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Abstract

Diagnosing analog circuits with their numerous known di�culties is a very hard problem.

Digital approaches have proven to be inappropriate, and AI-based ones su�er from many

problems. In this paper we present a new system, FLAMES, which uses fuzzy logic, model-

based reasoning, ATMS extension, and the human expertise in an appropriate combination

to go far in the treatment of this problem.

1 Introduction

when trying to overcome the challenging problem of testing and diagnosing analog cir-

cuits, the continuous nature of signals, the inherent interactions between various circuit

parameters [1], the inaccuracy of measurements, and the non-directional nature of their

behavior, which means that any component can be responsible for any symptom, consti-

tute the core of the problem. It is necessary to model parameters with tolerances and to

compute with intervals, to use qualitative values, or to use fuzzy sets as we suggest in this

paper. Classical approaches are inappropriate, which has driven the research towards AI

to try to get it out from this bottleneck. In section 2, we briey present the contribution of

AI in this domain. Section 3 presents fuzzy logic which constitutes the mathematical basis

of our approach. In section 4, we discuss the main ideas among the reasons of our research

directions, and the general diagram of our system is presented in section 5. Section 6

details the fuzzy ATMS (Assumption Truth Maintenance System), which is the kernel of

this system, while sections 7 and 8 describe two other units of FLAMES, respectively deal-

ing with learning from experience and best test strategy �nding based on fuzzy entropy



and fuzzy estimations. Some experimental results are provided in section 9, and �nally

conclusion and future work directions are given in section 10.

2 The contribution of AI in the Diagnosis of Analog circuits

The contribution of AI in this domain is not recent. Fault dictionaries, diagnostics,

rule-based methods, model-based reasoning, or qualitative reasoning have been used with

more or less of success.

Here, we will discuss model-based reasoning and qualitative reasoning approaches which

to our view are the most important ones.

2.1 Model-based Reasoning

Model-based reasoning considers the model which is built from the structure of the device

and the correct behavior of its components. A fault is de�ned by excluding "anything other

than expected behavior", so it covers a wide class of faults [2]. Numerous systems used

this approach : DART [3], GDE [4], DIANA [5]. All these systems partially fail when they

deal with dynamic systems and more di�culties arise when dealing with analog circuits.

2.2 Qualitative Reasoning

In the area of AI, the qualitative reasoning has become a very productive domain. But

the loss of quantitative information by the qualitative description involves the prediction of

invalid behavior or the neglect of valid ones which can cause a loss of candidates in analog

circuits diagnosis.

3 Fuzzy Logic

The principal objective of fuzzy logic is to cope with the inaccuracy and the uncertainty

of information.

3.1 Fuzzy Sets and Membership Degree

A fuzzy set A is de�ned on a domain T by a function �A:T |>[0,1], such that �A(t) is

the membership degree of t 2 T to the set A. The support of a fuzzy set A is the set of

elements with a membership degree greater than 0. The core of A is the set of elements

with a membership equal to 1.

3.2 Fuzzy Intervals

A fuzzy interval is a convex fuzzy set. In practice, it will be de�ned by a 4-tuple

[m1,m2,�; �] (�gure 1), where [m1,m2] is its core. A real number m can be de�ned by
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Figure 1: Fuzzy interval

[m,m,0,0], a crisp interval [a,b] by [a,b,0,0], a fuzzy number m by M=[m,m,�; �]. Hence,

this representation allows a crisp number, a crisp interval, a fuzzy number, and a fuzzy

interval to be uniformly described.

For two fuzzy intervals M=[m1,m2,�; �] and N=[n1,n2,; �], we can accept the arithmetic

operations de�ned in [6] from which we give as an example :

- M � N = [m1 + n1;m2 + n2; �+ ; � + �];

- M 	 N = [m1� n2;m2� n1; �+ �; � + ];

4 Towards Fuzzy Logic

4.1 Some Famous Systems

Some systems have been developed for analog circuit fault diagnosis. The most repre-

sentative ones are briey described in the following.

DEDALE [7] is based on order-of-magnitude reasoning. Its main weakness appears when

dealing with components which operate at the limit of their designed behavior. because it

assumes that defects lead to signi�cant changes in behavior of the circuit which is a hard

assumption. In DIANA [5] imprecision is processed by means of numerical (crisp) intervals.

The management of intervals is done by an ATMS extension. FIS [8] uses qualitative causal

models to describe the unit-under test.

Fuzzy logic, which we suggest here, was not previously used in this domain to our

knowledge, except in [9], where the authors are up to now restricting its utilization to the

decision-making problem, for the purpose of functional veri�cation of analog circuits.

4.2 Discussion of Currently Used Ideas

Fuzzy sets allow to de�ne the order-of-magnitude operators in an accurate manner [10].

Crisp intervals contain all sorts of inaccuracy without any distinction which can cause

an explosion in the value propagation through the circuit. The following example (�g-

ure 2) [11], shows the problem : If we consider the three ampli�ers as fuzzy numbers :

amp1[1,1,0.05,0.05], amp2[2,2,0.05,0.05], amp3[3,3,0.05,0.05], and Va in input :

(1) Va[2.95,3.05,0,0] as crisp interval (boundaries equal to 0) in the �rst case and

(2) Va[3,3,0.05,0.05] as fuzzy number in the second one.
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Figure 2: Crisp intervals propagation

The propagation will give in the two cases :

Vb[2.95, 3.05, 0.15, 0.15] Vb[3, 3, 0.20, 0.20]

Vc[5.90, 6.10, 0.44, 0.46] Vc[6, 6, 0.54, 0.57]

Vd[8.85, 9.15, 0.58, 0.62] Vd[9, 9, 0.73, 0.77]

(1) (2)

Note that in (1) we divided the imprecision into two parts. In (2) the imprecision does not

have the same importance as in crisp intervals.

Now, let us look how these approaches behave when we take amp2 as faulty with a slight

di�erence from its nominal value : 1- with crisp intervals let amp2[1.8,1.8] for example, and

the output Vc is measured to be [5.6,5.6]. In this case we will have Vb=[3.11,3.11], and

Va=[2.96,3.27], which masks the faulty value of amp2 (in comparison with the results

in �gure 2), 2- with fuzzy numbers and for the same values for amp2 and Vc, we will

have : Vb=[3.11,3.11,0.027,0.027] and Va=[3.11,3.11,0.17,0.17], which shows that there is

a problem. Then, a value which oversteps the boundaries of the interval will be considered

as faulty, but possibly true in order-of-magnitude [10]. In fuzzy intervals it will be a fault

with a membership degree.

We suggest replacing crisp intervals by fuzzy intervals. This representation is more

general, since it can represent the knowledge embedded in the soft boundaries of the interval

and there is no exclusivity of values. Also, it allows to distinguish between di�erent types of

imprecision : this of the human expert, these of the components, or that of the measuring

equipment. Each value from the fuzzy interval has a membership degree which, for us,

gives its acceptance degree. In fact, what crisp intervals mean can be discussed [12]. The

psychological plausibility prefers the fuzzy ones. In any case, the fuzzy approach is the

most general one and a much better approximation of the reality.

Considering this discussion, our idea is to build a fuzzy-logic-based expert system which

is the subject of the following sections.

5 FLAMES : An Overview

FLAMES (A Fuzzy Logic ATMS and Model-based Expert System) is a system princi-

pally aiming at diagnosis faulty analog devices (especially in the case of soft faults). Its
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main components are (�gure 3) : A fuzzy ATMS (FLAMES's kernel) which propagates

fuzzy intervals and assumptions ; A database of models which will be used for diagnosis

based on structure and correct models of components on one hand, and assumptions gov-

erning the validity of models and observations on the other hand ; A knowledge base made

up of fuzzy qualitative rules and component fault models (which can help the diagnosis

process) ; a search strategy unit that helps �nding best test points to probe in case that

the diagnosis process needs more information ; A learning module in which the system

could use its previous diagnosis to learn from its experience. Finally, since we want to

keep FLAMES as an open system, an expert can interact with each of its main units. It

 Unit

Fuzzy-ATMS
Research strategies 
with fuzzy probabilities

Expert

Best test strategies
propagation

Fuzzy intervals

 * Fuzzy qualitative rules
 * Fault models

Construction of the 

experience

Models

Knowledge base Unit

symptom-failure rulesDatabase Unit

Learning from

Figure 3: FLAMES : The Fuzzy-Logic-ATMS-based Expert System

is clear that FLAMES is mainly based on fuzzy logic principles, and this has many ad-

vantages (apart from those mentioned previously) : it allows an accurate representation

of the Unit-Under Test, and a simple while accurate (said semi-qualitative) representation

of the human expertise either about a priori fault estimations or about how to update

these estimations after tests. This knowledge representation problem, is a crucial one in AI

applications. which is closely related to the knowledge acquisition problem, Choosing the

qualitative one is not advised for analog circuits. The quantitative one is also not advised.

Thus fuzzy sets which are able to represent the two kinds are chosen in FLAMES.

6 Fuzzy ATMS Unit

This section presents an extension of the ATMS concept, called fuzzy-ATMS, which

incorporates in its mechanisms a processing of inaccuracy by propagating fuzzy intervals

and uncertainty based on intersection between di�erent fuzzy intervals which express either

nominal values, or measured values through propagation. Thus this fuzzy-ATMS looks like

the possibilistic ATMS of [13] where clauses are uncertain. Moreover, it does not neglect

the expert preference in the decision-making process. An ATMS is a truth maintenance
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system based on manipulating assumption sets. It is able to work e�ectively and e�ciently

with inconsistent information. Reasoning on assumptions is very general. In electronics,

for example, an assumption might be the correct functioning of each component [14]. Note

that the ATMS is necessary because we entertain the possibility of multiple faults where

the space of potential candidates grows exponentially with the number of faults under

consideration.

In our approach, result of the diagnosis (sets of candidates) will have degrees giving how

serious the corresponding faults are. An expert can use this supplementary information

and his experience to choose between candidates. When it is possible, the diagnosis can be

helped by some rules describing the unit under test, its qualitative correct behavior and its

faulty one.

6.1 The Conict Recognition Engine

The central task of diagnosis is to detect discrepancies between predicted values and

measurements and to build the sets of candidates which support these discrepancies ; the

important step of fault detection is better realized by using fuzzy intervals (section 4).

Discrepancies are detected and the corresponding minimal nogoods (a nogood is the set of

assumptions which supports the fault) and minimal candidates, are built.

6.1.1 Fuzzy Interval Propagation

Here, we concentrate on fuzzy interval labelling (label for a quantity refers to the set

of its possible values and should not be confused with the assumption label attached to

each particular value). Quantities values take two possible forms : predicted values (from

the model), and measured ones. A fuzzy quantity will be propagated each time a new

value is entered. The propagation takes place through constraints which constitute the

model of the circuit (fuzzy operations are considered). The discovery of a known value for

a point for which we already know a predicted propagated value is called a coincidence.

Figure 4 summarizes the possible cases either in propagation of crisp or fuzzy intervals. The

A splits B
BA B A

B splits A

Corroboration
A=B

Conflict
A B

case a:

case c:

case b:
BA

Partial conflict

Figure 4: Possible cases of coincidence

case of coincidence (�gure 4) between two propagated values is the most complicated one

since we have to take the assumptions of both propagations into account. Our coincidence
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resolution process consists in considering that a coincidence between two propagated values

is a coincidence between either of them with the predicted value. Consequently, it reasons

on a degree of consistency Dc (see section 6.1.2), and a particular attention should be given

to the path which led to the worst one. Reasoning on Dc eliminates most of the problems

mentioned above especially.

6.1.2 Fuzzy ATMS

Here, the di�erent cases of �gure 4 will be summarized by a degree of consistency between

the nominal value and the measured one. The idea is that if we have decided that Vn is the

nominal value of a quantity X and a measurement gave Vm for X then in order to clearly

see the situation we should evaluate the proposition X 2 Vn. In general, if Vm �Vn then

the proposition is necessarily true ; otherwise , if VnuVm 6= ; then it is only possibly true.

We de�ne Dc 2 [0,1], as the degree of consistency between Vm and Vn by :

Dc = area(Vm u Vn) / area(Vm)

which equals 1 if Vm � Vn, equals 0 if the intersection is empty, and is inferior to 1 when

this intersection is not empty. As Vm and Vn are de�ned in terms of fuzzy intervals which

gives their de�nition as a possibilistic distribution (possibilistic logic) then the justi�cation

of this choice is that the degree of certainty that the quantity takes a value in Vn is this

intersection between its propagated value (actual possible values) and its nominal value

(possible nominal values). at the right or at the left of Vn, respectively.

Dealing with analog circuits is very di�cult : a component can be faulty without

manifesting a symptom, for example. Corroborations (case c : �gure 4) do not always

imply that the components involved are unfaulted. A conict (case b) indicates a nogood

(the set of assumptions which supports the value) with a degree 1, and a partial conict

indicates a nogood with a degree < 1.

The resolution takes place through two steps : the propagation which gives as result a

conjunction of assumptions with their consistency degrees in [0,1], and a second step which

searches the contradictory environments. In this fuzzy-ATMS clauses are not reduced to

Horn's clauses (as in [13]). Thus it allows the expert to add rules of faulty estimations

or to build component's fault models with certainty degrees. Another advantage of this

method is the possibility to give to the user a list of "nogoods" sorted according to their

consistency degrees which allows to restrict the e�ect of explosion.

6.2 Database Unit (Models)

The model-based reasoning approach is suitable to this type of circuits. Models of

correct behavior, assumptions governing the validity of models, and measurements (obser-

vation) constitute the principal elements of this approach. Kirchho�'s laws and Ohm's law

7



are applied and constraints which govern the behavior of components are used. Qualita-

tive models are also applied whenever they are more suitable. A resistor is governed by

Ir = Vr / r and Vr = Ir * r, for example, but the correctness of the resistor will be the

assumption of applying these rules. Then one or more propositional assumptions govern

the validity of models. For us, a propositional assumption belongs to fuzzy logic which

means that it will have a membership degree indicating its degree of validity. Let us take

a detailed example to clarify this :

If the transistor T is correct and Vbe(T) � 0.4, Then it should be in an O� state. Since

the � operation is fuzzy (as all the other arithmetic and logic operations) and Correct(T)

is also fuzzy then O�(T) will be de�ned as a fuzzy set. De�ning assumptions, quantities,

and fault modes (as shown later) in terms of fuzzy sets give this system its exibility, and

both slight changes and signi�cant ones are discovered.

6.3 Illustrating Example

DIANA propagates of crisp intervals in order to detect inconsistency between values and

to form the sets of candidates. The following example (�gure 5) [15] could explain our view

to this problem in compatibility with fuzzy logic.

n1 n2

Vr1 Vd1 Vr2

r1=10Kohms r2=10Kohms

conflict on Ir1 ----->  Nogood{r1,d1}

conflict on Ir2 ----->  Nogood{r2,d1}

Diode’s model

Measurement Model Prediction Assumption

{d1, r2}

Ohm’s law

Ohm’s law

{d1}

{r2}

{r1}

{d1, r1}

CANDIDATES : [d1] or [r1,r2]

Id1 =< 100 microA

Ir1 =< 100 microA
Ir2 =< 100 microA

Vd1=0.2 V

Vr1=1.05 V Ir1 = 105 microA

Vr2=2 V Ir2 =200 microA

Kirchhoff’s law in n1
Kirchhoff’s law in n2

The candidates calculation will finally give

Figure 5: Candidates with crisp intervals

To be able to capture the slight changes in values, we will de�ne all the arithmetic

and logic operations in fuzzy manner. Thus, the � 100 condition will be the fuzzy set

[-1,100,0,10], for example, and in this case if measurements give : Vr1 = 1.05 V then Ir1

= 105 microA and Nogoodfr1,d1g will have a membership degree equal to 1-0.5 = 0.5 (it

is good with 0.5 degree). In the same manner, for Vr2 = 2 V, we will have Nogoodfr2,d1g

with degree 1 (good with 0 degree). The candidates in this case will be [r1; d1]0:5; [r2; d1]1

which indicates a certain order between them. The expert can use this order to give more

concentration on [r2,d1]. or he can use the a priori estimations of faults to decide if the
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diode or one of the resistances is faulty. In any case, considering the fault modes of the

diode (open or shorted), drives us to strongly suspect the resistance r2 which has to be

very low. In the case of crisp intervals and crisp operations we can only suspect the three

components with the same weight.

7 Learning From Experience and Building the Knowledge Base

Adding this unit has the goal to make our model-based reasoning able to learn from

its experience to improve its performance incrementally. As regards to fault modes, our

intention is not to de�ne a fault dictionary, but we believe that de�ning some common

fault modes for components can be useful in many cases. This unit should be applied only

as last step in order to re�ne candidates sets.

Common fault modes (such as open, short, high, or low for resistors) in our approach are

de�ned as fuzzy sets. This will avoid us to use special heuristics to �nd slight deviations.

When the system succeeds to locate a faulty component, a symptom-failure rule which

summarizes the work would be formed and an estimation will be given to this component.

This rule is given with a degree of certainty which is compatible with fuzzy logic from one

side, and with the complex nature of analog circuits from the other side. This information,

learned from experience would be added to the knowledge-base unit. Thus, in future

diagnosis, FLAMES will give the expert the rules which are attached to some candidates

to help him in making his decision.

8 Best Test Strategies

We want FLAMES to be able to recommend at any point the next best test to make.

from a set of prede�ned available tests, and to estimate the faultiness degree for a given

component, given some test results. Achieving this goal is not very simple. Many systems,

such as FIS and GDE, used the probabilistic approach, which is a numerical approach.

To move away from this approach with its heavy calculus and hard assumptions (a priori

probabilities, mutual exclusiveness of hypotheses, etc.), we have considered an approach

based on fuzzy logic. This approach reduces the calculation needed, and replaces numbers

by qualitative linguistic terms.

8.1 Fuzzy Data

The idea is to decompose the [0,1] interval into linguistic terms (fuzzy estimations of

faultiness) de�ned by fuzzy intervals (as Correct=[0,.05,0,.05], Likely correct=[.18,.34,.02,.06],

etc.). The degree of granularity of this decomposition depends on the application and on

what the expert assumes suitable.
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8.2 Fuzzy Entropy and Best Test point �nding

To discriminate between candidates, the entropy of a system of fuzzy probabilities which

measures how random this fuzzy system is, can be useful. The module under test is

considered as a system of components for which we give estimations of their states in terms

of fuzzy probability, so we adapted the de�nition of Shannon entropy to calculate the fuzzy

entropy. Let S be a set of n components characterized by their fuzzy estimations. Its fuzzy

entropy is de�ned by :

Ent(S) =
Ln
i=1 Fi 
 Log2(1 � Fi)

where Fi is the fuzzy estimation of the faulty component i. The arithmetic operations are

the fuzzy ones de�ned in [6]. Considering the result of the fuzzy-ATMS, the "best test

", which is the test minimizing the expected total cost of the tests required to achieve

some speci�ed degree of certainty about which modules in the circuit are faulty and which

ones are not, can be evaluated by the expected entropy, assuming that the measurement

has been done. This expected entropy is calculated by using the fuzzy entropy mentioned

above.

9 Experimental Results

Some parts of FLAMES have been implemented in C++ on Sun sparc 20 workstation,

and have been tried on di�erent kinds and sizes of circuits, either in dynamic mode or in

static one. One of these circuits and its corresponding results are shown in �gures 6 and 7,

respectively. This is a single path circuit so measuring Vs to be faulty (�gure 6) suspects

all the modules with the same degree. The table of results (�gure 7) shows how Dc plays

the principal role in reducing the candidates especially in slightly soft faults cases. Finally,

we have to mention that the chosen values of ' the components ensure the linear region of

transistors.

Vbe = 0.7 V for T1,T2,T3

Beta1 = 300

Beta2 = 200

Beta3 = 100

+

T3

T2

ΩΩ

Ω

 18VVcc

T1

Vs

Ω200k

12k

1.8k

3 k

Ω24k

2.2k

V2

R3

R4

R6

R2R1

R5V1

N1

N2

Figure 6: 3 stages circuit ampli�cation
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R2 is slightly high
      R2 = 12.18k

      R2
Short circuit on

Beta2 is slightly low
      Beta2 = 194

1
{R1,R2,R3,T1}   ==>  {R1}     {R2}     {R3}

{T2}
1 1

{R4}

1 1

DEFECT DIAGNOSIS 

Open circuit in N1

COMMENTS

Thanks to Dc because Dc(Vsm,Vsn)=0.89, Dc(V2m,V2n)=0.89,and

Thanks to transistor model, measuring V1 is decisive

Thanks to the sign of Dc: Dc(Vsm,Vsn)=1, Dc(V2m,V2n)=1, and 

0.110.11

0.04
{R2,R4,R5,T2}        ==>  {T2}     {R4}

0.04

Propagating the measured value of V1 and V2 reduces the candidates
to {R2}

Dc(V1m,V1n)=0.89

Open circuit on R3 {R1,R2,R3,T1}   ==>  {R2}   {R3}
Dc(V1m,V1n)= -1, R2 is very low or R3 is very high

Dc(Vsm,Vsn)=0.96, Dc(V2m,V2n)=0.96, and Dc(V1m,V1n)= 1

{T1}{R1,R2,R3,T1}       ==>   {R2}

111

0.04

0.11 0.11

Figure 7: Experimental Results with FLAMES

10 Conclusion

The present work is a step towards the complete implementation of FLAMES. This new

approach of analog device fault diagnosis based on fuzzy logic is very general, realistic,

and reliable to represent the human expertise (e.g. a priori estimations of faultiness in

components, qualitative rules, etc.). In any case, it is the only one which is able to be

qualitative and quantitative at the same time. Best test strategies have been successfully

tried on digital circuits, they appear even more suitable for analog ones. The fuzzy ATMS

using fuzzy intervals in its practical form allows to treat uncertainty and inaccuracy in

analog circuits. Moreover, propagation of fuzzy intervals avoids possible explosions either

in treating tolerances or in sets of candidates resulting from the ATMS.

Finally, FLAMES idea tries to make pro�t of other approaches whenever possible.
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