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Abstract

This paper presents a new algorithm for clock cy-

cle minimizing and protocol preserving scheduling of

input and output operations. The algorithm relies on

the possibility to overlap protocols at di�erent ports

in time without changing the behavior. It merges the

operations required for complete protocols and allows

thus for a compact schedule of a set of correlated proto-

cols. Both, input and scheduled output for subsequent

High-Level- and RT-Synthesis use VHDL for descrip-

tion.

Introduction

Hardware consists in general of a set of concur-
rent interacting processes. The interaction is based
on protocol-based communication and synchroniza-
tion. In an early design phase, eg. on system-level,
abstract protocols are used, which specify causality
only. Hence, a temporal overlap of protocols can not
be speci�ed at this point in the design process.

When synthesizing the early speci�cation to RT-
level, a clock scheme has to be introduced to allow
for a clock-related timing speci�cation. Also, process
interaction has to be mapped on concrete clock-based
protocols. A simple replacement of the abstract pro-
tocols by clock-based protocols does not destroy the
sequence of the operations and thus does not allow for
overlapping of protocols. Thus, a solution resulting
from this design steps is not optimal, since a temporal
overlap of protocols allows to reduce the number of
clock cycles in the resulting hardware.

Methods as implemented in high-level synthesis
tools (see eg. [1, 2, 3, 4]) typically do not attack this
problem. A simple export of the protocols in concur-
rently executed statements or processes also does not
solve the problem. This would not allow for overlap-
ping protocols in a cyclic way or would also require ad-
ditional protocol-based synchronization between com-
municating, synchronized processes and other pro-
cesses.

The presented scheduling algorithm, named proto-
col merging, solves this problem and generates a sched-
ule with overlapping protocols. Due to the fact, that
high-level and RT-level synthesis tools, which support
in most cases VHDL (see [5]) as input language, are
used to reach the gate level, VHDL is used for both
as input language and as basis for the merging tool.
The schedule is then performed modifying the order
of sequential VHDL-statements.

The paper is organized as follows: The �rst section
illustrates the idea of protocol merging by an example
and shows an approach for the algorithm. A pseudo
code speci�cation of the merging algorithm and an
overview over the program structure are shown in Sec-
tion 2. Features of the algorithm are discussed and
compared with other approaches afterwards. The ap-
plication of the algorithm is shown in Section 4, and
results are presented in Section 5.

1 The Merging Mechanism

1.1 A Handshake Protocol

In order to introduce the basic mechanism, we use
a transmitter which receives and sends data via paral-
lel data transmission and which protects the data via
handshake. The VHDL source code of the transmit-
ter is printed in Listing 1. The sequence of statements
shown in Listing 1 reects the order of the more com-
plex operators send and receive. This sequence re-
sults either from the transformations of a system-level
speci�cation or from the inline expansion of subrou-
tines (see Listing 6). Like in all behavioral RT-level
VHDL descriptions, in the VHDL description in List-
ing 1 controlow-related wait statements are used to
specify the clock-related timing.

The waveform for the transmission of one datum is
shown in Figure 1. Here, after the second clock edge
a datum lies at the port data in. This is signalled
by the value '1' at port ok in. Some (in this case
one) clock cycle(s) later, port ack in is set to '1' by
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Figure 1: Waveform of a Transmitter

the transmitter, signalling that the datum has been
received correctly. One clock cycle later the transmit-
ter sets port ack in to '0' which �nishes the receive
operation at the ports belonging to the transmission
channel in.

The send operation starts immediately after the
receive operation by putting the received data to
port data out and setting port data ok to '1'. Then
Port ok out is polled until it gets the value '1'. This
�nishes the send operation.

transmitter: process

variable buf : bit_vector( 7 downto 0 );

begin

loop -- receive

exit when ok_in = '1';

wait unti l clk = '1' ;

end loop ;

buf := data_in;

ack_in <= '1';

wait unti l clk = '1'; -- receive

ack_in <= '0'; -- e n d

ok_out <= '1'; -- send

data_out <= buf;

wait unti l clk = '1';

loop

exit when ack_out = '1';

wait unti l clk = '1';

end loop ;

ok_out <= '0';

end process ;

Listing 1: The Transmitter before Merging

1.2 The Basic Idea

The schedule of the transmitter could be improved
by one clock cycle, if acknowledgment is given on the
transmission channel in and data are put to trans-
mission channel out in the same clock cycle. This can
be achieved by merging the tail of the receive oper-
ation and the head of the send operation as shown in
Listing 2.

transmitter: process
variable buf : bit_vector( 7 downto 0 );

begin

loop -- receive

exit when ok_in = '1'; -- b e g i n

wait unti l clk = '1' ;

end loop ;

buf := data_in;

ack_in <= '1';

ok_out <= '1'; --< merged

data_out <= buf; --< send

wait unti l clk = '1'; --< a n d

ack_in <= '0'; --< receive

loop -- send

exit when ack_out = '1'; -- r e s t

wait unti l clk = '1';

end loop ;

ok_out <= '0';

end process ;

Listing 2: The Merged Transmitter.

In this case, merging is performed by moving the
tail statements of the receive protocol (here: ack in

<= '0';) behind the next wait statement. The wait
statement, which is part of the tail of the receive pro-
tocol is deleted.

Moving statements and deleting wait statement is
the basic mechanism underlying the merging algo-
rithm presented in this paper.

1.3 Re�nements

Protocol merging can be re�ned, if conditionally
executed wait statements are also taken into account.
It has to be considered, however, that the statements,
which are placed behind a conditionally executed wait
statement are also executed conditionally. Hence, the
statements of the tail of a protocol, which are placed
behind a conditionally executed wait statement are ex-
ecuted conditionally. This implies, that the tail of the
protocol is executed conditionally and thus that a pro-
tocol may not be �nished completely. A mechanism
has to be introduced to solve this problem.

Since a protocol must be �nished before it is exe-
cuted again, further statements must be inserted be-
fore the protocol. These statements, however, may be
executed only if the protocol has not �nished. Hence,
a ag is introduced to control the execution of these
additional statements. This ag is set when the pro-
tocol starts and reset when the protocol has already
�nished during the execution of a wait statement. This
is shown for the receive operation in Listing 3. Here,
sel='1' represents any not constant condition, what-
ever.

transmitter: process

variable buf : bit_vector( 7 downto 0 );

variable receive_ready : boolean := TRUE;

begin

i f receive_ready = FALSE then -- force to finish

wait unti l clk = '1' -- receive



ack_in <= '0'; -- conditionally

end i f ;

loop -- receive

exit when ok_in = '1';

wait unti l clk = '1' ;

end loop ;

buf := data_in;

ack_in <= '1';

receive_ready := FALSE;

i f sel = '1' then -- finish

wait unti l clk = '1'; -- receive

ack_in <= '0'; -- conditionally

receive_ready := TRUE;

end i f ;

-- ...

end process ;

Listing 3: Conditionally Executed Statements

Conditionally executed tail statements of a proto-
col, like the tail of the send operation shown in List-
ing 1, can be merged similarly. Moreover, the tail of
a protocol can be merged in this way, if it requires
more than one cycle. To accomplish this, a counter
is introduced instead of the ag, which signals how
many cycles of the end of the protocol still have to be
executed.

Applying this re�nement, the scheduling algorithm
is able to schedule protocols into branches and loops
as well.

2 The Merging Algorithm

2.1 Program Structure

The source code transformation required for pro-
tocol merging is not performed on the source code
directly but on an intermediate format (see [6] and
2.2), which is generated by a VHDL analyzer from a
VHDL source code �le. A generator allows to rebuild
a VHDL source code �le from the intermediate format.
The merge utility consists of three tasks performed on
a copy of the data structure.

� In the �rst step all procedure calls are inline ex-
panded. This attens the description, makes all
wait statements visible and allows to merge pro-
tocols encapsulated in procedures.

� Merging is performed as second task. The algo-
rithm is described in Section 2.3 in more detail.

� The �nal task is wait folding (see [7]) with an
extension to allow for straight-forward false-path
analysis. It compiles a multiple wait-statement
description in a single wait-statement description
without changing the behavior.

A VHDL description is �nally generated from the in-
termediate format produced by wait folding. This

VHDL description can be used for both High-Level
and RT-synthesis as well as for validation of the sched-
uled protocols and timing constraints.

2.2 Data Structure

A textual VHDL process description is presented
by a directed, cyclic, hierarchical control ow graph
CFG(V;E) with V = VL [ VP [ VC [ VW [ VS and
E = EC [EV .

Since VHDL'87 does not allow for setting labels on
all sequential statements, a set of prede�ned dummy
procedures are used as labeling statements. VL is the
set of nodes representing labeling statements (see 4.1).
They are necessary to specify the heads and tails of a
protocols' CFG representation. Nodes 2 VL are also
used to specify the beginning of the mergable part of
the protocol in the CFG. Thus, VL can be composed as
follows: VL = VLB [VLE [VLM , where VLB and VLE
are the sets of labeling nodes specifying the beginning
and the end of a protocol respectively and VLM is the
set of labeling nodes specifying the beginning of the
mergable part of the protocol.
VP and VC are nodes representing sub-CFGs. All

nodes 2 VP represent procedure calls and all nodes 2
VC represent conditional statements. Loop statements
are treated as conditional statements. Nodes 2 VS
represent the reminder of the sequential statements
like signal assignment statements, variable assignment
statements or null statements.

Time speci�cations in synchronous designs are
clock related only. The simple wait statement wait

until clk = '1' or equivalent statements, which
specify the timing o�set for one clock cycle, are used
in sequential or behavioral VHDL descriptions for this
reason 1. These wait statements constitute the set
VW . More complex wait statements like wait on clk

until clk = '1' and en = '0' must be built from
loop statements and simple wait statements to enter
the protocol merging step.

Edges 2 E represent the control ow. The sub-
set EC � E speci�es the execution order based on
the statement sequence according to the text. EV
models control ow dependencies underlying condi-
tional statements or the in�nite process loop.

2.3 Algorithm Kernel

The protocol merging algorithm consists of three
parts (see Listing 4): The �rst part identi�es the mer-
gable protocols in the description, collects all wait
statements and counts all unconditionally executed
wait statements. In this way, a frame for the schedule
is generated. The second part cuts all mergable parts

1It is important to note, that the wait-statement speci�es
the schedule of the operations for RT-synthesis, too.



from the description, selects them in a list and in-
troduces statements which force the execution of the
protocol tail if necessary. The third part schedules
parts of the protocols by inserting all mergable parts
of a protocol behind a detected wait statement.

The node sets de�ned in 2.2 are represented as or-
dered sets or lists for performance reasons. The order
is de�ned according to the sequential notation of the
statements.

procedure Merging( CFG: P ) is
Natural: W := 0;
List : VLB, VLE , VLM , VW := ;;
ListOfCFG : M := ;;

begin

IdentifyProtocols ( P , VLB , VLE , VLM , VW , W );
CutProtocolMergs ( VLB, VLE , VLM , M , VW , W );
InsertProtocolEnds(M , VW );

end Merging;

procedure IdentifyProtocols
(CFG:P ;List:VLB,VLE ,VLM ,VW ;Natural:W )

is

Node : n;
begin

for all n 2 P loop
case kind( n ) is
when ProtocolBeginLabel => VLB = VLB [N ;
when ProtocolEndLabel => VLE = VLE [N ;
when MergeBeginLabel => VLM = VLM [N ;
when WaitStatement =>

VW = VW [ n;
if IsUnconditionalStatement( N ) then

W := W + 1;
end if;

end case;
end loop;
for all n 2 P loop

if kind( n ) = ConditionalStatement then
IdentifyProtocols ( SubCFG(n),

VLB, VLE , VLM , VW , W );
end if;

end loop;
end IdentifyProtocols;

procedure CutProtocolMergs
( List:VLB,VLE,VLM ,VW ;ListOfCFG:M ,Natural:W )

is
Node : nB , nE , nM ;
Node : n;
CFG : m;

begin
for all nB 2 VLB, nE 2 VLE , nM 2 VLM loop

m = CutSubCFG( nM , nE );
if W = 0 then

InsertSubCFG(m , nB);
else

for all n 2 m loop

if kind( n ) = WaitStatement then
VW = VW n n;

end if;
end loop;

end if;
DeleteWaitStatement(m );
M := M [ m;

end loop;
end CutProtocolMergs;

procedure InsertProtocolEnds
( ListOfCFG:M ; List:VW )

is

Node : n;
CFG : m;

begin
for all n 2 VW loop

for all m 2 M loop
AppendSubCFG(m , n );

end loop;
end loop;

end InsertProtocolEnds;

Listing 4: The Merging Algorithm

The complexity C of the merging algorithm can be
formulated as

C = jSj+ jPj+ jWj � jPj = O(jSj2)

considering the three passes of the merging algorithm.
Here, jSj is the number of statements, jPj is the num-
ber of statements in the protocols and jWj is the num-
ber of wait statements. The formula shows, that the
complexity of the merging algorithm is in worst case
quadratic in number of processed VHDL statements.

The merging algorithm was implemented in C++
based on the procedural interface to the intermedi-
ate format (see [6]). It consists of about 500 lines of
code. The CPU-time is neglectable in comparison to
the subsequent high-level or RT-level synthesis steps.

3 Comparison with other Approaches

Methods as implemented in high-level synthesis
tools (see eg. [1, 2, 3, 4]) typically do not attack the
freedom of possibly overlapping protocols. Either the
number of time slots (= number of required clock cy-
cles) is minimized, or area and propagation delay are
minimized subject to pre-scheduled IO-operations. In
the �rst case the optimization of concrete protocols is
inhibited, in the second case adjustments to the time-
slots of I=O operations can not be made.

Di�erent implementation alternatives for subrou-
tines have been presented in [8]. None of the pre-
sented alternatives, allow for overlapping the subrou-
tines. The same authors proposed in [9] a method for
reduction of wire overhead by partial serialization but
not by overlapping of protocols. Another approach
for minimizing wires was presented in [10]. This ap-
proach, however, focusses on detection and removal of
unnecessary synchronization lines and optimization of
the according control logic.

A special approach in high-level synthesis, the
dataow oriented scheduling under consideration of
relative time constraints, like presented eg. in [11]
or [12], may generate some overlap of protocols. How-
ever, this approach optimizes level triggered protocols



equal to edge triggered protocols due to dataow ori-
ented schedule and wastes in this way one clock cycle
per protocol.

Listing 5 and Figure 2 illustrates this fact. The
wait-statement in listing 5 speci�es a time constraint
of one clock cycle between ack <= '1' and ack <=

'0'. Due to data dependency, scheduler, as referenced
above, add an additional time constraint between ack

<= '0' and ack <= '1', assuming that ackmust hold
the value '0' at least one clock cycle. This allows for
an acknowledgment each two clock cycles only. Thus,
level-sensitive protocols can not be fully optimized by
this kind of scheduler, since these protocols support
an acknowledgment each clock cycle (see Figure 2).
The presented merging algorithm however is able to
optimize both protocols using prede�ned labels and
controlow-oriented schedule instead of dataow ori-
ented schedule.

ack <= '1';

wait unti l clk = '1';

ack <= '0';

Listing 5: Speci�cation of an Acknowledge-Signal

clk

ack(level-sensitive)
ack(edge-sensitive)

Figure 2: Acknowledge of Level- and Edge-Sensitive
Protocols

Moreover, the presented merging algorithm allows
for scheduling of not loop invariant operations into
branches and loops with unknown number of loop it-
erations, which can not be performed by high-level
synthesis algorithms.

4 Algorithm Application

4.1 Protocol Speci�cation

The label merg this, which shows the begin of the
mergable part of a protocol, has to be set in the
protocol speci�cation to allow for automatic merg-
ing. Additional marks are necessary to mark the head
(proc begin) and the tail (proc end) of a protocol.
Since VHDL'87 does not generally allow for labeling
sequential statements, dummy procedures are intro-
duced for labeling. The recognition of the mergable
part can not be performed automaticly due to the
fact, that detailed information about the protocol is
required as shown in Section 3.

circuit original inlined merged folded
rec send 13 32 43 60
rec send1 10 33 52 77
sem rec 12 44 78 140
semtrans 22 79 503 375
semtrans1 25 79 503 384
split 23 58 58 84
tee 18 53 193 231
transmitter 29 56 91 114
xii 42 95 621 799

Table 1: Analysis of the optimized VHDL-Code

Listing 5 shows the speci�cation of a receive op-
eration based on a hand-shake protocol with paral-
lel data transmission. Here, the dummy procedures
proc begin, proc end and merge this are used to
mark the begin, the end and the mergable part of the
protocol.

procedure receive

( signal clk : in bit;

signal data : in bit_vector;

signal ok : in bit;

signal ack : out bit;

variable buf : out bit_vector ) i s

begin

proc_begin; --< mark begin of the protocol

loop

exit when ok = '1';

wait unti l clk = '1' ;

end loop ;

buf := data;

ack <= '1';

merge_this; --< mark mergable part

wait unti l clk = '1';

ack <= '0';

proc_end; --< mark end of the protocol

end receive;

Listing 5: Receive Operation

4.2 Protocol Application

Protocols speci�ed as subroutines (see 4.1) allow
to reuse protocol speci�cations and to hide merging
labels from the user. In this way, the description of the
transmitter example can be reduced to two subroutine
calls. This is shown in Listing 6.

transmitter: process

variable buf : bit_vector( 7 downto 0 );

begin

receive( data_in , ok_in, ack_in, buf, clk );

send( data_out , ok_out, ack_out, buf, clk );

end process ;

Listing 6: Subroutine-Based Transmitter

5 Results

Table 1 shows the lines of VHDL-Code after each
transformation step. In general, the �nal description
after optimization has 4 up to 20 times more lines



not merged mergedcircuit
delay area cycles delay area cycles

rec send 5.78 135 4 5.60 126 3
rec send1 5.49 136 7 6.02 138 6
sem rec 5.48 139 2 5.37 139 1
semtrans 7.96 195 4 10.79 320 3
semtrans1 7.39 189 4 11.21 314 3
split 5.81 198 4 5.80 198 3
tee 5.67 181 6 6.83 209 5
transmitter 17.58 319 18 12.02 312 9
xii 17.62 607 36 28.17 3241 20

Table 2: Analysis of Synthesis Results

of code than the input description. This illustrates
that it is nearly impossible, to perform the optimiza-
tion manually. Two unexpected e�ects can also be
observed: The number of lines may not increase after
merging and the number of lines of code may decrease
after wait-folding. The �rst e�ect occurs, if a lot of
wait-statements have to be executed unconditionally
and the second e�ect can be observed, if a lot of false
paths are part of the description after merging.

Table 2 compares properties of circuits optimized
with or without merging. All circuits are generated
with a commercial RT-level synthesis tool. In all cases
the number of clock cycles was reduced by applying
protocol merging. A rough analysis did not allow to
identify a correlation of the merging optimizationwith
the propagation delay and area. A more detailed ana-
lysis results in the following assumptions:

A smaller and faster circuit can be achieved, if the
circuit, which has to be optimized, possesses uncondi-
tionally executed wait statements. The reason is, that
merging minimizes in this case the number of wait
statements in the description and thus the number of
states of the implicitly inferred �nite state machine.
Hence, the number of registers required for the hard-
ware implementation can be smaller.

The size of the circuits is 1.5% to 40% larger, if
no or only some unconditionally executed wait state-
ments are part of the description before the merging
optimization step. The area increase results mainly
from an increasing number of states of the implicitly
inferred �nite state machine. New states, however, are
forced by new conditionally executed wait statements,
introduced by protocol merging.

The merging of more than one clock cycle gener-
ates circuits, which are about �ve times as big as the
non-optimized circuits. The reason is the introduction
of counters, which are necessary to count the number
of executed respectively not executed cycles of a pro-
tocol. This overhead, however, is no weakness of the
algorithm. It results from the optimization problem
itself.

The di�erence in propagation delay in the merged
and un-merged circuits relates to the di�erences in
area. We observed, however, that the increased prop-

agation delay satis�es in most cases the clock require-
ments.

6 Conclusion

A new method for clock cycle minimizing and
protocol preserving scheduling of IO-operations with
quadratic complexity was presented. The algo-
rithm allows for optimizing edge triggered as well as
level triggered protocols, which can not be handled
by scheduling algorithms up to now. Finally, the
scheduling algorithm is able to schedule operations in
branches and loops with unknown number of itera-
tions. It has to be pointed out however, that the al-
gorithm was developed for protocol optimization only
and not for resource minimization of complex opera-
tions.

Currently, a mechanism is included in the algorithm
to allow for �nishing protocols at speci�ed places and
thus to allow for data considering dependencies be-
tween di�erent protocols and statements. It is planned
to support labels on sequential statements instead of
labeling dummy subroutines, as soon as the VHDL
frontend supports VHDL'92.

Future e�ort lies on the optimization of multi-
cycle merging and the improvement of the false path-
analysis.
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