
Implicit Manipulation of Polynomials Using Zero-Suppressed BDDs

Shin-ichi Minato
NTT LSI Laboratories

3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa Pref., 243-01 Japan

Abstract

We present a new technique that broadens the scope
of BDD application. It involves manipulating arith-
metic polynomials containing higher-degree variables
and integer coe�cients. Our method can represent
large-scale polynomials compactly and uniquely, and it
greatly accelerates computation of polynomials. As the
polynomial calculus is a basic model in mathematics,
our method is very useful in various areas, including
formal veri�cation techniques for VLSI design.

1 Introduction

Recently, Binary Decision Diagrams (BDDs),
graph-based representations of Boolean functions[1],
have attracted much attention because they enable us
to manipulate Boolean functions e�ciently in terms of
time and space. There are many cases in which con-
ventional algorithms can be signi�cantly improved by
using BDDs[2][3].

As our understanding of BDDs has deepened, the
range of applications has broadened. Besides Boolean
functions, we are often faced with manipulating sets of
combinations in many LSI design problems. By map-
ping a set of combinations into the Boolean space, it
can be represented as a characteristic function using
a BDD. This method enables us to manipulate a huge
number of combinations implicitly, which has never
been practical before. Based on implicit set represen-
tation, new two-level logic minimization methods have
been developed[4][5]. These techniques are also used
to solve a kind of covering problem[6].

A zero-suppressed BDD (0-sup-BDD)[7] is a new
type of BDD adapted the implicit set representation.
It can manipulate sets of combinations more e�ciently
than conventional BDDs, especially when dealing with
sparse combinations. We have recently studied cube
set algebra for manipulating sets of combinations[8],
and proposed e�cient algorithms for computing cube
set operations based on 0-sup-BDDs. This technique
is useful for many practical activities related to LSI de-
sign, including multi-level logic synthesis[9] and fault
simulation.

In this paper, we present a new technique that
broadens the scope of BDD application. It involves
manipulating arithmetic polynomial formulas contain-
ing higher-degree variables and integer coe�cients.
Using 0-sup-BDDs, we can represent large-scale poly-
nomials compactly and uniquely. We developed e�-
cient algorithms for polynomial calculus based on 0-
sup-BDD operations. In this method, we can atten
arithmetic expressions into canonical forms of polyno-
mials with millions of terms, which have never been
represented before. Constructing canonical forms of
polynomials immediately leads to equivalence check-
ing of arithmetic expressions. Since polynomial cal-
culus is a basic model in mathematics, our method is
expected to be useful for various problems.

In this paper, we �rst explain 0-sup-BDDs and their
operations. We then present a method for representing
polynomials with 0-sup-BDDs, and discuss the oper-
ation algorithms for polynomial calculus. Finally, we
show implementation of our method and the applica-
tion for LSI CAD.

2 Zero-Suppressed BDDs

Zero-suppressed BDDs (0-sup-BDDs)[7] are a new
type of BDD[7] adapted for representing sets of com-
binations. They are based on the following reduction
rules:

� Eliminate all nodes with the 1-edge pointing to
the 0-terminal node. Then connect the edge to
the other subgraph directly (Fig. 1).

� Share all equivalent sub-graphs in the same man-
ner as with conventional BDDs.

Notice that, contrary to conventional BDDs, we do
not eliminate nodes whose two edges both point to
the same node. This reduction rule is asymmetric for
the two edges because the nodes remain when their 0-
edge points to a terminal node. When the number and
order of the variables are �xed, 0-sup-BDDs provide
canonical forms for Boolean functions.

Figure 2 illustrates conventional and 0-sup-BDDs
representing sets of combinations. Using the \0-sup"

0

0

x
1

Jump

f f

Fig. 1: Reduction Rule
for 0-sup-BDDs

BDD

(abc):{100, 010}
(abcd):{1000, 0100}

0 1

a

b
1

1

0

0

0-sup-BDD

0 1

a a

b

c

d

11

1

1

0

0

0

0

(abcd):{1000, 0100}
(abc):{100, 010}

b bb

c
1

1

1
1

1

0

00

00

Fig. 2: E�ect of \0-sup" Reduction Rule

0 1

a

i

b
c

d

1
1

1
1

0

0

0

0 f

h

e

g

1

1
1

1

1

0

0
0

0 0

Fig. 3: 0-sup-BDD for
(a + b + c)(d + e + f)(g +
h+ i) : : :

reduction rule, the two BDDs are automatically re-
duced into the same form, free of irrelevant variables.
0-sup-BDDs are more e�ective for sparser combina-
tions, which means that only a few objects out of many
are included in each combination in the set.

The methods for manipulating 0-sup-BDDs are de-
�ned as set operations and di�er slightly from those
for conventional BDD manipulation. First, we gener-
ate trivial graphs and then construct more complex
ones by applying basic operations such as union, in-
tersection, and di�erence. We can execute these oper-
ations in a time almost proportional to the size of the
graphs, just as with conventional BDDs. (see [7] for
detailed algorithms.)

Using 0-sup-BDDs, we can represent and manip-
ulate Boolean expressions e�ciently. For example,
when expanding the expression (a + b + c)(e + d +
f)(g + h + i) � � � into a sum-of-products form, an ex-
ponential number of product terms appears for the
number of variables; however, a 0-sup-BDD implicitly
represents these product terms in a linear number of
nodes, as shown in Fig. 3. In this graph, each path
from the root to the 1-terminal corresponds to each
product term in the expression. In this way, we can
represent a huge number of product terms within a
practical memory space.

3 Representation of Polynomials

Polynomial formulas are basic models in mathemat-
ics. They are often used for describing problems or
procedures in various areas. Here, we represent and
manipulate polynomials using 0-sup-BDDs. A method
we developed for manipulating Boolean expressions is
also applicable to polynomials. However, Boolean ex-
pressions are di�erent from polynomials in the follow-

ing two points:

� Boolean expressions cannot have a variable with
a higher-degree.
(x � x = x in Boolean algebra, not x � x = x2.)

� Boolean expressions cannot have a term with a
coe�cient.
(x+ x = x in Boolean algebra, not x+ x = 2x.)

In this section, we present a method for representing
polynomials by solving those two problems.

3.1 Representation of Degrees

First, we show a way to deal with degrees. Here, we
consider only positive integer numbers for the degrees.

The basic idea is that an integer number can be
written as a sum of 2's exponential numbers by using
binary coding. Namely, a variable xk can be broken
down into:

xk = x(k1+k2+:::+km) = xk1xk2 : : : xkm ;

where k1; k2; : : : ; km are di�erent 2's exponential
numbers. In this way, we can represent xk as a combi-

nation of n items x1; x2; x4; x8; � � � ; x2
n�1

(0 < k < 2n).
Such combinations can be dealt with e�ciently by us-
ing 0-sup-BDDs. For example, a polynomial x20 +
x10+x5+x can be written as x4x16+x2x8+x1x4+x1.
It can be regarded as a set of combinations based on
the �ve items x1; x2; x4; x8; and x16. The formula,
then, can be represented by using a 0-sup-BDD, as
shown in Fig. 4. In this example, we ordered x1 the
highest and ordered the higher degrees in lower in
the graph. This ordering is convenient in calculating
arithmetic operations, which is described in another
section.

When dealing with more than one sort of vari-
able, such as xi; yj; and zk, we decompose them as

0 1

1

1

1

0

0

1
1

1

0

0
0

0

x1

x2

x4

x8

x16

x4

Fig. 4: (x4x16 +
x2x8+x1x4+x1)

0 1

1

1

0

0

1

10

0

x1

y2

x4

y1

Fig. 5: (x1x4 +
x1y1y2)

1

1

1

0

0 1
1

0

0

0

0 1

21

22

24

28

22

Fig. 6: (28 +
2124+2122+22)

1

1

1

0

0

1
1

1

0

00

x1

x2

0

21

22

y1

Fig. 7: (x2 +
22x2 + 21x1y1)

1

1

0

1

0

0

0 1

-2

22

24

Fig. 8: (�2�24+
24 + 22)

x1; x2; x4; : : : ; y1; y2; y4; : : : ; and z1; z2; z4; : : :. Fig. 5
shows an example with two sorts of variables. Since
our BDD package allows 65,535 variables, we can use
more than 8,000 sorts of variables when using 8-bit
coding (max 255) for degrees.

Our method features that it gives canonical forms
of a polynomials, since the degrees are uniquely de-
composed into the combinations based on a binary
coding, and 0-sup-BDDs represent the sets of com-
binations uniquely. In addition, 0-sup-BDDs clearly
exhibit their e�ciency, for example, x1x2(= x3) is
represented as a combination of only x1 and x2, but
x4; x8; x16; : : : are not included. In 0-sup-BDDs, the
nodes for irrelevant items x4; x8; x16; : : : are automat-
ically eliminated. Since variables with lower degrees
appear more often than those with higher degrees in
many cases, most of the combinations are sparse and
0-sup-BDDs are e�ective. In addition, when dealing
with many sorts of variables, we should consider that
the combination x1x2 does not include other sorts of
variables, such as y1; y2; y4; : : : ; or z1; z2; z4; : : :. In
this case, the combinations become very sparse and
0-sup-BDDs are greatly e�ective.

3.2 Representation of Coe�cients

Next, we present a way to represent coe�cients. So
far, we have considered only integer numbers for the
coe�cients.

The fundamental constant numbers \0" and \1"
are represented by 0- and 1-terminal nodes in 0-sup-
BDDs. Another constant number c (> 1) can be writ-
ten as a sum of 2's exponential numbers using binary
coding:

c = 2c1 + 2c2 + : : :+ 2cm ;

where c1; c2; : : : ; cm are di�erent positive integer
numbers. Then, regarding \2" as a symbol, just
like x; y; z, etc., it can be represented as a poly-
nomial of variables with degrees, which has already

been discussed. Consequently, we can represent a
constant number c as a set of combinations from n

items 21; 22; 24; 28; : : : ; 22
n�1

(0 < c < 22
n

) using 0-
sup-BDDs. For example, the constant number 300 =
28+25+23+22 can be written as 28+2124+2122+22.
It can be regarded as a set of combinations based on
four items 21; 22; 24, and 28, then represented by a
0-sup-BDD, as shown in Fig. 6.

When a constant number is used as a coe�cient
with other variables, we can regard the symbol \2"
just as one sort of variable in the formula. Figure 7
shows an example for 5x2+2xy, which is decomposed
into x2 + 22x2 + 21x1y1.

When dealing with negative coe�cients, we have to
consider the coding of negative values. There are two
well-known method, one of which is using 2's comple-
ment representation, and the other is using the abso-
lute value with sign; however, both method have draw-
backs. When using 2's complement, it yields many
non-zero bits for small negative numbers (typically,
�1 is \all one"), and the 0-sup. reduction rule is not
e�ective to those non-zero bits. On the other hand,
when using absolute value, the operation of addition
become complicated since we have to switch the ad-
dition into subtraction for some product terms in the
same formula.

To solve the above problems, we adopted another
binary coding based on (�2)k, namely, each bit repre-
sents 1;�2; 4;�8; 16; : : :. For example, �12 can be de-
composed into (�2)5+(�2)4+(�2)2 = �2�24+24+22,
and represented by a 0-sup-BDD as shown in Fig. 8.
In this way, we can avoid to yield many non-zero bits
for small negative numbers.

Two polynomials are equivalent if and only if
they have the same coe�cients for all corresponding
terms. Since our new representation method main-
tains uniqueness, we can immediately check the equiv-
alence between two polynomials after generating 0-
sup-BDDs.

4 Algorithms for Arithmetic Opera-
tions

Polynomials can be manipulated by arithmetic op-
erations, such as addition, subtraction, and multipli-
cation. Based on this knowledge, we �rst generate
0-sup-BDDs for trivial formulas which are single vari-
ables or constants, and then apply those arithmetic
operations to construct more complicated polynomi-
als. An example is shown in Fig. 9. To generate a 0-
sup-BDD for the formula x2+4xy from the arithmetic
expression x� (x+4�y), we �rst generate graphs for
\x", \y", and \4", then apply some arithmetic opera-
tions according to the expression. After generating 0-
sup-BDDs for polynomials, we can immediately check
the equivalence between two polynomials, moreover,
we can easily evaluate the polynomials in terms of the
length, degrees, coe�cients, etc.

In this section, we present e�cient algorithms for
the arithmetic operations of polynomials using 0-sup-
BDDs.

(Multiplication by a Variable)

We �rst show an algorithm for multiplying a polyno-
mial F by a variable v. This operation is a basic part
of other arithmetic operations. The algorithm divides
F into the two sub-formulas F1 and F0 by referring
whether they contain v or not. In multiplying by v,
each product term in F0 gets v, and each product term
in F1 gets v2 instead of v. Then, (F1 � v2) are com-
puted recursively. This action can be described as:
F � v = v � F0 [(F1 � v2), where F = v � F1 [F0
and illustrated in Fig. 10. The algorithm is exe-
cuted e�ciently when the variables are ordered as
x1; x2; x4; x8; : : :, namely, (xk)2 is always the next vari-
able of xk.

By multiplying by a special symbol 2k (or (�2)k),
we can perform a \shift" operation for the coe�cients
in a formula.

(Addition)

If F and G have no common combinations, the addi-
tion (F +G) can be completed by just merging them.
When they contain some common combinations, we
compute the following formulas:

(F +G) = S + (C � 2),
where C = F \G, S = (F [G) � C.

By repeating this process, common combinations are
eventually exhausted and the procedure is completed.

We can explain the action of the algorithm using
an example F = x+z and G = 3x+y (= 21x+x+y).
In the �rst execution, C x and S 21x + y + z.
Since C 6= 0, we repeat the procedure with F = 21x+
y + z (= S) and G = 21x (= C � 2). In the second
execution, C 21x and S y + z, and we repeat

10

0 1

22

4

10

0 1

y1

y

10

0 1

x1

x

1
0

0 1

22

y1

1
0

4 y

0 1

y1
x1

22

1
1

1

0

0 0

x + 4 y

1

x1

x2

0

22

y1

1
0

1
1

1

0

0 0

x (x + 4 y)

times
plus

times

Fig. 9: Generation of 0-sup-BDDs for Arithmetic
Expressions

0
v

1

f 0 f1

F

0 1

0f

v

vf1 2

F v

Fig. 10: 0-sup-BDDs in
Multiplication by a Variable

with F = y + z and G = 22x. The third times, C = 0
and the result 22x+ y + z is obtained.

When using the coding based on (�2)k, the addi-
tion and subtraction can be performed as:

(F +G) = S � (C � (�2)),
(F �G) = D + (B � (�2)),

where D = F \G, B = F \G.
In this procedure, the addition and subtraction are
called alternately.

(Multiplication between Polynomials)

Using the above two operations, we can compose an al-
gorithm to multiply two polynomials. This algorithm
is based on the divide-and-conquer idea. Suppose v

is the highest-ordered variable, F and G are then fac-
tored into two parts:

F = v � F1 [F0; G = v �G1 [G0

Under this factorization, the product (F � G) can
be written as:

(F �G) = (F0 �G0) + (F1 �G1)� v2

+ ((F1 �G0) + (F0 �G1))� v:

Each sub-product term can be computed recursively.
The expressions are eventually broken down into triv-

procedure(F �G)

f if (F:top < G:top) return (G � F) ;

if (G = 0) return 0 ;

if (G = 1) return F ;

H cache(\F �G") ; if (H exists) return H ;

v F:top ; /* the highest variable in F */

(F0; F1) factors of F by v ;

(G0; G1) factors of G by v ;

H (F1 �G1)� v2

+((F1 �G0) + (F0 �G1)) � v + (F0 �G0) ;

cache(\F �G") H ;

return H ;

g

Fig. 11: Algorithm for Multiplication between Poly-
nomials

ial ones and the result is obtained. In the worst case,
this algorithm would require exponential number of
recursive calls for the number of variables; however,
we can accelerate them by using a hash-based cache
memory which stores the results of recent operations.
By referring to the cache before each recursive call,
we can avoid duplicate executions for equivalent sub-
formulas. Consequently, the execution time depends
on the size of the 0-sup-BDDs, not on the number of
terms. This algorithm is given in detail in Fig. 11.

5 Implementation and Experiment

Based on the techniques described above, we im-
plemented a program for manipulating polynomials.
Our program is written in C++ language on a SPARC
station 2 (SunOS 4.1.3, 32 MB). It can handle about
8,000 sorts of variables, up to 255 for degrees, and up
to 2255 for coe�cients. Our BDD package consumes
about 30 bytes per node.

To evaluate our method, we constructed 0-sup-
BDDs for large-scale polynomials. We �rst generated
0-sup-BDDs for constant numbers. In our experiment,
only 15 nodes were needed to represent the number
\1,000,000,000". Table 1 shows the results for n!. We
can easily generate 0-sup-BDDs for as many as 56!
within three second. (When n = 57, n! exceeds 256
bit.)

Next, we tried to represent various kinds of polyno-
mials, such as xn, (x+ 1)n,

Pn

k=0 x
k, and

Qn

k=1(xk +
1). As shown in Tables 2 and 3, within a feasible
time and space, we can generate 0-sup-BDDs for ex-
tremely large-scale polynomials, some of which consist
of millions of terms. This has never been practical in
conventional representation, which requires a memory
space proportional to the number of terms.

Our method greatly accelerates the computation of

p

q

1 - p q

p q - p + 1

p q - q + 1

p + q - 2 p q

Fig. 12: Computation of Signal Probability in Logic
Circuit

polynomials and enlarges the scale of applicability. It
is especially e�ective when dealing with many sorts of
variables, a feat that has been di�cult with conven-
tional methods.

6 Application for LSI CAD

As the polynomial calculus is a basic model in
mathematics, our method is useful for various prob-
lems in LSI CAD. One good application is computing
signal probability in logic circuits. As illustrated in
Fig. 12, on each primary input of the circuit, we assign
a variable representing the probability that the signal
is `1'. Then, the probability at primary outputs and
internal nets can be expressed exactly in polynomials
using those probabilistic variables. These polynomi-
als may grow large; however, our method is helpful to
manipulate them e�ciently. In our preliminary exper-
iment, the polynomial for the 8 bit adder circuit grows
as many as 9,841 product terms, but it can be repre-
sented by only 125 nodes of 0-sup-BDD. This tech-
nique is applicable for various kinds of statistic anal-
ysis, such as probabilistic fault simulation, estimating
power consumption, and timing hazard analysis.

The formal veri�cation of arithmetic-level descrip-
tion is another possible application. For example, sup-
pose the two arithmetic expressions:

F1 = (z � 2x)(6xy � 15xz + 2y2 � 5yz),
F2 = (3x+ y)(10xz � 4xy + 2yz � 5z2),
and wether (F1 = F2) ?

By generating canonical forms of polynomials for the
two expressions, the equivalence can be checked im-
mediately. In addition, we can easily calculate the
di�erence of the two expressions. It is useful for �nd-
ing design error when they are not equivalent. In this
way, our method will be utilized as a basic technique
for high-level synthesis and formal veri�cation in LSI
design.

7 Conclusion

We have discussed a method of manipulating poly-
nomials based on 0-sup-BDDs. We have proposed

Table 1: Result for n!
n #node time(s)

10 8 0.1
20 22 0.3
30 32 0.9
40 43 1.7
50 64 2.8
56 62 3.2

Table 2: Results for Polynomials (1)

n xn n2xn
Pn

k=0 x
k
Pn

k=1(k � xk) (x + 1)n

#nodetime(s)#nodetime#nodetime#node time #node time

1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1
2 1 0.1 2 0.1 2 0.1 4 0.1 4 0.1
3 2 0.1 5 0.1 2 0.1 5 0.1 5 0.1
5 2 0.1 6 0.1 3 0.1 8 0.1 10 0.1
10 2 0.1 7 0.1 6 0.1 18 0.1 23 0.2
20 2 0.1 7 0.1 8 0.1 26 0.1 69 0.5
30 4 0.1 9 0.1 8 0.1 37 0.2 150 2.0
50 3 0.1 11 0.1 10 0.1 48 0.3 346 7.1
100 3 0.1 11 0.1 12 0.1 70 0.5 1,209 39.7
200 3 0.1 12 0.1 14 0.1 84 1.0 4,231 267.7
255 8 0.1 11 0.1 8 0.2 75 1.3 6,690 528.8

Table 3: Results for Polynomials (2)

n

Qn

k=1(xk + 1)
Qn

k=1(xk + k)
Qn

k=1(xk + 1)4
Qn

k=1(xk + 1)8

#term #nodetime(s) #term #nodetime #term #nodetime #term #node time

1 2 1 0.1 2 1 0.1 5 7 0.1 9 15 0.1
2 4 2 0.1 4 4 0.1 25 25 0.1 81 109 0.1
3 8 3 0.1 8 10 0.1 125 70 0.1 729 481 0.6
4 16 4 0.1 16 17 0.1 625 145 0.2 6,561 1,553 1.9
5 32 5 0.1 32 32 0.1 3,125 264 0.3 59,049 3,862 6.7
6 64 6 0.1 64 59 0.1 15,625 451 0.4 531,441 8,069 20.7
7 128 7 0.1 128 123 0.1 78,125 709 0.7 4,782,96915,099 56.9
8 256 8 0.1 256 199 0.2 390,625 1,056 1.443,046,72126,279142.5
9 512 9 0.1 512 331 0.3 1,953,125 1,499 2.0 � (�) �
10 1,024 10 0.1 1,024 619 1.1 9,765,625 2,053 2.8 � � �
11 2,048 11 0.1 2,048 1,131 3.5 48,828,125 2,730 4.9 � � �
12 4,096 12 0.1 4,096 1,866 4.8 244,140,625 3,575 6.7 � � �
13 8,192 13 0.1 8,192 3,334 8.41,220,703,125 4,586 8.8 � � �
15 32,768 15 0.1 32,768 9,338 22.8 515 7,151 19.7 � � �
20 1,048,576 20 0.1 � (�) � 520 17,374 78.5 � � �

(�) Memory overow (32 MB).

an elegant way to represent polynomials using 0-sup-
BDDs, and have shown e�cient algorithms for those
operations. Our experimental results indicate that we
can manipulate large-scale polynomials implicitly in
a feasible time and space. Our representation has an
important feature in that it is the canonical form of
a polynomial under �xed variable ordering. As the
polynomial calculus is a basic model in mathematics,
our method is very useful in various areas.

In the future we will try other interesting operations
in polynomials, such as di�erential methods, �nding
max/min values, solving equations, approximation,
and factorization. Based on polynomial manipulation,
we can extend the technique to induce more general-
ized models, such as rational expressions, negative or
non-integer degrees, and complex (imaginary)-number
coe�cients.

References

[1] R. Bryant, \Graph-based algorithms for Boolean
function manipulation," IEEE Trans. Comput.,
Vol. C-35, No. 8, pp. 677-691, Aug. 1986.

[2] Y. Matsunaga and M. Fujita, \Multi-level logic
optimization using binary decision diagrams,"

Proc. of ACM/IEEE ICCAD '89, pp. 556-559,
Nov. 1989.

[3] J. Burch, E. Clarke, K. McMillan, and D. Dill,
\Sequential circuit veri�cation using symbolic
model checking," Proc. of ACM/IEEE DAC' 90,
pp. 618-624, June 1990.

[4] O. Coudert, J. Madre and H. Fraisse, \A new
viewpoint of two-level logic optimization," Proc.
of ACM/IEEE DAC '93, pp. 625-630, June 1993.

[5] P. McGeer, J. Sanghavi, R. Brayton, and
A. S.-Vincentelli: \ESPRESSO-SIGNATURE: A
new exact minimizer for logic functions", Proc.
ACM/IEEE DAC '93, pp.618-624, June 1993.

[6] B. Lin and F. Somenzi, \Minimization of sym-
bolic relations," Proc. of ACM/IEEE ICCAD
'90, pp. 88-91, Nov. 1990.

[7] S. Minato, \Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems," Proc. of
ACM/IEEE DAC '93, pp. 272-277, June 1993.

[8] S. Minato, \Calculation of unate cube set al-
gebra using zero-suppressed BDDs" Proc. of
ACM/IEEE DAC '94, June 1994 (to appear).

[9] S. Minato, \Fast weak-division method for im-
plicit cube representation," Proc. of the Synthesis
and Simulation Meeting and International Inter-
change (SASIMI '93, Japan), pp. 423-432, Oct.
1993.

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

