters using the SPC,
BFS and RR cluster metrics.

* for 19ks, SPC applies multiple-way partitioning to generate
the best clusters. Hence the number of nets cut are significantly
higher than the number of nets cut in RR and BFS. The standard
FM algorithm reports the best nets cut value of 151 [4] for this
circuit.

! Cluster sizes not reported for BFC. Only cut size results avail-
able for BFS

Table 3 shows the net cuts associated with the clusters that we

Table 1: Our Cluster Sizes

Test Circuit # Nodes # Nets
Exact
Color

Cluster sizes

Primary1 833 904 5 611 : 127 : 95
Primary2 3014 3029 5 2358 : 411 : 245
Test02 1663 1721 5 1225 : 438
Test03 1672 1699 5 1176 : 496
Test04 1551 1738 5 1073 : 478
Test05 2658 2910 5 2018 : 640
Test06 1821 1745 5 767 : 621 : 433
19ks 2844 3343 5 1320 : 1035 : 389
ibm01 12752 14111 6 8259 : 3436 : 1057
ibm02 19601 19584 6 10272 : 4813 :

4516
ibm03 23136 27401 7 15422 : 7713

Table 2: Published Clustering Results

Test
Circuit

SPC
(Shortest

Path
Clustering

)

BFS
(Breadth

First
Clustering

)!

RR
(Recursi
ve Ratio)

Best
Net
Cut

(RR)

Best
Net

Cut(SP
C)

Best
Net
Cut

(BFS)

Primary1 681 : 76 :
76

3 clusters 742 : 91 11 14 14

Primary2 2283 :
731

3 clusters 2275 :
739

83 77 95

Test02 1596 : 34
: 33

3 clusters 794 : 429
: 345 : 46
: 43 : 6

152 9 10

Test03 1502 :
105

2 clusters 1286 :
321

48 15 15

Test04 1442 : 73 2 clusters 1121 :
394

51 6 6

Test05 2492 :
103

4 clusters 2308 :
287

48 8 30

Test06 510 : 268
: 170 :
135 : 135
: 135 :
133 : 133
: 133

17 clus-
ters

421 : 404
: 342 :
213 : 179
: 127 : 66

91 81 93

19ks* 1059 :
909 : 876

2 clusters 2771 : 73 11 127 12

generate.

Column 2 shows the ratio of the number of edges to the num-
ber of nodes in each particular graph. The average of this is 2.74.

 Column 3 shows the ratio of the average number of edges in
a cluster to the number of nodes in that cluster. For all the tested
benchmarks, this average comes out to be 2.62. An interesting fact
to be noted is that if we compare the values in column 3 to that of
column 2 (which gives us the ratio of the number of edges to the
number of nodes in the original graph), we find that in all cases the
value in column 3 is less by at most 5.90 % (for Primary2) from
the value in column 2. Take for example, the netlist Primary1.
Column 4 shows the percentage decrease between the values in
columns 2 and 3 which is 2.07 % in this case. This is attributed to
the number of inter-cluster edges and this is translated into the
number of actual nets being cut. This nets cut value is reported in
column 5.

Table 4 compares our cluster quality with that of the clusters
generated through the Recursive Ratio (RR), Shortest path Cluster-
ing (SPC) and Breadth First Search (BFS) clustering methods
using the cluster ratio metric [3] [6]. Given a cut C(V1, V2,
Vk), the cluster ratio of C is defined as

where C(V1, V2, Vk) is the number of nets which join differ-

! x 10-5

Table 3: Our Cluster Quality

Test Circuit

Original
Graph Ratio

(#edges/
#nodes)

Average
Cluster Ratio

(Edges/
Nodes)

%
decrease

in #
edges

Nets
Cut

Primary1 2.41 2.36 2.07 22
Primary2 2.71 2.55 5.90 90
Test02 2.66 2.53 4.90 53
Test03 2.6 2.5 3.84 61
Test04 2.78 2.69 3.23 56
Test05 2.8 2.65 5.35 64
Test06 2.74 2.60 5.12 83
19ks 2.55 2.40 5.80 124
ibm01 2.9 2.77 4.48 411
ibm02 3.14 3.04 3.18 508
ibm03 2.86 2.78 2.80 1311

Table 4: Ratio Cut Comparison

Test Circuit Rc (RR)! Rc (SPC)! Rc (BFS)! Rc (Ours)!

Primary1 16.29 12.81 12.81 14.81
Primary2 5.15 4.61 5.70 5.46
Test02 19.68 8.32 8.99 9.87
Test03 11.70 9.51 9.43 10.45
Test04 12.17 5.69 5.85 10.91
Test05 6.72 3.11 4.52 4.96
Test06 8.87 6.22 7.60 7.70
19ks 5.44 4.72 5.56 5.43

R
c

V
1

V
2

… V
k

, , , 
 

C V
1

V
2

… V
k

, , , 
 

V
i

V
j

×

i 1=

k 1–

∑
j i 1+=

k

∑
 
 
 
 
 
--=

-ent clusters. We use this Cluster metric for the sake of comparison
with RR, BFS and SPC. Note that a smaller value of Rc means a
better cluster quality. We observe that our results are in most cases
better than the those in RR and close to the ones in BFS except in
Test04. We can see that SPC performs best but as we will see in
Table 5 , has a general trend of using excessive run time.

Our overall results are comparable with those in Table 4 especially
the with the ones reported by BFS [7]. We believe that the way we
model our graph can explain some of the differences in the results
we obtain. The BFS results do not report the sizes of the generated
clusters but they evaluate their results based on the cut size and the
cluster ratio metric . No available data on clustering exists on the
ibm circuits to our knowledge and hence we do not report previous
results on these new ibm circuits. However, we need to emphasize
that it is very important to include all these new circuits as most of
the MCNC circuits are relatively small and hence not very relevant
to current technology trends as far as circuit complexity and size
are concerned.
SPC refers to the results reported by Yeh,Cheng and Lin [6].
BFS refers to the results in a follow-up paper by ChingWei Yeh
[7].
Table 5 shows the run times on the tested benchmark circuits in
comparison with the SPC, BFS and RR results

We run our C++ code on an Ultra Sparc 1 with 128 MB of mem-
ory. The run times reported in Table 5 are in seconds. We report the
run times on the remaining clustering methods as published by
their authors, hence they should be viewed as only an indication of
the run time behavior of the clustering method as a whole.(Note:
The BFS results were obtained using a SUN SPARC 2). Our run
time results include the time to form a graph from the given netlist
and to exactly color it. In cases where our run time seems big, it is
because these cases do not model into 1-perfect graphs , i.e. the
maximum clique in the graph is not equal to the graph’s chromatic
number. However, we should note that all these graphs are exactly
colored. In the case of the new ibm circuits, we can see that the run
time for our method begins to become prohibitively large. Most
portion of this run time is spent in exactly coloring the graph.
Work is currently underway to empirically determine the trade-offs
in relaxing the exact coloring criteria and the generated cluster
quality. This relaxed criteria will help in generating clusters on the
remaining large ibm circuits.

6 Conclusions
We have presented a clustering algorithm based on graph col-

oring. The main motivation for our approach was the work done in
[1] which showed that most real life graphs are 1-perfect and

Table 5: Run Times

Test Circuit RR(s) SPC(s) BFS(s) Ours(s)

Primary1 2 54 12 6.4
Primary2 13 1221 59 20.89
Test02 13 843 30 25.51
Test03 6 527 19 29.85
Test04 11 522 18 28.16
Test05 33 1780 30 52.37
Test06 7 662 17 27.27
19ks 11 2085 20 42.73
ibm01 NA NA NA 427.1
ibm02 NA NA NA 2794
ibm03 NA NA NA 4849

hence can be exactly colored with little time overhead. We have
used a bottom-up clustering technique to create natural clusters
and report cut and cluster sizes on our obtained results. Experi-
mental results show that our cluster quality is comparable to the
reported results using the ratio cut metric as a comparison parame-
ter [6]. Slight differences in results can be attributed to the differ-
ent way in which we model our graph from the given netlists.
Since the run times are reported on different machines, we cannot
make an accurate comparison on the run times. However, our run
times show a general trend of being smaller than the run times
reported in SPC [6]. In essence, our results are a mere trade-off
between cluster quality and run times. Our netlist graph model is
not obtained from the standard clique-based hypergraph transfor-
mation and hence, this prevents us from making a true comparison
from previously published results. We are currently working on
refining our algorithm and relaxing the exact coloring criteria on
the larger circuits so that we obtain results on all the ibm circuits
from the ISPD98 benchmark suite .

References
1) O. Coudert, “Exact Coloring of Real-Life Graphs is Easy”,

Proc. Design Automation Conference, 1997, pp.121-6
2) D. J.H Huang and A. B. Kahng, “When Clusters Meet Parti-

tions: New Density-Based Methods for Circuit Decomposition”,
Proc European Design and Test Conf, 1995, pp. 60-64

3) Y. Wei and C.K. Cheng, “Ratio Cut Partitioning for Hierarchial
Designs”, IEEE Tarnsactions on Computer-Aided Design, Vol
10, No 7, July 1991, pp. 911-21

4) L. W. Hagen and A. B. Kahng, “A New Approach to Effective
Circuit Clustering”, Proc. International Conf. on Computer-
Aided Design, 1992, pp. 422-7

5) L. W. Hagen and A. B. Kahng, “Combining Problem Reduction
and Adaptive Multi-Start: A New Technique for Superior Itera-
tive Partitioning”, IEEE Transactions on Computer-Aided
Design, 1997,pp. 709-717

6) C. W. Yeh, C. K. Cheng and T. T. Y. Lin, “Circuit Clustering
Using a Stochastic Flow Injection Method”, IEEE Transactions
on Computer-Aided Design, Vol 14 No 2, February 1995, pp.
154-62

7) C. W. Yeh, “On the Acceleration of Flow-Oriented Circuit Clus-
tering”, IEEE Transactions on Computer-Aided Design, vol 4,
October 1995, pp. 1305-8

8) J. Cong and M. Smith, “A Parallel Bottom-up Clustering Algo-
rithm with Applications to Circuit Partitioning in VLSI Design”,
Proc Design Automation Conf, 1993,pp. 755-60

9) T. Bui, C. Heigham, C. Jones and T. Leighton, “Improving the
Performance of the Kernighan-Lin and Simulated Annealing
Graph Bisection Algorithms”, 26th ACM/IEEE DAC 1989,
pp.775-778

10) J. Garbers, H.J. Promel, and A. Steger, “Finding Clusters in
VLSI Circuits”, ICCAD 1990, pp. 520-523

11) J. Cong, L. W. Hagen, and A.B. Kahng, “Random Walks for
Circuit Clustering”, Proc IEEE Conf. on ASIC pp. 14.2.1 -
14.2.4, June 1991

12) A. B. Kahng and R. Sharma, “Studies of Clustering Objectives
and Heuristics for Improved Standard-Cell Placement”, UCLA
CS Dept report, January 1997

13) J. Cong and Y. Ding, “On area/depth trade-off in a lut based
fpga technology mapping”, In Proc. of the ACM/IEEE Design
Automation Conference, pp. 213-218, 1993

14) Y. C. Wei and C. K. Cheng, “Two-way Two-level Partitioning
Algorithm,” Proc IEEE Intl. Conf. on Computer-Aided Design,
1990, pp. 516-519

15) LEDA Home Page : http://mpi-sb.mpg.de//LEDA/leda.html

	Main Page
	ISPD'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

