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Abstract

Exploration plays an important role in the design of

high-performance pipelines. We propose an exploration

strategy for varying three design parameters by using a

performance-constrained component selection and pipelin-

ing algorithm on di�erent \architectures". The architec-

ture is speci�ed manually by using a mix of behavioral and

structural constructs, while the component selection and

pipelining is performed automatically using our algorithms.

Results on two industrial-strength DSP systems, indicate

the e�ectiveness of our strategy in exploring a large design

space within a matter of seconds.

1 Introduction

In exploring the design space of high-performance

pipelines, three design features play a signi�cant role: ar-

chitecture, pipelining, and component selection. A large
number of design alternatives can be �rst evaluated by

varying the component selection and the number of pipe

stages of a given architecture. The exploration can be fur-
ther increased by repeating the component selection and

pipelining for a variety of di�erent architectures.

The architecture of a design refers to the type and num-
ber of its components and their interconnectivity, where

the number of components in a design gives an indica-

tion of its \parallelism". A \parallel" architecture is one

that exploits the inherent parallelism in a speci�cation by

computing several operations at the same time. While

parallelism improves design performance, it also results in

relatively expensive designs.

The parallelism of an architecture is illustrated with the

help of a 4th-order (P=4) FIR �lter shown in Figure 1.

Consider the two designs in Figure 1(b). Design 1 has a

higher degree of parallelism than Design 2, since it can

compute four multiplications in parallel, while Design 2

can perform only one multiplication at a time.

The second design feature, pipelining, is another means

of increasing design performance for a relatively small over-

head in terms of pipelining register costs. This feature is all

the more signi�cant for DSP computations since they are
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regular and repetitive in nature, and yield well to pipelin-
ing techniques. Pipelining is illustrated in Figure 1(c),

where Designs 3 and 4 have been obtained by pipelining

Design 1 into a di�erent number of stages.

The third design feature, component selection, adds yet

another level of exploration. It involves selecting compo-

nents from a realistic library with more than one imple-
mentation per operator, such that slow components are

used on non-critical paths, while the faster and more ex-

pensive components are used only when necessary, on crit-
ical paths.
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Figure 1: Design exploration for a 4th-order FIR �lter.

Component selection is illustrated for the FIR �lter in

Figure 1(d) where Designs 5 and 6 have been obtained
from Design 3 by using a di�erent selection of adders and

multipliers from a given library. Assume that the library

consists of 2 multipliers, M1 and M2, (area of 200 and 400

gates and delay of 80 and 60 ns, respectively) and 2 adders,

A1 and A2, (area of 50 and 80 gates and delay of 40 and

20 ns, respectively). Using this library the cheapest design

for a pipe stage (PS) delay constraint of 80 ns is obtained

with the component selection shown in Design 5, and for

a PS delay constraint of 60 ns by the component selection
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in Design 6. Note that a design may contain di�erent

implementations of the same operator. As an example,

Design 6 has two instances of A1 and one of A2, instead
of three instances of A2, which would have resulted in a

more costly design.

We have just illustrated that a large number of design

alternatives can be evaluated by varying the architecture,

pipelining and component selection of a given design. In
this paper, we present a strategy for exploring these pa-

rameters by manually specifying an architecture and using

an algorithm for component selection and pipelining.

We would like to point out that by combining pipelining

and component selection, we di�erentiate ourselves from
related research which has, (a) performed pipelining with-

out any component selection [1], [2], [3], [4], [5], or (b) com-

bined component selection with non-pipelined scheduling
[6], [7], [8]. Furthermore, since we allow the user to spec-

ify di�erent architectures, we can explore a larger design

space than that obtained by only using one of the above
algorithms.

The paper is organized as follows. We discuss the ex-

ploration strategy in Section 2 and the architecture spec-
i�cation in Section 3. We de�ne and give algorithms for

the component selection and pipelining problem in Section
4. Next, we present results of applying our design strategy

and algorithms to explore the design space of two large

DSP systems, obtained from industry.

2 Design Exploration Strategy

The FIR �lter example illustrated that varying all the

three design parameters leads to a very large search space.
However, not all combinations of architecture, pipelining

and component selection are \desirable", and instead of

exhaustively searching the design space, only those designs
that �t some criteria should be explored.

We now outline a design exploration procedure which
generates only those designs that satisfy a given through-

put (or sample rate) constraint on the system. We have

selected the throughput as the selection criteria since the
throughput of high-performance pipelines is usually de-

cided before the exploration, by factors external to the

system, and hence it is unalterable. This is unlike other
parameters, such as latency and cost, which the designer

may wish to minimize but not constrain.

The input consists of a speci�cation containing architec-

tural information, a component library, and a throughput

constraint (Figure 2). The architecture speci�ed may be
the most serial or parallel one to start with. It is �rst

pipelined into one stage (PS=1) and components are se-

lected such that the throughput constraint is satis�ed and
the cost of the pipeline is minimized. An additional pipe

stage is then introduced and components are re-selected

for the new pipeline. The tasks of pipelining and compo-
nent selection are repeated till the number of pipe stages

can no longer be increased. At this point, the architec-

ture is changed by increasing or decreasing its parallelism.
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Figure 2: The exploration strategy.

Pipelining and component selection is then repeated for

the new architecture. Thus, the inner loop of the search

strategy changes the pipelining and the component selec-
tion, while the outer loop changes the architecture of the

design. In this paper, we automate Tasks 1 and 2 by using

an algorithm for performance-constrained pipelining and
component selection, while we perform Task 3 manually

by allowing the designer to specify the architecture in the
input speci�cation.

3 Specifying Architectures

Designers of DSP systems typically know the basic de-

sign topology or architecture they wish to use; however,
they require assistance in time-consuming tasks such as

pipelining and component selection. A pure structural de-

scription is inappropriate since it would require them to
know the complete structure of the design. On the other

hand, a pure behavioral description is also inappropriate

since it would prevent them from specifying the design
topology they have in mind. Thus, we propose an input

format that allows a mixture of both structure and behav-

ior in the speci�cation. Figure 3 illustrates this feature by
giving descriptions of three di�erent 4th-order FIR �lter

architectures.

Designs 1 and 2 di�er in their summation topology -
one uses an adder \tree" and the other an adder \chain".

This di�erence is brought out in the description by using

appropriate assignment statements. Design 3 di�ers from
Designs 1 and 2 in the number of multiply and add op-

erators it contains, and hence in the number of iterations

(or passes through the design) required to compute one
output. In the description, this \behavior" (that is, the

iterations) is speci�ed by enclosing the design \structure"

within a for� loop statement. A designer can thus specify
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t0 := x(0) * y(0);
t1 := x(1) * y(1);
t2 := x(2) * y(2);
t3 := x(3) * y(3);
t4 := t0 + t1;
t5 := t2 + t3;
 z := t4 + t5;

Description 1

t0 := x(0) * y(0);
t1 := x(1) * y(1);
t2 := x(2) * y(2);
t3 := x(3) * y(3);
t4 := t0 + t1;
t5 := t2 + t4;
 z := t3 + t5;

Description 2

Description 3

t1 := 0;
for i in 0 to 3 step 1
    t0 := x(i) * y(i);
     z := t0 + t1; 
    t1 := z;
end for;

Figure 3: Input speci�cation of three 4th-order FIR �lter

designs.

an architecture by mixing behavioral and structural con-

structs in this manner.
As stated previously, after a designer speci�es an archi-

tecture manually, we utilize an algorithm for performing

pipelining and component selection. In the next section,
we de�ne the problem and give a brief overview of the

algorithm for component selection and pipelining. For a

complete description of the algorithm please refer to [9].

4 Component Selection for Pipelines
Given a data ow graph DFG(V; E), where V represents

a set of vertices, and E � V � V a set of directed edges,
a component library CL consisting of a set of three tuples

hComponentType, Area, Delayi, and a constraint on the

Pipe Stage (PS) delay and Latency, the algorithm �nds
an assignment of components to vertices, and a partition

of bLatency/PS delayc stages, such that the delay of each

pipe stage is less than or equal to the PS delay and the
total area of the DFG is minimized. PS delay (or the

inverse of throughput) is the delay between the arrival of

two consecutive input samples, and Latency is the total
execution time of the pipeline (n� PS delay, for an n-

stage pipeline).

The algorithm (Figure 4) starts by mapping each ver-
tex of the DFG to the fastest available component. It

then slows down vertices by progressively mapping them

to slower components. At each slow down the DFG is
pipelined and if constraints are violated, the slow down is

not accepted. This process is repeated until no vertex can

be slowed down without a violation of constraints.
The key to the algorithm lies in judiciously selecting

vertices to be slowed down in each iteration, since slowing

down one vertex may prevent slowing down others due to

1. Map vertices to fastest components, pipeline DFG,
and evaluate performance.

2. If (fastest design does not satisfy constraints)
3. exit the program.
4. Else

5. Loop

6. Select the \best" vertex to slow down.
7. Pipeline the DFG, and evaluate performance.
8. If (performance constraints met),
9. accept this slow down, else, reject it.
10. Until (no vertex can be slowed down without

violating constraints).
11. End if

Figure 4: Overview of the component selection and

pipelining algorithm.

graph dependencies. With every vertex, we thus associate
a value, called the vertex weight, which is a measure of its

\desirability" or priority in the slowing-down process. In

each iteration of the algorithm, vertex weights are evalu-
ated and the vertex with the highest weight is selected to

be slowed down (step 6 in Figure 4). The vertex weight is

de�ned as ADG/CF where, (1) the area delay gain (ADG)
is the decrease in area per unit increase in delay when a

component is replaced by a slower one, and (2) the com-

monality factor (CF) is a measure of the number of I/O
paths containing that vertex.

Step 7 of the algorithm requires the DFG to be parti-

tioned into a minimal number of stages of delay PS delay.
This is done by traversing the graph in two directions,

downward (from the input to the output nodes), and up-

ward (from output to input nodes). During a traversal the
delay from the boundary of the last pipe stage is accumu-

lated and a new boundary is set when the performance

constraint can no longer be satis�ed. The traversal is re-
peated for both directions, and the pipeline with the fewer

number of \cuts" is selected. A \cut" refers to the intersec-

tion of an edge of the DFG with the pipe stage partition,
and it corresponds to a pipeline register. Hence, the fewer

the number of cuts, the fewer the pipeline registers.

5 Experimental Results

We now apply the general exploration strategy and

the component selection and pipelining algorithm, on two

fairly large DSP systems, a 2-Dimensional 8�8 Inverse Dis-

crete Cosine Transform (IDCT) [10], and a 4-element, 4-

beam Beamformer [11]. For both examples, we wrote three

descriptions representing di�erent architectures. Each of
the descriptions was then pipelined into a di�erent number

of stages and components selected from the library, given

in Table 1 [12], such that throughput constraints were sat-
is�ed and the cost was minimized. This was done using

the algorithm presented in Section 4. Whereas, experi-

mental results in [9] demonstrate the quality of results
produced by the algorithm, the results in this paper serve

to demonstrate the application of the algorithm on large

DSP systems.



TABLE 1
MODIFIED DTAS COMPONENT LIBRARY

Component Component Delay. Cost
Type Name (ns) (eqv. ND2 gates)

? Mpy1 57.97 2368
? Mpy2 44.21 2400
? Mpy3 36.21 2600
? Mpy4 32.98 2710
? Mpy5 28.57 2978
? Mpy6 25.00 3500
? Mpy7 22.50 4000
? Mpy8 20.50 4500

+/- Add1/Sub1 25.80 62
+/- Add2/Sub2 20.00 125
+/- Add3/Sub3 13.50 187
+/- Add4/Sub4 10.00 250
+/- Add5/Sub5 5.50 375

The results of the exploration have been presented as

a trade o� between throughput and area for (1) di�erent
architectures, with a �xed latency, and for (2) a �xed ar-

chitecture, with varying latency. Thus, for instance if a

designer has a \hard" or �xed constraint on the through-
put of the system that he must satisfy, he can get a good

idea of the architecture he should be considering, by look-

ing at the �rst graph. After narrowing down to one, or
possibly two architectures, he can then study the e�ect of

latency, and pick a design point that best optimizes his

cost, which could be a function of area or latency or both.
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Figure 5: PS Delay vs. Area of 3 di�erent 8 � 8 IDCT

architectures.

In all graphs, the y-axis represents PS delay, or e�ec-
tively, the inverse of throughput, while the x-axis repre-

sents area in ND2 (2-input NAND gates from LSI Logic

library) gates.
IDCT

The 2-D IDCT, used to reconstruct compressed images,

is represented by the following equation:

bd(x; y) =

N�1X

u=0

N�1X

v=0

BD(u; v)F (u; x)F (v; y)

N , the order of the IDCT, is 8 in our examples, im-

plying that approximately 64 additions and 64 � 2 multi-

plications need to be computed for every output bd(x; y),

where x; y 2 0 . . . 7. The algorithm we chose for evaluating

the IDCT essentially consists of 3 N � N matrix multi-
plications. We considered 3 architectures, that compute

8�8 matrix multiplications with di�erent \extents of par-
allelism". Design 1 consists of 1 basic block (BB), Design 2

of 8 BBs, and Design 3 of 32 BBs, where a BB is a block

used to evaluate one term of the product matrix. Note
that Design 3, consisting of about 500 nodes (15 nodes per

BB), is the largest design we have considered, and our al-

gorithm for pipelining and component selection took less
than a second for this example.

Figure 5 depicts all three topologies (for a �xed latency)

on the same graph (log-log scale) y, whereas Figure 6 shows

the e�ect of varying the latency of Design 1.

As can be seen, a large design space has been explored
by varying the architecture and component selection alone,

where the delay of the designs ranges from about 17,000

ns to less than 100 ns (or approximately 60 KHz. to 10
MHz.), while the cost varies from about 20,000 to 1,000,000

gates (though designs are not evenly spread in this range).
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Figure 6: PS Delay vs. Area of Design 1 for 8�8 IDCT.

We would like to point out that the substantial explo-

ration, from 100 ns to 17,000 ns, would not have been
possible without the capability of using multiple imple-

mentations of operators in the design. Had our library

contained just one implementation per operator, Figure 5
would have consisted of just 3 points, one for each archi-

tecture.

yNote that the design points are joined by a curve for pur-
poses of graph readability; this does not imply a continuous

design space.



Beamformer

The beamforming problem is formally described by the

following equations:

y
b

e(i) =

P�1X

k=0

De(i� k)cbe(k); 8b 2 1 . . .M , 8e 2 1 . . .N

R
b(i) =

NX

e=1

y
b

e(i)!
b

e; 8b 2 1 . . .N

The �rst equation represents a FIR �lter operation,

while the second equation represents a phase rotation

(PR), that is the multiplication of each of the FIR �l-
ter outputs with a constant (!be), and then the summation

of these products. In our analysis, we have considered

a 4-element (N=4), 4-beam Beamformer (M=4) with an
8th-order (P=8) FIR �lter.
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Figure 7: PS Delay vs. Area of 3 di�erent architectures

for a 4-element, 4-beam Beamformer system.

Once again we considered 3 di�erent architectures that

di�ered in the number of FIR �lters, the number of PR

blocks and the number of adders in the subsequent sum-

mation operation. Design 1 consisted of just one FIR �lter

and PR block (all FIR �lter blocks were implemented with

8 multipliers and 7 adders), Design 2 consisted of 2 FIR

and PR blocks and Design 3 consisted of 4 such blocks.

Each of these designs was also pipelined into 2 and 4 stages.

The results of varying the design topology for a �xed

latency are given in Figure 7. Once again, a large design

space ranging from a throughput of 4000 ns to 100 ns, and

a cost of 25,000 to 175,000 gates has been explored. This

would not have been possible without the ability to vary

all three parameters - architecture, component selection

and pipelining.

6 Summary and Conclusion

To summarize, we have presented an exploration strat-

egy for high-performance pipelines that varies three im-
portant design parameters: architecture, pipelining, and

component selection. This is achieved by manually writing

di�erent descriptions, and then using our algorithms for
pipelining and selecting components. We demonstrated

the e�ectiveness of our exploration strategy by applying it

on two industrial-strength DSP systems, the Beamformer
and 2-D IDCT. For both the examples, we obtained a large

spread of designs, ranging from a throughput of 100 ns to

4000 ns for the Beamformer and from 100 ns to 17,000 ns
for the IDCT, within a matter of seconds.

The component selection presented in this paper has

been limited to functional units alone; we are currently
extending our algorithm and design strategy to include

the selection of an \optimal" set of memory modules for a

pipeline.
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